Introduction
Type definitions
Primitive types
mjtNum
mjtByte
mjtDisableBit
mjtEnableBit
mjtJoint
mjtGeom
mjtCamLight
mjtTexture
mjtIntegrator
mjtCollision
mjtCone
mjtJacobian
mjtSolver
mjtEq
mjtWrap
mjtTrn
mjtDyn
mjtGain
mjtBias
mjtObj
mjtConstraint
mjtConstraintState
mjtSensor
mjtStage
mjtDataType
mjtWarning
mjtTimer
mjtCatBit
mjtMouse
mjtPertBit
mjtCamera
mjtLabel
mjtFrame
mjtVisFlag
mjtRndFlag
mjtStereo
mjtGridPos
mjtFramebuffer
mjtFontScale
mjtFont
mjtButton
mjtEvent
mjtItem
Function types
Data structures
mjVFS
mjOption
mjVisual
mjStatistic
mjModel
mjContact
mjWarningStat
mjTimerStat
mjSolverStat
mjData
mjvPerturb
mjvCamera
mjvGLCamera
mjvGeom
mjvLight
mjvOption
mjvScene
mjvFigure
mjrRect
mjrContext
mjuiState
mjuiThemeSpacing
mjuiThemeColor
mjuiItem
mjUI
mjuiDef
X Macros
Global variables
Error callbacks
Memory callbacks
Physics callbacks
mjcb_passive
mjcb_control
mjcb_contactfilter
mjcb_sensor
mjcb_time
mjcb_act_dyn
mjcb_act_gain
mjcb_act_bias
Collision table
String constants
Numeric constants
API functions
Activation
Virtual file system
Parse and compile
Main simulation
Initialization
mj_defaultLROpt
mj_defaultSolRefImp
mj_defaultOption
mj_defaultVisual
mj_copyModel
mj_saveModel
mj_loadModel
mj_deleteModel
mj_sizeModel
mj_makeData
mj_copyData
mj_resetData
mj_resetDataDebug
mj_resetDataKeyframe
mj_stackAlloc
mj_deleteData
mj_resetCallbacks
mj_setConst
mj_setLengthRange
Printing
Components
mj_fwdPosition
mj_fwdVelocity
mj_fwdActuation
mj_fwdAcceleration
mj_fwdConstraint
mj_Euler
mj_RungeKutta
mj_invPosition
mj_invVelocity
mj_invConstraint
mj_compareFwdInv
Sub components
mj_sensorPos
mj_sensorVel
mj_sensorAcc
mj_energyPos
mj_energyVel
mj_checkPos
mj_checkVel
mj_checkAcc
mj_kinematics
mj_comPos
mj_camlight
mj_tendon
mj_transmission
mj_crb
mj_factorM
mj_solveM
mj_solveM2
mj_comVel
mj_passive
mj_subtreeVel
mj_rne
mj_rnePostConstraint
mj_collision
mj_makeConstraint
mj_projectConstraint
mj_referenceConstraint
mj_constraintUpdate
Support
mj_addContact
mj_isPyramidal
mj_isSparse
mj_isDual
mj_mulJacVec
mj_mulJacTVec
mj_jac
mj_jacBody
mj_jacBodyCom
mj_jacGeom
mj_jacSite
mj_jacPointAxis
mj_name2id
mj_id2name
mj_fullM
mj_mulM
mj_mulM2
mj_addM
mj_applyFT
mj_objectVelocity
mj_objectAcceleration
mj_contactForce
mj_differentiatePos
mj_integratePos
mj_normalizeQuat
mj_local2Global
mj_getTotalmass
mj_setTotalmass
mj_version
Ray collisions
Interaction
mjv_defaultCamera
mjv_defaultPerturb
mjv_room2model
mjv_model2room
mjv_cameraInModel
mjv_cameraInRoom
mjv_frustumHeight
mjv_alignToCamera
mjv_moveCamera
mjv_movePerturb
mjv_moveModel
mjv_initPerturb
mjv_applyPerturbPose
mjv_applyPerturbForce
mjv_averageCamera
mjv_select
Visualization
mjv_defaultOption
mjv_defaultFigure
mjv_initGeom
mjv_makeConnector
mjv_defaultScene
mjv_makeScene
mjv_freeScene
mjv_updateScene
mjv_addGeoms
mjv_makeLights
mjv_updateCamera
mjv_updateSkin
OpenGL rendering
mjr_defaultContext
mjr_makeContext
mjr_changeFont
mjr_addAux
mjr_freeContext
mjr_uploadTexture
mjr_uploadMesh
mjr_uploadHField
mjr_restoreBuffer
mjr_setBuffer
mjr_readPixels
mjr_drawPixels
mjr_blitBuffer
mjr_setAux
mjr_blitAux
mjr_text
mjr_overlay
mjr_maxViewport
mjr_rectangle
mjr_figure
mjr_render
mjr_finish
mjr_getError
mjr_findRect
UI framework
Error and memory
mju_error
mju_error_i
mju_error_s
mju_warning
mju_warning_i
mju_warning_s
mju_clearHandlers
mju_malloc
mju_free
mj_warning
mju_writeLog
Standard math
mju_sqrt
mju_exp
mju_sin
mju_cos
mju_tan
mju_asin
mju_acos
mju_atan2
mju_tanh
mju_pow
mju_abs
mju_log
mju_log10
mju_floor
mju_ceil
Vector math
mju_zero3
mju_copy3
mju_scl3
mju_add3
mju_sub3
mju_addTo3
mju_subFrom3
mju_addToScl3
mju_addScl3
mju_normalize3
mju_norm3
mju_dot3
mju_dist3
mju_rotVecMat
mju_rotVecMatT
mju_cross
mju_zero4
mju_unit4
mju_copy4
mju_normalize4
mju_zero
mju_copy
mju_sum
mju_L1
mju_scl
mju_add
mju_sub
mju_addTo
mju_subFrom
mju_addToScl
mju_addScl
mju_normalize
mju_norm
mju_dot
mju_mulMatVec
mju_mulMatTVec
mju_transpose
mju_mulMatMat
mju_mulMatMatT
mju_mulMatTMat
mju_sqrMatTD
mju_transformSpatial
Quaternions
mju_rotVecQuat
mju_negQuat
mju_mulQuat
mju_mulQuatAxis
mju_axisAngle2Quat
mju_quat2Vel
mju_subQuat
mju_quat2Mat
mju_mat2Quat
mju_derivQuat
mju_quatIntegrate
mju_quatZ2Vec
Poses
Decompositions
Miscellaneous
mju_muscleGain
mju_muscleBias
mju_muscleDynamics
mju_encodePyramid
mju_decodePyramid
mju_springDamper
mju_min
mju_max
mju_sign
mju_round
mju_type2Str
mju_str2Type
mju_warningText
mju_isBad
mju_isZero
mju_standardNormal
mju_f2n
mju_n2f
mju_d2n
mju_n2d
mju_insertionSort
mju_Halton
mju_strncpy
Macros
|
This is legacy documentation covering MuJoCo versions 2.0 and earlier. Updated documentation is available from DeepMind at www.mujoco.org Chapter 6: API ReferenceIntroductionThis chapter is the reference manual for MuJoCo Pro. It is generated from the header files included with MuJoCo, but also contains additional text not available in the headers. Type definitionsPrimitive typesMuJoCo defines a large number of primitive types described here. Except for mjtNum and mjtByte, all other primitive types are C enums used to define various integer constants. Note that the rest of the API does not use these enum types directly. Instead it uses ints, and only the documentation/comments state that certain ints correspond to certain enum types. This is because we want the API to be compiler-independent, and the C standard does not dictate how many bytes must be used to represent an enum type. Nevertheless we recommend using these types when calling the API functions (and letting the compiler do the enum-to-int type cast.) mjtNum#ifdef mjUSEDOUBLE typedef double mjtNum; #else typedef float mjtNum; #endif
Defined in mjmodel.h
mjtBytetypedef unsigned char mjtByte;
Defined in mjmodel.h
mjtDisableBittypedef enum _mjtDisableBit { mjDSBL_CONSTRAINT = 1<<0, // entire constraint solver mjDSBL_EQUALITY = 1<<1, // equality constraints mjDSBL_FRICTIONLOSS = 1<<2, // joint and tendon frictionloss constraints mjDSBL_LIMIT = 1<<3, // joint and tendon limit constraints mjDSBL_CONTACT = 1<<4, // contact constraints mjDSBL_PASSIVE = 1<<5, // passive forces mjDSBL_GRAVITY = 1<<6, // gravitational forces mjDSBL_CLAMPCTRL = 1<<7, // clamp control to specified range mjDSBL_WARMSTART = 1<<8, // warmstart constraint solver mjDSBL_FILTERPARENT = 1<<9, // remove collisions with parent body mjDSBL_ACTUATION = 1<<10, // apply actuation forces mjDSBL_REFSAFE = 1<<11, // integrator safety: make ref[0]>=2*timestep mjNDISABLE = 12 // number of disable flags } mjtDisableBit;
Defined in mjmodel.h
mjtEnableBittypedef enum _mjtEnableBit { mjENBL_OVERRIDE = 1<<0, // override contact parameters mjENBL_ENERGY = 1<<1, // energy computation mjENBL_FWDINV = 1<<2, // compare forward and inverse dynamics mjENBL_SENSORNOISE = 1<<3, // add noise to sensor data mjNENABLE = 4 // number of enable flags } mjtEnableBit;
Defined in mjmodel.h
mjtJointtypedef enum _mjtJoint { mjJNT_FREE = 0, // global position and orientation (quat) (7) mjJNT_BALL, // orientation (quat) relative to parent (4) mjJNT_SLIDE, // sliding distance along body-fixed axis (1) mjJNT_HINGE // rotation angle (rad) around body-fixed axis (1) } mjtJoint;
Defined in mjmodel.h
mjtGeomtypedef enum _mjtGeom { // regular geom types mjGEOM_PLANE = 0, // plane mjGEOM_HFIELD, // height field mjGEOM_SPHERE, // sphere mjGEOM_CAPSULE, // capsule mjGEOM_ELLIPSOID, // ellipsoid mjGEOM_CYLINDER, // cylinder mjGEOM_BOX, // box mjGEOM_MESH, // mesh mjNGEOMTYPES, // number of regular geom types // rendering-only geom types: not used in mjModel, not counted in mjNGEOMTYPES mjGEOM_ARROW = 100, // arrow mjGEOM_ARROW1, // arrow without wedges mjGEOM_ARROW2, // arrow in both directions mjGEOM_LINE, // line mjGEOM_SKIN, // skin mjGEOM_LABEL, // text label mjGEOM_NONE = 1001 // missing geom type } mjtGeom;
Defined in mjmodel.h
mjtCamLighttypedef enum _mjtCamLight { mjCAMLIGHT_FIXED = 0, // pos and rot fixed in body mjCAMLIGHT_TRACK, // pos tracks body, rot fixed in global mjCAMLIGHT_TRACKCOM, // pos tracks subtree com, rot fixed in body mjCAMLIGHT_TARGETBODY, // pos fixed in body, rot tracks target body mjCAMLIGHT_TARGETBODYCOM // pos fixed in body, rot tracks target subtree com } mjtCamLight;
Defined in mjmodel.h
mjtTexturetypedef enum _mjtTexture { mjTEXTURE_2D = 0, // 2d texture, suitable for planes and hfields mjTEXTURE_CUBE, // cube texture, suitable for all other geom types mjTEXTURE_SKYBOX // cube texture used as skybox } mjtTexture;
Defined in mjmodel.h
mjtIntegratortypedef enum _mjtIntegrator // integrator mode { mjINT_EULER = 0, // semi-implicit Euler mjINT_RK4 // 4th-order Runge Kutta } mjtIntegrator;
Defined in mjmodel.h
mjtCollisiontypedef enum _mjtCollision // collision mode for selecting geom pairs { mjCOL_ALL = 0, // test precomputed and dynamic pairs mjCOL_PAIR, // test predefined pairs only mjCOL_DYNAMIC // test dynamic pairs only } mjtCollision;
Defined in mjmodel.h
mjtConetypedef enum _mjtCone // type of friction cone { mjCONE_PYRAMIDAL = 0, // pyramidal mjCONE_ELLIPTIC // elliptic } mjtCone;
Defined in mjmodel.h
mjtJacobiantypedef enum _mjtJacobian // type of constraint Jacobian { mjJAC_DENSE = 0, // dense mjJAC_SPARSE, // sparse mjJAC_AUTO // dense if nv<=60, sparse otherwise } mjtJacobian;
Defined in mjmodel.h
mjtSolvertypedef enum _mjtSolver // constraint solver algorithm { mjSOL_PGS = 0, // PGS (dual) mjSOL_CG, // CG (primal) mjSOL_NEWTON // Newton (primal) } mjtSolver;
Defined in mjmodel.h
mjtEqtypedef enum _mjtEq { mjEQ_CONNECT = 0, // connect two bodies at a point (ball joint) mjEQ_WELD, // fix relative position and orientation of two bodies mjEQ_JOINT, // couple the values of two scalar joints with cubic mjEQ_TENDON, // couple the lengths of two tendons with cubic mjEQ_DISTANCE // fix the contact distance betweent two geoms } mjtEq;
Defined in mjmodel.h
mjtWraptypedef enum _mjtWrap { mjWRAP_NONE = 0, // null object mjWRAP_JOINT, // constant moment arm mjWRAP_PULLEY, // pulley used to split tendon mjWRAP_SITE, // pass through site mjWRAP_SPHERE, // wrap around sphere mjWRAP_CYLINDER // wrap around (infinite) cylinder } mjtWrap;
Defined in mjmodel.h
mjtTrntypedef enum _mjtTrn { mjTRN_JOINT = 0, // force on joint mjTRN_JOINTINPARENT, // force on joint, expressed in parent frame mjTRN_SLIDERCRANK, // force via slider-crank linkage mjTRN_TENDON, // force on tendon mjTRN_SITE, // force on site mjTRN_UNDEFINED = 1000 // undefined transmission type } mjtTrn;
Defined in mjmodel.h
mjtDyntypedef enum _mjtDyn { mjDYN_NONE = 0, // no internal dynamics; ctrl specifies force mjDYN_INTEGRATOR, // integrator: da/dt = u mjDYN_FILTER, // linear filter: da/dt = (u-a) / tau mjDYN_MUSCLE, // piece-wise linear filter with two time constants mjDYN_USER // user-defined dynamics type } mjtDyn;
Defined in mjmodel.h
mjtGaintypedef enum _mjtGain { mjGAIN_FIXED = 0, // fixed gain mjGAIN_MUSCLE, // muscle FLV curve computed by mju_muscleGain() mjGAIN_USER // user-defined gain type } mjtGain;
Defined in mjmodel.h
mjtBiastypedef enum _mjtBias { mjBIAS_NONE = 0, // no bias mjBIAS_AFFINE, // const + kp*length + kv*velocity mjBIAS_MUSCLE, // muscle passive force computed by mju_muscleBias() mjBIAS_USER // user-defined bias type } mjtBias;
Defined in mjmodel.h
mjtObjtypedef enum _mjtObj { mjOBJ_UNKNOWN = 0, // unknown object type mjOBJ_BODY, // body mjOBJ_XBODY, // body, used to access regular frame instead of i-frame mjOBJ_JOINT, // joint mjOBJ_DOF, // dof mjOBJ_GEOM, // geom mjOBJ_SITE, // site mjOBJ_CAMERA, // camera mjOBJ_LIGHT, // light mjOBJ_MESH, // mesh mjOBJ_SKIN, // skin mjOBJ_HFIELD, // heightfield mjOBJ_TEXTURE, // texture mjOBJ_MATERIAL, // material for rendering mjOBJ_PAIR, // geom pair to include mjOBJ_EXCLUDE, // body pair to exclude mjOBJ_EQUALITY, // equality constraint mjOBJ_TENDON, // tendon mjOBJ_ACTUATOR, // actuator mjOBJ_SENSOR, // sensor mjOBJ_NUMERIC, // numeric mjOBJ_TEXT, // text mjOBJ_TUPLE, // tuple mjOBJ_KEY // keyframe } mjtObj;
Defined in mjmodel.h
mjtConstrainttypedef enum _mjtConstraint { mjCNSTR_EQUALITY = 0, // equality constraint mjCNSTR_FRICTION_DOF, // dof friction mjCNSTR_FRICTION_TENDON, // tendon friction mjCNSTR_LIMIT_JOINT, // joint limit mjCNSTR_LIMIT_TENDON, // tendon limit mjCNSTR_CONTACT_FRICTIONLESS, // frictionless contact mjCNSTR_CONTACT_PYRAMIDAL, // frictional contact, pyramidal friction cone mjCNSTR_CONTACT_ELLIPTIC // frictional contact, elliptic friction cone } mjtConstraint;
Defined in mjmodel.h
mjtConstraintStatetypedef enum _mjtConstraint { mjCNSTRSTATE_SATISFIED = 0, // constraint satisfied, zero cost (limit, contact) mjCNSTRSTATE_QUADRATIC, // quadratic cost (equality, friction, limit, contact) mjCNSTRSTATE_LINEARNEG, // linear cost, negative side (friction) mjCNSTRSTATE_LINEARPOS, // linear cost, positive side (friction) mjCNSTRSTATE_CONE // squared distance to cone cost (elliptic contact) } mjtConstraint;
Defined in mjmodel.h
mjtSensortypedef enum _mjtSensor // type of sensor { // common robotic sensors, attached to a site mjSENS_TOUCH = 0, // scalar contact normal forces summed over sensor zone mjSENS_ACCELEROMETER, // 3D linear acceleration, in local frame mjSENS_VELOCIMETER, // 3D linear velocity, in local frame mjSENS_GYRO, // 3D angular velocity, in local frame mjSENS_FORCE, // 3D force between site's body and its parent body mjSENS_TORQUE, // 3D torque between site's body and its parent body mjSENS_MAGNETOMETER, // 3D magnetometer mjSENS_RANGEFINDER, // scalar distance to nearest geom or site along z-axis // sensors related to scalar joints, tendons, actuators mjSENS_JOINTPOS, // scalar joint position (hinge and slide only) mjSENS_JOINTVEL, // scalar joint velocity (hinge and slide only) mjSENS_TENDONPOS, // scalar tendon position mjSENS_TENDONVEL, // scalar tendon velocity mjSENS_ACTUATORPOS, // scalar actuator position mjSENS_ACTUATORVEL, // scalar actuator velocity mjSENS_ACTUATORFRC, // scalar actuator force // sensors related to ball joints mjSENS_BALLQUAT, // 4D ball joint quaterion mjSENS_BALLANGVEL, // 3D ball joint angular velocity // joint and tendon limit sensors, in constraint space mjSENS_JOINTLIMITPOS, // joint limit distance-margin mjSENS_JOINTLIMITVEL, // joint limit velocity mjSENS_JOINTLIMITFRC, // joint limit force mjSENS_TENDONLIMITPOS, // tendon limit distance-margin mjSENS_TENDONLIMITVEL, // tendon limit velocity mjSENS_TENDONLIMITFRC, // tendon limit force // sensors attached to an object with spatial frame: (x)body, geom, site, camera mjSENS_FRAMEPOS, // 3D position mjSENS_FRAMEQUAT, // 4D unit quaternion orientation mjSENS_FRAMEXAXIS, // 3D unit vector: x-axis of object's frame mjSENS_FRAMEYAXIS, // 3D unit vector: y-axis of object's frame mjSENS_FRAMEZAXIS, // 3D unit vector: z-axis of object's frame mjSENS_FRAMELINVEL, // 3D linear velocity mjSENS_FRAMEANGVEL, // 3D angular velocity mjSENS_FRAMELINACC, // 3D linear acceleration mjSENS_FRAMEANGACC, // 3D angular acceleration // sensors related to kinematic subtrees; attached to a body (which is the subtree root) mjSENS_SUBTREECOM, // 3D center of mass of subtree mjSENS_SUBTREELINVEL, // 3D linear velocity of subtree mjSENS_SUBTREEANGMOM, // 3D angular momentum of subtree // user-defined sensor mjSENS_USER // sensor data provided by mjcb_sensor callback } mjtSensor;
Defined in mjmodel.h
mjtStagetypedef enum _mjtStage { mjSTAGE_NONE = 0, // no computations mjSTAGE_POS, // position-dependent computations mjSTAGE_VEL, // velocity-dependent computations mjSTAGE_ACC // acceleration/force-dependent computations } mjtStage;
Defined in mjmodel.h
mjtDataTypetypedef enum _mjtDataType // data type for sensors { mjDATATYPE_REAL = 0, // real values, no constraints mjDATATYPE_POSITIVE, // positive values; 0 or negative: inactive mjDATATYPE_AXIS, // 3D unit vector mjDATATYPE_QUATERNION // unit quaternion } mjtDataType;
Defined in mjmodel.h
mjtWarningtypedef enum _mjtWarning // warning types { mjWARN_INERTIA = 0, // (near) singular inertia matrix mjWARN_CONTACTFULL, // too many contacts in contact list mjWARN_CNSTRFULL, // too many constraints mjWARN_VGEOMFULL, // too many visual geoms mjWARN_BADQPOS, // bad number in qpos mjWARN_BADQVEL, // bad number in qvel mjWARN_BADQACC, // bad number in qacc mjWARN_BADCTRL, // bad number in ctrl mjNWARNING // number of warnings } mjtWarning;
Defined in mjdata.h
mjtTimertypedef enum _mjtTimer { // main api mjTIMER_STEP = 0, // step mjTIMER_FORWARD, // forward mjTIMER_INVERSE, // inverse // breakdown of step/forward mjTIMER_POSITION, // fwdPosition mjTIMER_VELOCITY, // fwdVelocity mjTIMER_ACTUATION, // fwdActuation mjTIMER_ACCELERATION, // fwdAcceleration mjTIMER_CONSTRAINT, // fwdConstraint // breakdown of fwdPosition mjTIMER_POS_KINEMATICS, // kinematics, com, tendon, transmission mjTIMER_POS_INERTIA, // inertia computations mjTIMER_POS_COLLISION, // collision detection mjTIMER_POS_MAKE, // make constraints mjTIMER_POS_PROJECT, // project constraints mjNTIMER // number of timers } mjtTimer;
Defined in mjdata.h
mjtCatBittypedef enum _mjtCatBit { mjCAT_STATIC = 1, // model elements in body 0 mjCAT_DYNAMIC = 2, // model elements in all other bodies mjCAT_DECOR = 4, // decorative geoms mjCAT_ALL = 7 // select all categories } mjtCatBit;
Defined in mjvisualize.h
mjtMousetypedef enum _mjtMouse { mjMOUSE_NONE = 0, // no action mjMOUSE_ROTATE_V, // rotate, vertical plane mjMOUSE_ROTATE_H, // rotate, horizontal plane mjMOUSE_MOVE_V, // move, vertical plane mjMOUSE_MOVE_H, // move, horizontal plane mjMOUSE_ZOOM, // zoom mjMOUSE_SELECT // selection } mjtMouse;
Defined in mjvisualize.h
mjtPertBittypedef enum _mjtPertBit { mjPERT_TRANSLATE = 1, // translation mjPERT_ROTATE = 2 // rotation } mjtPertBit;
Defined in mjvisualize.h
mjtCameratypedef enum _mjtCamera { mjCAMERA_FREE = 0, // free camera mjCAMERA_TRACKING, // tracking camera; uses trackbodyid mjCAMERA_FIXED, // fixed camera; uses fixedcamid mjCAMERA_USER // user is responsible for setting OpenGL camera } mjtCamera;
Defined in mjvisualize.h
mjtLabeltypedef enum _mjtLabel { mjLABEL_NONE = 0, // nothing mjLABEL_BODY, // body labels mjLABEL_JOINT, // joint labels mjLABEL_GEOM, // geom labels mjLABEL_SITE, // site labels mjLABEL_CAMERA, // camera labels mjLABEL_LIGHT, // light labels mjLABEL_TENDON, // tendon labels mjLABEL_ACTUATOR, // actuator labels mjLABEL_CONSTRAINT, // constraint labels mjLABEL_SKIN, // skin labels mjLABEL_SELECTION, // selected object mjLABEL_SELPNT, // coordinates of selection point mjLABEL_CONTACTFORCE, // magnitude of contact force mjNLABEL // number of label types } mjtLabel;
Defined in mjvisualize.h
mjtFrametypedef enum _mjtFrame { mjFRAME_NONE = 0, // no frames mjFRAME_BODY, // body frames mjFRAME_GEOM, // geom frames mjFRAME_SITE, // site frames mjFRAME_CAMERA, // camera frames mjFRAME_LIGHT, // light frames mjFRAME_WORLD, // world frame mjNFRAME // number of visualization frames } mjtFrame;
Defined in mjvisualize.h
mjtVisFlagtypedef enum _mjtVisFlag { mjVIS_CONVEXHULL = 0, // mesh convex hull mjVIS_TEXTURE, // textures mjVIS_JOINT, // joints mjVIS_ACTUATOR, // actuators mjVIS_CAMERA, // cameras mjVIS_LIGHT, // lights mjVIS_TENDON, // tendons mjVIS_RANGEFINDER, // rangefinder sensors mjVIS_CONSTRAINT, // point constraints mjVIS_INERTIA, // equivalent inertia boxes mjVIS_SCLINERTIA, // scale equivalent inertia boxes with mass mjVIS_PERTFORCE, // perturbation force mjVIS_PERTOBJ, // perturbation object mjVIS_CONTACTPOINT, // contact points mjVIS_CONTACTFORCE, // contact force mjVIS_CONTACTSPLIT, // split contact force into normal and tanget mjVIS_TRANSPARENT, // make dynamic geoms more transparent mjVIS_AUTOCONNECT, // auto connect joints and body coms mjVIS_COM, // center of mass mjVIS_SELECT, // selection point mjVIS_STATIC, // static bodies mjVIS_SKIN, // skin mjNVISFLAG // number of visualization flags } mjtVisFlag;
Defined in mjvisualize.h
mjtRndFlagtypedef enum _mjtRndFlag { mjRND_SHADOW = 0, // shadows mjRND_WIREFRAME, // wireframe mjRND_REFLECTION, // reflections mjRND_ADDITIVE, // additive transparency mjRND_SKYBOX, // skybox mjRND_FOG, // fog mjRND_HAZE, // haze mjRND_SEGMENT, // segmentation with random color mjRND_IDCOLOR, // segmentation with segid color mjNRNDFLAG // number of rendering flags } mjtRndFlag;
Defined in mjvisualize.h
mjtStereotypedef enum _mjtStereo { mjSTEREO_NONE = 0, // no stereo; use left eye only mjSTEREO_QUADBUFFERED, // quad buffered; revert to side-by-side if no hardware support mjSTEREO_SIDEBYSIDE // side-by-side } mjtStereo;
Defined in mjvisualize.h
mjtGridPostypedef enum _mjtGridPos { mjGRID_TOPLEFT = 0, // top left mjGRID_TOPRIGHT, // top right mjGRID_BOTTOMLEFT, // bottom left mjGRID_BOTTOMRIGHT // bottom right } mjtGridPos;
Defined in mjrender.h
mjtFramebuffertypedef enum _mjtFramebuffer { mjFB_WINDOW = 0, // default/window buffer mjFB_OFFSCREEN // offscreen buffer } mjtFramebuffer;
Defined in mjrender.h
mjtFontScaletypedef enum _mjtFontScale { mjFONTSCALE_50 = 50, // 50% scale, suitable for low-res rendering mjFONTSCALE_100 = 100, // normal scale, suitable in the absence of DPI scaling mjFONTSCALE_150 = 150, // 150% scale mjFONTSCALE_200 = 200, // 200% scale mjFONTSCALE_250 = 250, // 250% scale mjFONTSCALE_300 = 300 // 300% scale } mjtFontScale;
Defined in mjrender.h
mjtFonttypedef enum _mjtFont { mjFONT_NORMAL = 0, // normal font mjFONT_SHADOW, // normal font with shadow (for higher contrast) mjFONT_BIG // big font (for user alerts) } mjtFont;
Defined in mjrender.h
mjtButtontypedef enum _mjtButton // mouse button { mjBUTTON_NONE = 0, // no button mjBUTTON_LEFT, // left button mjBUTTON_RIGHT, // right button mjBUTTON_MIDDLE // middle button } mjtButton;
Defined in mjui.h
mjtEventtypedef enum _mjtEvent // mouse and keyboard event type { mjEVENT_NONE = 0, // no event mjEVENT_MOVE, // mouse move mjEVENT_PRESS, // mouse button press mjEVENT_RELEASE, // mouse button release mjEVENT_SCROLL, // scroll mjEVENT_KEY, // key press mjEVENT_RESIZE // resize } mjtEvent;
Defined in mjui.h
mjtItemtypedef enum _mjtItem // UI item type { mjITEM_END = -2, // end of definition list (not an item) mjITEM_SECTION = -1, // section (not an item) mjITEM_SEPARATOR = 0, // separator mjITEM_STATIC, // static text mjITEM_BUTTON, // button // the rest have data pointer mjITEM_CHECKINT, // check box, int value mjITEM_CHECKBYTE, // check box, mjtByte value mjITEM_RADIO, // radio group mjITEM_SELECT, // selection box mjITEM_SLIDERINT, // slider, int value mjITEM_SLIDERNUM, // slider, mjtNum value mjITEM_EDITINT, // editable array, int values mjITEM_EDITNUM, // editable array, mjtNum values mjITEM_EDITTXT, // editable text mjNITEM // number of item types } mjtItem;
Defined in mjui.h
Function typesMuJoCo callbacks have corresponding function types. They are defined in mjdata.h and in mjui.h. The actual callback functions are documented later. mjfGenerictypedef void (*mjfGeneric)(const mjModel* m, mjData* d); This is the function type of the callbacks mjcb_passive and mjcb_control. mjfConFilttypedef int (*mjfConFilt)(const mjModel* m, mjData* d, int geom1, int geom2); This is the function type of the callback mjcb_contactfilter. The return value is 1: discard, 0: proceed with collision check. mjfSensortypedef void (*mjfSensor)(const mjModel* m, mjData* d, int stage); This is the function type of the callback mjcb_sensor. mjfTimetypedef mjtNum (*mjfTime)(void); This is the function type of the callback mjcb_time. mjfActtypedef mjtNum (*mjfAct)(const mjModel* m, const mjData* d, int id); This is the function type of the callbacks mjcb_act_dyn, mjcb_act_gain and mjcb_act_bias. mjfCollisiontypedef int (*mjfCollision)(const mjModel* m, const mjData* d, mjContact* con, int g1, int g2, mjtNum margin); This is the function type of the callbacks in the collision table mjCOLLISIONFUNC. mjfItemEnabletypedef int (*mjfItemEnable)(int category, void* data); This is the function type of the predicate function used by the UI framework to determine if each item is enabled or disabled. Data structuresMuJoCo uses several data structures shown below. They are taken directly from the header files which contain comments for each field. mjVFSstruct _mjVFS // virtual file system for loading from memory { int nfile; // number of files present char filename[mjMAXVFS][mjMAXVFSNAME]; // file name without path int filesize[mjMAXVFS]; // file size in bytes void* filedata[mjMAXVFS]; // buffer with file data }; typedef struct _mjVFS mjVFS;
Defined in mjmodel.h
mjOptionstruct _mjOption // physics options { // timing parameters mjtNum timestep; // timestep mjtNum apirate; // update rate for remote API (Hz) // solver parameters mjtNum impratio; // ratio of friction-to-normal contact impedance mjtNum tolerance; // main solver tolerance mjtNum noslip_tolerance; // noslip solver tolerance mjtNum mpr_tolerance; // MPR solver tolerance // physical constants mjtNum gravity[3]; // gravitational acceleration mjtNum wind[3]; // wind (for lift, drag and viscosity) mjtNum magnetic[3]; // global magnetic flux mjtNum density; // density of medium mjtNum viscosity; // viscosity of medium // override contact solver parameters (if enabled) mjtNum o_margin; // margin mjtNum o_solref[mjNREF]; // solref mjtNum o_solimp[mjNIMP]; // solimp // discrete settings int integrator; // integration mode (mjtIntegrator) int collision; // collision mode (mjtCollision) int cone; // type of friction cone (mjtCone) int jacobian; // type of Jacobian (mjtJacobian) int solver; // solver algorithm (mjtSolver) int iterations; // maximum number of main solver iterations int noslip_iterations; // maximum number of noslip solver iterations int mpr_iterations; // maximum number of MPR solver iterations int disableflags; // bit flags for disabling standard features int enableflags; // bit flags for enabling optional features }; typedef struct _mjOption mjOption;
Defined in mjmodel.h
mjVisualstruct _mjVisual // visualization options { struct // global parameters { float fovy; // y-field of view (deg) for free camera float ipd; // inter-pupilary distance for free camera float linewidth; // line width for wireframe and ray rendering float glow; // glow coefficient for selected body int offwidth; // width of offscreen buffer int offheight; // height of offscreen buffer } global; struct // rendering quality { int shadowsize; // size of shadowmap texture int offsamples; // number of multisamples for offscreen rendering int numslices; // number of slices for builtin geom drawing int numstacks; // number of stacks for builtin geom drawing int numquads; // number of quads for box rendering } quality; struct // head light { float ambient[3]; // ambient rgb (alpha=1) float diffuse[3]; // diffuse rgb (alpha=1) float specular[3]; // specular rgb (alpha=1) int active; // is headlight active } headlight; struct // mapping { float stiffness; // mouse perturbation stiffness (space->force) float stiffnessrot; // mouse perturbation stiffness (space->torque) float force; // from force units to space units float torque; // from torque units to space units float alpha; // scale geom alphas when transparency is enabled float fogstart; // OpenGL fog starts at fogstart * mjModel.stat.extent float fogend; // OpenGL fog ends at fogend * mjModel.stat.extent float znear; // near clipping plane = znear * mjModel.stat.extent float zfar; // far clipping plane = zfar * mjModel.stat.extent float haze; // haze ratio float shadowclip; // directional light: shadowclip * mjModel.stat.extent float shadowscale; // spot light: shadowscale * light.cutoff float actuatortendon; // scale tendon width } map; struct // scale of decor elements relative to mean body size { float forcewidth; // width of force arrow float contactwidth; // contact width float contactheight; // contact height float connect; // autoconnect capsule width float com; // com radius float camera; // camera object float light; // light object float selectpoint; // selection point float jointlength; // joint length float jointwidth; // joint width float actuatorlength; // actuator length float actuatorwidth; // actuator width float framelength; // bodyframe axis length float framewidth; // bodyframe axis width float constraint; // constraint width float slidercrank; // slidercrank width } scale; struct // color of decor elements { float fog[4]; // fog float haze[4]; // haze float force[4]; // external force float inertia[4]; // inertia box float joint[4]; // joint float actuator[4]; // actuator, neutral float actuatornegative[4]; // actuator, negative limit float actuatorpositive[4]; // actuator, positive limit float com[4]; // center of mass float camera[4]; // camera object float light[4]; // light object float selectpoint[4]; // selection point float connect[4]; // auto connect float contactpoint[4]; // contact point float contactforce[4]; // contact force float contactfriction[4]; // contact friction force float contacttorque[4]; // contact torque float contactgap[4]; // contact point in gap float rangefinder[4]; // rangefinder ray float constraint[4]; // constraint float slidercrank[4]; // slidercrank float crankbroken[4]; // used when crank must be stretched/broken } rgba; }; typedef struct _mjVisual mjVisual;
Defined in mjmodel.h
mjStatisticstruct _mjStatistic // model statistics (in qpos0) { mjtNum meaninertia; // mean diagonal inertia mjtNum meanmass; // mean body mass mjtNum meansize; // mean body size mjtNum extent; // spatial extent mjtNum center[3]; // center of model }; typedef struct _mjStatistic mjStatistic;
Defined in mjmodel.h
mjModelstruct _mjModel { // ------------------------------- sizes // sizes needed at mjModel construction int nq; // number of generalized coordinates = dim(qpos) int nv; // number of degrees of freedom = dim(qvel) int nu; // number of actuators/controls = dim(ctrl) int na; // number of activation states = dim(act) int nbody; // number of bodies int njnt; // number of joints int ngeom; // number of geoms int nsite; // number of sites int ncam; // number of cameras int nlight; // number of lights int nmesh; // number of meshes int nmeshvert; // number of vertices in all meshes int nmeshtexvert; // number of vertices with texcoords in all meshes int nmeshface; // number of triangular faces in all meshes int nmeshgraph; // number of ints in mesh auxiliary data int nskin; // number of skins int nskinvert; // number of vertices in all skins int nskintexvert; // number of vertiex with texcoords in all skins int nskinface; // number of triangular faces in all skins int nskinbone; // number of bones in all skins int nskinbonevert; // number of vertices in all skin bones int nhfield; // number of heightfields int nhfielddata; // number of data points in all heightfields int ntex; // number of textures int ntexdata; // number of bytes in texture rgb data int nmat; // number of materials int npair; // number of predefined geom pairs int nexclude; // number of excluded geom pairs int neq; // number of equality constraints int ntendon; // number of tendons int nwrap; // number of wrap objects in all tendon paths int nsensor; // number of sensors int nnumeric; // number of numeric custom fields int nnumericdata; // number of mjtNums in all numeric fields int ntext; // number of text custom fields int ntextdata; // number of mjtBytes in all text fields int ntuple; // number of tuple custom fields int ntupledata; // number of objects in all tuple fields int nkey; // number of keyframes int nuser_body; // number of mjtNums in body_user int nuser_jnt; // number of mjtNums in jnt_user int nuser_geom; // number of mjtNums in geom_user int nuser_site; // number of mjtNums in site_user int nuser_cam; // number of mjtNums in cam_user int nuser_tendon; // number of mjtNums in tendon_user int nuser_actuator; // number of mjtNums in actuator_user int nuser_sensor; // number of mjtNums in sensor_user int nnames; // number of chars in all names // sizes set after mjModel construction (only affect mjData) int nM; // number of non-zeros in sparse inertia matrix int nemax; // number of potential equality-constraint rows int njmax; // number of available rows in constraint Jacobian int nconmax; // number of potential contacts in contact list int nstack; // number of fields in mjData stack int nuserdata; // number of extra fields in mjData int nmocap; // number of mocap bodies int nsensordata; // number of fields in sensor data vector int nbuffer; // number of bytes in buffer // ------------------------------- options and statistics mjOption opt; // physics options mjVisual vis; // visualization options mjStatistic stat; // model statistics // ------------------------------- buffers // main buffer void* buffer; // main buffer; all pointers point in it (nbuffer) // default generalized coordinates mjtNum* qpos0; // qpos values at default pose (nq x 1) mjtNum* qpos_spring; // reference pose for springs (nq x 1) // bodies int* body_parentid; // id of body's parent (nbody x 1) int* body_rootid; // id of root above body (nbody x 1) int* body_weldid; // id of body that this body is welded to (nbody x 1) int* body_mocapid; // id of mocap data; -1: none (nbody x 1) int* body_jntnum; // number of joints for this body (nbody x 1) int* body_jntadr; // start addr of joints; -1: no joints (nbody x 1) int* body_dofnum; // number of motion degrees of freedom (nbody x 1) int* body_dofadr; // start addr of dofs; -1: no dofs (nbody x 1) int* body_geomnum; // number of geoms (nbody x 1) int* body_geomadr; // start addr of geoms; -1: no geoms (nbody x 1) mjtByte* body_simple; // body is simple (has diagonal M) (nbody x 1) mjtByte* body_sameframe; // inertial frame is same as body frame (nbody x 1) mjtNum* body_pos; // position offset rel. to parent body (nbody x 3) mjtNum* body_quat; // orientation offset rel. to parent body (nbody x 4) mjtNum* body_ipos; // local position of center of mass (nbody x 3) mjtNum* body_iquat; // local orientation of inertia ellipsoid (nbody x 4) mjtNum* body_mass; // mass (nbody x 1) mjtNum* body_subtreemass; // mass of subtree starting at this body (nbody x 1) mjtNum* body_inertia; // diagonal inertia in ipos/iquat frame (nbody x 3) mjtNum* body_invweight0; // mean inv inert in qpos0 (trn, rot) (nbody x 2) mjtNum* body_user; // user data (nbody x nuser_body) // joints int* jnt_type; // type of joint (mjtJoint) (njnt x 1) int* jnt_qposadr; // start addr in 'qpos' for joint's data (njnt x 1) int* jnt_dofadr; // start addr in 'qvel' for joint's data (njnt x 1) int* jnt_bodyid; // id of joint's body (njnt x 1) int* jnt_group; // group for visibility (njnt x 1) mjtByte* jnt_limited; // does joint have limits (njnt x 1) mjtNum* jnt_solref; // constraint solver reference: limit (njnt x mjNREF) mjtNum* jnt_solimp; // constraint solver impedance: limit (njnt x mjNIMP) mjtNum* jnt_pos; // local anchor position (njnt x 3) mjtNum* jnt_axis; // local joint axis (njnt x 3) mjtNum* jnt_stiffness; // stiffness coefficient (njnt x 1) mjtNum* jnt_range; // joint limits (njnt x 2) mjtNum* jnt_margin; // min distance for limit detection (njnt x 1) mjtNum* jnt_user; // user data (njnt x nuser_jnt) // dofs int* dof_bodyid; // id of dof's body (nv x 1) int* dof_jntid; // id of dof's joint (nv x 1) int* dof_parentid; // id of dof's parent; -1: none (nv x 1) int* dof_Madr; // dof address in M-diagonal (nv x 1) int* dof_simplenum; // number of consecutive simple dofs (nv x 1) mjtNum* dof_solref; // constraint solver reference:frictionloss (nv x mjNREF) mjtNum* dof_solimp; // constraint solver impedance:frictionloss (nv x mjNIMP) mjtNum* dof_frictionloss; // dof friction loss (nv x 1) mjtNum* dof_armature; // dof armature inertia/mass (nv x 1) mjtNum* dof_damping; // damping coefficient (nv x 1) mjtNum* dof_invweight0; // diag. inverse inertia in qpos0 (nv x 1) mjtNum* dof_M0; // diag. inertia in qpos0 (nv x 1) // geoms int* geom_type; // geometric type (mjtGeom) (ngeom x 1) int* geom_contype; // geom contact type (ngeom x 1) int* geom_conaffinity; // geom contact affinity (ngeom x 1) int* geom_condim; // contact dimensionality (1, 3, 4, 6) (ngeom x 1) int* geom_bodyid; // id of geom's body (ngeom x 1) int* geom_dataid; // id of geom's mesh/hfield (-1: none) (ngeom x 1) int* geom_matid; // material id for rendering (ngeom x 1) int* geom_group; // group for visibility (ngeom x 1) int* geom_priority; // geom contact priority (ngeom x 1) mjtByte* geom_sameframe; // same as body frame (1) or iframe (2) (ngeom x 1) mjtNum* geom_solmix; // mixing coef for solref/imp in geom pair (ngeom x 1) mjtNum* geom_solref; // constraint solver reference: contact (ngeom x mjNREF) mjtNum* geom_solimp; // constraint solver impedance: contact (ngeom x mjNIMP) mjtNum* geom_size; // geom-specific size parameters (ngeom x 3) mjtNum* geom_rbound; // radius of bounding sphere (ngeom x 1) mjtNum* geom_pos; // local position offset rel. to body (ngeom x 3) mjtNum* geom_quat; // local orientation offset rel. to body (ngeom x 4) mjtNum* geom_friction; // friction for (slide, spin, roll) (ngeom x 3) mjtNum* geom_margin; // detect contact if dist<margin (ngeom x 1) mjtNum* geom_gap; // include in solver if dist<margin-gap (ngeom x 1) mjtNum* geom_user; // user data (ngeom x nuser_geom) float* geom_rgba; // rgba when material is omitted (ngeom x 4) // sites int* site_type; // geom type for rendering (mjtGeom) (nsite x 1) int* site_bodyid; // id of site's body (nsite x 1) int* site_matid; // material id for rendering (nsite x 1) int* site_group; // group for visibility (nsite x 1) mjtByte* site_sameframe; // same as body frame (1) or iframe (2) (nsite x 1) mjtNum* site_size; // geom size for rendering (nsite x 3) mjtNum* site_pos; // local position offset rel. to body (nsite x 3) mjtNum* site_quat; // local orientation offset rel. to body (nsite x 4) mjtNum* site_user; // user data (nsite x nuser_site) float* site_rgba; // rgba when material is omitted (nsite x 4) // cameras int* cam_mode; // camera tracking mode (mjtCamLight) (ncam x 1) int* cam_bodyid; // id of camera's body (ncam x 1) int* cam_targetbodyid; // id of targeted body; -1: none (ncam x 1) mjtNum* cam_pos; // position rel. to body frame (ncam x 3) mjtNum* cam_quat; // orientation rel. to body frame (ncam x 4) mjtNum* cam_poscom0; // global position rel. to sub-com in qpos0 (ncam x 3) mjtNum* cam_pos0; // global position rel. to body in qpos0 (ncam x 3) mjtNum* cam_mat0; // global orientation in qpos0 (ncam x 9) mjtNum* cam_fovy; // y-field of view (deg) (ncam x 1) mjtNum* cam_ipd; // inter-pupilary distance (ncam x 1) mjtNum* cam_user; // user data (ncam x nuser_cam) // lights int* light_mode; // light tracking mode (mjtCamLight) (nlight x 1) int* light_bodyid; // id of light's body (nlight x 1) int* light_targetbodyid; // id of targeted body; -1: none (nlight x 1) mjtByte* light_directional; // directional light (nlight x 1) mjtByte* light_castshadow; // does light cast shadows (nlight x 1) mjtByte* light_active; // is light on (nlight x 1) mjtNum* light_pos; // position rel. to body frame (nlight x 3) mjtNum* light_dir; // direction rel. to body frame (nlight x 3) mjtNum* light_poscom0; // global position rel. to sub-com in qpos0 (nlight x 3) mjtNum* light_pos0; // global position rel. to body in qpos0 (nlight x 3) mjtNum* light_dir0; // global direction in qpos0 (nlight x 3) float* light_attenuation; // OpenGL attenuation (quadratic model) (nlight x 3) float* light_cutoff; // OpenGL cutoff (nlight x 1) float* light_exponent; // OpenGL exponent (nlight x 1) float* light_ambient; // ambient rgb (alpha=1) (nlight x 3) float* light_diffuse; // diffuse rgb (alpha=1) (nlight x 3) float* light_specular; // specular rgb (alpha=1) (nlight x 3) // meshes int* mesh_vertadr; // first vertex address (nmesh x 1) int* mesh_vertnum; // number of vertices (nmesh x 1) int* mesh_texcoordadr; // texcoord data address; -1: no texcoord (nmesh x 1) int* mesh_faceadr; // first face address (nmesh x 1) int* mesh_facenum; // number of faces (nmesh x 1) int* mesh_graphadr; // graph data address; -1: no graph (nmesh x 1) float* mesh_vert; // vertex positions for all meshe (nmeshvert x 3) float* mesh_normal; // vertex normals for all meshes (nmeshvert x 3) float* mesh_texcoord; // vertex texcoords for all meshes (nmeshtexvert x 2) int* mesh_face; // triangle face data (nmeshface x 3) int* mesh_graph; // convex graph data (nmeshgraph x 1) // skins int* skin_matid; // skin material id; -1: none (nskin x 1) float* skin_rgba; // skin rgba (nskin x 4) float* skin_inflate; // inflate skin in normal direction (nskin x 1) int* skin_vertadr; // first vertex address (nskin x 1) int* skin_vertnum; // number of vertices (nskin x 1) int* skin_texcoordadr; // texcoord data address; -1: no texcoord (nskin x 1) int* skin_faceadr; // first face address (nskin x 1) int* skin_facenum; // number of faces (nskin x 1) int* skin_boneadr; // first bone in skin (nskin x 1) int* skin_bonenum; // number of bones in skin (nskin x 1) float* skin_vert; // vertex positions for all skin meshes (nskinvert x 3) float* skin_texcoord; // vertex texcoords for all skin meshes (nskintexvert x 2) int* skin_face; // triangle faces for all skin meshes (nskinface x 3) int* skin_bonevertadr; // first vertex in each bone (nskinbone x 1) int* skin_bonevertnum; // number of vertices in each bone (nskinbone x 1) float* skin_bonebindpos; // bind pos of each bone (nskinbone x 3) float* skin_bonebindquat; // bind quat of each bone (nskinbone x 4) int* skin_bonebodyid; // body id of each bone (nskinbone x 1) int* skin_bonevertid; // mesh ids of vertices in each bone (nskinbonevert x 1) float* skin_bonevertweight; // weights of vertices in each bone (nskinbonevert x 1) // height fields mjtNum* hfield_size; // (x, y, z_top, z_bottom) (nhfield x 4) int* hfield_nrow; // number of rows in grid (nhfield x 1) int* hfield_ncol; // number of columns in grid (nhfield x 1) int* hfield_adr; // address in hfield_data (nhfield x 1) float* hfield_data; // elevation data (nhfielddata x 1) // textures int* tex_type; // texture type (mjtTexture) (ntex x 1) int* tex_height; // number of rows in texture image (ntex x 1) int* tex_width; // number of columns in texture image (ntex x 1) int* tex_adr; // address in rgb (ntex x 1) mjtByte* tex_rgb; // rgb (alpha = 1) (ntexdata x 1) // materials int* mat_texid; // texture id; -1: none (nmat x 1) mjtByte* mat_texuniform; // make texture cube uniform (nmat x 1) float* mat_texrepeat; // texture repetition for 2d mapping (nmat x 2) float* mat_emission; // emission (x rgb) (nmat x 1) float* mat_specular; // specular (x white) (nmat x 1) float* mat_shininess; // shininess coef (nmat x 1) float* mat_reflectance; // reflectance (0: disable) (nmat x 1) float* mat_rgba; // rgba (nmat x 4) // predefined geom pairs for collision detection; has precedence over exclude int* pair_dim; // contact dimensionality (npair x 1) int* pair_geom1; // id of geom1 (npair x 1) int* pair_geom2; // id of geom2 (npair x 1) int* pair_signature; // (body1+1)<<16 + body2+1 (npair x 1) mjtNum* pair_solref; // constraint solver reference: contact (npair x mjNREF) mjtNum* pair_solimp; // constraint solver impedance: contact (npair x mjNIMP) mjtNum* pair_margin; // detect contact if dist<margin (npair x 1) mjtNum* pair_gap; // include in solver if dist<margin-gap (npair x 1) mjtNum* pair_friction; // tangent1, 2, spin, roll1, 2 (npair x 5) // excluded body pairs for collision detection int* exclude_signature; // (body1+1)<<16 + body2+1 (nexclude x 1) // equality constraints int* eq_type; // constraint type (mjtEq) (neq x 1) int* eq_obj1id; // id of object 1 (neq x 1) int* eq_obj2id; // id of object 2 (neq x 1) mjtByte* eq_active; // enable/disable constraint (neq x 1) mjtNum* eq_solref; // constraint solver reference (neq x mjNREF) mjtNum* eq_solimp; // constraint solver impedance (neq x mjNIMP) mjtNum* eq_data; // numeric data for constraint (neq x mjNEQDATA) // tendons int* tendon_adr; // address of first object in tendon's path (ntendon x 1) int* tendon_num; // number of objects in tendon's path (ntendon x 1) int* tendon_matid; // material id for rendering (ntendon x 1) int* tendon_group; // group for visibility (ntendon x 1) mjtByte* tendon_limited; // does tendon have length limits (ntendon x 1) mjtNum* tendon_width; // width for rendering (ntendon x 1) mjtNum* tendon_solref_lim; // constraint solver reference: limit (ntendon x mjNREF) mjtNum* tendon_solimp_lim; // constraint solver impedance: limit (ntendon x mjNIMP) mjtNum* tendon_solref_fri; // constraint solver reference: friction (ntendon x mjNREF) mjtNum* tendon_solimp_fri; // constraint solver impedance: friction (ntendon x mjNIMP) mjtNum* tendon_range; // tendon length limits (ntendon x 2) mjtNum* tendon_margin; // min distance for limit detection (ntendon x 1) mjtNum* tendon_stiffness; // stiffness coefficient (ntendon x 1) mjtNum* tendon_damping; // damping coefficient (ntendon x 1) mjtNum* tendon_frictionloss; // loss due to friction (ntendon x 1) mjtNum* tendon_lengthspring; // tendon length in qpos_spring (ntendon x 1) mjtNum* tendon_length0; // tendon length in qpos0 (ntendon x 1) mjtNum* tendon_invweight0; // inv. weight in qpos0 (ntendon x 1) mjtNum* tendon_user; // user data (ntendon x nuser_tendon) float* tendon_rgba; // rgba when material is omitted (ntendon x 4) // list of all wrap objects in tendon paths int* wrap_type; // wrap object type (mjtWrap) (nwrap x 1) int* wrap_objid; // object id: geom, site, joint (nwrap x 1) mjtNum* wrap_prm; // divisor, joint coef, or site id (nwrap x 1) // actuators int* actuator_trntype; // transmission type (mjtTrn) (nu x 1) int* actuator_dyntype; // dynamics type (mjtDyn) (nu x 1) int* actuator_gaintype; // gain type (mjtGain) (nu x 1) int* actuator_biastype; // bias type (mjtBias) (nu x 1) int* actuator_trnid; // transmission id: joint, tendon, site (nu x 2) int* actuator_group; // group for visibility (nu x 1) mjtByte* actuator_ctrllimited; // is control limited (nu x 1) mjtByte* actuator_forcelimited;// is force limited (nu x 1) mjtNum* actuator_dynprm; // dynamics parameters (nu x mjNDYN) mjtNum* actuator_gainprm; // gain parameters (nu x mjNGAIN) mjtNum* actuator_biasprm; // bias parameters (nu x mjNBIAS) mjtNum* actuator_ctrlrange; // range of controls (nu x 2) mjtNum* actuator_forcerange; // range of forces (nu x 2) mjtNum* actuator_gear; // scale length and transmitted force (nu x 6) mjtNum* actuator_cranklength; // crank length for slider-crank (nu x 1) mjtNum* actuator_acc0; // acceleration from unit force in qpos0 (nu x 1) mjtNum* actuator_length0; // actuator length in qpos0 (nu x 1) mjtNum* actuator_lengthrange; // feasible actuator length range (nu x 2) mjtNum* actuator_user; // user data (nu x nuser_actuator) // sensors int* sensor_type; // sensor type (mjtSensor) (nsensor x 1) int* sensor_datatype; // numeric data type (mjtDataType) (nsensor x 1) int* sensor_needstage; // required compute stage (mjtStage) (nsensor x 1) int* sensor_objtype; // type of sensorized object (mjtObj) (nsensor x 1) int* sensor_objid; // id of sensorized object (nsensor x 1) int* sensor_dim; // number of scalar outputs (nsensor x 1) int* sensor_adr; // address in sensor array (nsensor x 1) mjtNum* sensor_cutoff; // cutoff for real and positive; 0: ignore (nsensor x 1) mjtNum* sensor_noise; // noise standard deviation (nsensor x 1) mjtNum* sensor_user; // user data (nsensor x nuser_sensor) // custom numeric fields int* numeric_adr; // address of field in numeric_data (nnumeric x 1) int* numeric_size; // size of numeric field (nnumeric x 1) mjtNum* numeric_data; // array of all numeric fields (nnumericdata x 1) // custom text fields int* text_adr; // address of text in text_data (ntext x 1) int* text_size; // size of text field (strlen+1) (ntext x 1) char* text_data; // array of all text fields (0-terminated) (ntextdata x 1) // custom tuple fields int* tuple_adr; // address of text in text_data (ntuple x 1) int* tuple_size; // number of objects in tuple (ntuple x 1) int* tuple_objtype; // array of object types in all tuples (ntupledata x 1) int* tuple_objid; // array of object ids in all tuples (ntupledata x 1) mjtNum* tuple_objprm; // array of object params in all tuples (ntupledata x 1) // keyframes mjtNum* key_time; // key time (nkey x 1) mjtNum* key_qpos; // key position (nkey x nq) mjtNum* key_qvel; // key velocity (nkey x nv) mjtNum* key_act; // key activation (nkey x na) // names int* name_bodyadr; // body name pointers (nbody x 1) int* name_jntadr; // joint name pointers (njnt x 1) int* name_geomadr; // geom name pointers (ngeom x 1) int* name_siteadr; // site name pointers (nsite x 1) int* name_camadr; // camera name pointers (ncam x 1) int* name_lightadr; // light name pointers (nlight x 1) int* name_meshadr; // mesh name pointers (nmesh x 1) int* name_skinadr; // skin name pointers (nskin x 1) int* name_hfieldadr; // hfield name pointers (nhfield x 1) int* name_texadr; // texture name pointers (ntex x 1) int* name_matadr; // material name pointers (nmat x 1) int* name_pairadr; // geom pair name pointers (npair x 1) int* name_excludeadr; // exclude name pointers (nexclude x 1) int* name_eqadr; // equality constraint name pointers (neq x 1) int* name_tendonadr; // tendon name pointers (ntendon x 1) int* name_actuatoradr; // actuator name pointers (nu x 1) int* name_sensoradr; // sensor name pointers (nsensor x 1) int* name_numericadr; // numeric name pointers (nnumeric x 1) int* name_textadr; // text name pointers (ntext x 1) int* name_tupleadr; // tuple name pointers (ntuple x 1) int* name_keyadr; // keyframe name pointers (nkey x 1) char* names; // names of all objects, 0-terminated (nnames x 1) }; typedef struct _mjModel mjModel;
Defined in mjmodel.h
mjContactstruct _mjContact // result of collision detection functions { // contact parameters set by geom-specific collision detector mjtNum dist; // distance between nearest points; neg: penetration mjtNum pos[3]; // position of contact point: midpoint between geoms mjtNum frame[9]; // normal is in [0-2] // contact parameters set by mj_collideGeoms mjtNum includemargin; // include if dist<includemargin=margin-gap mjtNum friction[5]; // tangent1, 2, spin, roll1, 2 mjtNum solref[mjNREF]; // constraint solver reference mjtNum solimp[mjNIMP]; // constraint solver impedance // internal storage used by solver mjtNum mu; // friction of regularized cone, set by mj_makeR mjtNum H[36]; // cone Hessian, set by mj_updateConstraint // contact descriptors set by mj_collideGeoms int dim; // contact space dimensionality: 1, 3, 4 or 6 int geom1; // id of geom 1 int geom2; // id of geom 2 // flag set by mj_fuseContact or mj_instantianteEquality int exclude; // 0: include, 1: in gap, 2: fused, 3: equality // address computed by mj_instantiateContact int efc_address; // address in efc; -1: not included, -2-i: distance constraint i }; typedef struct _mjContact mjContact;
Defined in mjdata.h
mjWarningStatstruct _mjWarningStat // warning statistics { int lastinfo; // info from last warning int number; // how many times was warning raised }; typedef struct _mjWarningStat mjWarningStat;
Defined in mjdata.h
mjTimerStatstruct _mjTimerStat // timer statistics { mjtNum duration; // cumulative duration int number; // how many times was timer called }; typedef struct _mjTimerStat mjTimerStat;
Defined in mjdata.h
mjSolverStatstruct _mjSolverStat // per-iteration solver statistics { mjtNum improvement; // cost reduction, scaled by 1/trace(M(qpos0)) mjtNum gradient; // gradient norm (primal only, scaled) mjtNum lineslope; // slope in linesearch int nactive; // number of active constraints int nchange; // number of constraint state changes int neval; // number of cost evaluations in line search int nupdate; // number of Cholesky updates in line search }; typedef struct _mjSolverStat mjSolverStat;
Defined in mjdata.h
mjDatastruct _mjData { // constant sizes int nstack; // number of mjtNums that can fit in stack int nbuffer; // size of main buffer in bytes // stack pointer int pstack; // first available mjtNum address in stack // memory utilization stats int maxuse_stack; // maximum stack allocation int maxuse_con; // maximum number of contacts int maxuse_efc; // maximum number of scalar constraints // diagnostics mjWarningStat warning[mjNWARNING]; // warning statistics mjTimerStat timer[mjNTIMER]; // timer statistics mjSolverStat solver[mjNSOLVER]; // solver statistics per iteration int solver_iter; // number of solver iterations int solver_nnz; // number of non-zeros in Hessian or efc_AR mjtNum solver_fwdinv[2]; // forward-inverse comparison: qfrc, efc // variable sizes int ne; // number of equality constraints int nf; // number of friction constraints int nefc; // number of constraints int ncon; // number of detected contacts // global properties mjtNum time; // simulation time mjtNum energy[2]; // potential, kinetic energy //-------------------------------- end of info header // buffers void* buffer; // main buffer; all pointers point in it (nbuffer bytes) mjtNum* stack; // stack buffer (nstack mjtNums) //-------------------------------- main inputs and outputs of the computation // state mjtNum* qpos; // position (nq x 1) mjtNum* qvel; // velocity (nv x 1) mjtNum* act; // actuator activation (na x 1) mjtNum* qacc_warmstart; // acceleration used for warmstart (nv x 1) // control mjtNum* ctrl; // control (nu x 1) mjtNum* qfrc_applied; // applied generalized force (nv x 1) mjtNum* xfrc_applied; // applied Cartesian force/torque (nbody x 6) // dynamics mjtNum* qacc; // acceleration (nv x 1) mjtNum* act_dot; // time-derivative of actuator activation (na x 1) // mocap data mjtNum* mocap_pos; // positions of mocap bodies (nmocap x 3) mjtNum* mocap_quat; // orientations of mocap bodies (nmocap x 4) // user data mjtNum* userdata; // user data, not touched by engine (nuserdata x 1) // sensors mjtNum* sensordata; // sensor data array (nsensordata x 1) //-------------------------------- POSITION dependent // computed by mj_fwdPosition/mj_kinematics mjtNum* xpos; // Cartesian position of body frame (nbody x 3) mjtNum* xquat; // Cartesian orientation of body frame (nbody x 4) mjtNum* xmat; // Cartesian orientation of body frame (nbody x 9) mjtNum* xipos; // Cartesian position of body com (nbody x 3) mjtNum* ximat; // Cartesian orientation of body inertia (nbody x 9) mjtNum* xanchor; // Cartesian position of joint anchor (njnt x 3) mjtNum* xaxis; // Cartesian joint axis (njnt x 3) mjtNum* geom_xpos; // Cartesian geom position (ngeom x 3) mjtNum* geom_xmat; // Cartesian geom orientation (ngeom x 9) mjtNum* site_xpos; // Cartesian site position (nsite x 3) mjtNum* site_xmat; // Cartesian site orientation (nsite x 9) mjtNum* cam_xpos; // Cartesian camera position (ncam x 3) mjtNum* cam_xmat; // Cartesian camera orientation (ncam x 9) mjtNum* light_xpos; // Cartesian light position (nlight x 3) mjtNum* light_xdir; // Cartesian light direction (nlight x 3) // computed by mj_fwdPosition/mj_comPos mjtNum* subtree_com; // center of mass of each subtree (nbody x 3) mjtNum* cdof; // com-based motion axis of each dof (nv x 6) mjtNum* cinert; // com-based body inertia and mass (nbody x 10) // computed by mj_fwdPosition/mj_tendon int* ten_wrapadr; // start address of tendon's path (ntendon x 1) int* ten_wrapnum; // number of wrap points in path (ntendon x 1) int* ten_J_rownnz; // number of non-zeros in Jacobian row (ntendon x 1) int* ten_J_rowadr; // row start address in colind array (ntendon x 1) int* ten_J_colind; // column indices in sparse Jacobian (ntendon x nv) mjtNum* ten_length; // tendon lengths (ntendon x 1) mjtNum* ten_J; // tendon Jacobian (ntendon x nv) int* wrap_obj; // geom id; -1: site; -2: pulley (nwrap*2 x 1) mjtNum* wrap_xpos; // Cartesian 3D points in all path (nwrap*2 x 3) // computed by mj_fwdPosition/mj_transmission mjtNum* actuator_length; // actuator lengths (nu x 1) mjtNum* actuator_moment; // actuator moments (nu x nv) // computed by mj_fwdPosition/mj_crb mjtNum* crb; // com-based composite inertia and mass (nbody x 10) mjtNum* qM; // total inertia (nM x 1) // computed by mj_fwdPosition/mj_factorM mjtNum* qLD; // L'*D*L factorization of M (nM x 1) mjtNum* qLDiagInv; // 1/diag(D) (nv x 1) mjtNum* qLDiagSqrtInv; // 1/sqrt(diag(D)) (nv x 1) // computed by mj_fwdPosition/mj_collision mjContact* contact; // list of all detected contacts (nconmax x 1) // computed by mj_fwdPosition/mj_makeConstraint int* efc_type; // constraint type (mjtConstraint) (njmax x 1) int* efc_id; // id of object of specified type (njmax x 1) int* efc_J_rownnz; // number of non-zeros in Jacobian row (njmax x 1) int* efc_J_rowadr; // row start address in colind array (njmax x 1) int* efc_J_rowsuper; // number of subsequent rows in supernode (njmax x 1) int* efc_J_colind; // column indices in Jacobian (njmax x nv) int* efc_JT_rownnz; // number of non-zeros in Jacobian row T (nv x 1) int* efc_JT_rowadr; // row start address in colind array T (nv x 1) int* efc_JT_rowsuper; // number of subsequent rows in supernode T (nv x 1) int* efc_JT_colind; // column indices in Jacobian T (nv x njmax) mjtNum* efc_J; // constraint Jacobian (njmax x nv) mjtNum* efc_JT; // constraint Jacobian transposed (nv x njmax) mjtNum* efc_pos; // constraint position (equality, contact) (njmax x 1) mjtNum* efc_margin; // inclusion margin (contact) (njmax x 1) mjtNum* efc_frictionloss; // frictionloss (friction) (njmax x 1) mjtNum* efc_diagApprox; // approximation to diagonal of A (njmax x 1) mjtNum* efc_KBIP; // stiffness, damping, impedance, imp' (njmax x 4) mjtNum* efc_D; // constraint mass (njmax x 1) mjtNum* efc_R; // inverse constraint mass (njmax x 1) // computed by mj_fwdPosition/mj_projectConstraint int* efc_AR_rownnz; // number of non-zeros in AR (njmax x 1) int* efc_AR_rowadr; // row start address in colind array (njmax x 1) int* efc_AR_colind; // column indices in sparse AR (njmax x njmax) mjtNum* efc_AR; // J*inv(M)*J' + R (njmax x njmax) //-------------------------------- POSITION, VELOCITY dependent // computed by mj_fwdVelocity mjtNum* ten_velocity; // tendon velocities (ntendon x 1) mjtNum* actuator_velocity; // actuator velocities (nu x 1) // computed by mj_fwdVelocity/mj_comVel mjtNum* cvel; // com-based velocity [3D rot; 3D tran] (nbody x 6) mjtNum* cdof_dot; // time-derivative of cdof (nv x 6) // computed by mj_fwdVelocity/mj_rne (without acceleration) mjtNum* qfrc_bias; // C(qpos,qvel) (nv x 1) // computed by mj_fwdVelocity/mj_passive mjtNum* qfrc_passive; // passive force (nv x 1) // computed by mj_fwdVelocity/mj_referenceConstraint mjtNum* efc_vel; // velocity in constraint space: J*qvel (njmax x 1) mjtNum* efc_aref; // reference pseudo-acceleration (njmax x 1) // computed by mj_sensorVel/mj_subtreeVel if needed mjtNum* subtree_linvel; // linear velocity of subtree com (nbody x 3) mjtNum* subtree_angmom; // angular momentum about subtree com (nbody x 3) //-------------------------------- POSITION, VELOCITY, CONTROL/ACCELERATION dependent // computed by mj_fwdActuation mjtNum* actuator_force; // actuator force in actuation space (nu x 1) mjtNum* qfrc_actuator; // actuator force (nv x 1) // computed by mj_fwdAcceleration mjtNum* qfrc_unc; // net unconstrained force (nv x 1) mjtNum* qacc_unc; // unconstrained acceleration (nv x 1) // computed by mj_fwdConstraint/mj_inverse mjtNum* efc_b; // linear cost term: J*qacc_unc - aref (njmax x 1) mjtNum* efc_force; // constraint force in constraint space (njmax x 1) int* efc_state; // constraint state (mjtConstraintState) (njmax x 1) mjtNum* qfrc_constraint; // constraint force (nv x 1) // computed by mj_inverse mjtNum* qfrc_inverse; // net external force; should equal: (nv x 1) // qfrc_applied + J'*xfrc_applied + qfrc_actuator // computed by mj_sensorAcc/mj_rnePostConstraint if needed; rotation:translation format mjtNum* cacc; // com-based acceleration (nbody x 6) mjtNum* cfrc_int; // com-based interaction force with parent (nbody x 6) mjtNum* cfrc_ext; // com-based external force on body (nbody x 6) }; typedef struct _mjData mjData;
Defined in mjdata.h
mjvPerturbstruct _mjvPerturb // object selection and perturbation { int select; // selected body id; non-positive: none int skinselect; // selected skin id; non-positive: none int active; // perturbation bitmask (mjtPertBit) mjtNum refpos[3]; // desired position for selected object mjtNum refquat[4]; // desired orientation for selected object mjtNum localpos[3]; // selection point in object coordinates mjtNum scale; // relative mouse motion-to-space scaling (set by initPerturb) }; typedef struct _mjvPerturb mjvPerturb;
Defined in mjvisualize.h
mjvCamerastruct _mjvCamera // abstract camera { // type and ids int type; // camera type (mjtCamera) int fixedcamid; // fixed camera id int trackbodyid; // body id to track // abstract camera pose specification mjtNum lookat[3]; // lookat point mjtNum distance; // distance to lookat point or tracked body mjtNum azimuth; // camera azimuth (deg) mjtNum elevation; // camera elevation (deg) }; typedef struct _mjvCamera mjvCamera;
Defined in mjvisualize.h
mjvGLCamerastruct _mjvGLCamera // OpenGL camera { // camera frame float pos[3]; // position float forward[3]; // forward direction float up[3]; // up direction // camera projection float frustum_center; // hor. center (left,right set to match aspect) float frustum_bottom; // bottom float frustum_top; // top float frustum_near; // near float frustum_far; // far }; typedef struct _mjvGLCamera mjvGLCamera;
Defined in mjvisualize.h
mjvGeomstruct _mjvGeom // abstract geom { // type info int type; // geom type (mjtGeom) int dataid; // mesh, hfield or plane id; -1: none int objtype; // mujoco object type; mjOBJ_UNKNOWN for decor int objid; // mujoco object id; -1 for decor int category; // visual category int texid; // texture id; -1: no texture int texuniform; // uniform cube mapping int texcoord; // mesh geom has texture coordinates int segid; // segmentation id; -1: not shown // OpenGL info float texrepeat[2]; // texture repetition for 2D mapping float size[3]; // size parameters float pos[3]; // Cartesian position float mat[9]; // Cartesian orientation float rgba[4]; // color and transparency float emission; // emission coef float specular; // specular coef float shininess; // shininess coef float reflectance; // reflectance coef char label[100]; // text label // transparency rendering (set internally) float camdist; // distance to camera (used by sorter) float modelrbound; // geom rbound from model, 0 if not model geom mjtByte transparent; // treat geom as transparent }; typedef struct _mjvGeom mjvGeom;
Defined in mjvisualize.h
mjvLightstruct _mjvLight // OpenGL light { float pos[3]; // position rel. to body frame float dir[3]; // direction rel. to body frame float attenuation[3]; // OpenGL attenuation (quadratic model) float cutoff; // OpenGL cutoff float exponent; // OpenGL exponent float ambient[3]; // ambient rgb (alpha=1) float diffuse[3]; // diffuse rgb (alpha=1) float specular[3]; // specular rgb (alpha=1) mjtByte headlight; // headlight mjtByte directional; // directional light mjtByte castshadow; // does light cast shadows }; typedef struct _mjvLight mjvLight;
Defined in mjvisualize.h
mjvOptionstruct _mjvOption // abstract visualization options { int label; // what objects to label (mjtLabel) int frame; // which frame to show (mjtFrame) mjtByte geomgroup[mjNGROUP]; // geom visualization by group mjtByte sitegroup[mjNGROUP]; // site visualization by group mjtByte jointgroup[mjNGROUP]; // joint visualization by group mjtByte tendongroup[mjNGROUP]; // tendon visualization by group mjtByte actuatorgroup[mjNGROUP]; // actuator visualization by group mjtByte flags[mjNVISFLAG]; // visualization flags (indexed by mjtVisFlag) }; typedef struct _mjvOption mjvOption;
Defined in mjvisualize.h
mjvScenestruct _mjvScene // abstract scene passed to OpenGL renderer { // abstract geoms int maxgeom; // size of allocated geom buffer int ngeom; // number of geoms currently in buffer mjvGeom* geoms; // buffer for geoms int* geomorder; // buffer for ordering geoms by distance to camera // skin data int nskin; // number of skins int* skinfacenum; // number of faces in skin int* skinvertadr; // address of skin vertices int* skinvertnum; // number of vertices in skin float* skinvert; // skin vertex data float* skinnormal; // skin normal data // OpenGL lights int nlight; // number of lights currently in buffer mjvLight lights[8]; // buffer for lights // OpenGL cameras mjvGLCamera camera[2]; // left and right camera // OpenGL model transformation mjtByte enabletransform; // enable model transformation float translate[3]; // model translation float rotate[4]; // model quaternion rotation float scale; // model scaling // OpenGL rendering effects int stereo; // stereoscopic rendering (mjtStereo) mjtByte flags[mjNRNDFLAG]; // rendering flags (indexed by mjtRndFlag) }; typedef struct _mjvScene mjvScene;
Defined in mjvisualize.h
mjvFigurestruct _mjvFigure // abstract 2D figure passed to OpenGL renderer { // enable/disable flags int flg_legend; // show legend int flg_ticklabel[2]; // show grid tick labels (x,y) int flg_extend; // automatically extend axis ranges to fit data int flg_barplot; // isolated line segments (i.e. GL_LINES) int flg_selection; // vertical selection line int flg_symmetric; // symmetric y-axis // figure options int legendoff; // number of lines to offset legend int gridsize[2]; // number of grid points in (x,y) int selection; // selection line x-value int highlight[2]; // if point is in legend rect, highlight line float gridrgb[3]; // grid line rgb float gridwidth; // grid line width float figurergba[4]; // figure color and alpha float panergba[4]; // pane color and alpha float legendrgba[4]; // legend color and alpha float textrgb[3]; // text color float range[2][2]; // axis ranges; (min>=max) automatic char xlabel[100]; // x-axis label char title[100]; // figure title char xformat[20]; // x-tick label format for sprintf char yformat[20]; // y-tick label format for sprintf char minwidth[20]; // string used to determine min y-tick width // line data int linepnt[mjMAXLINE]; // number of points in line; (0) disable float linergb[mjMAXLINE][3]; // line color float linewidth[mjMAXLINE]; // line width float linedata[mjMAXLINE][2*mjMAXLINEPNT]; // line data (x,y) char linename[mjMAXLINE][100]; // line name for legend // output from renderer int xaxispixel[2]; // range of x-axis in pixels int yaxispixel[2]; // range of y-axis in pixels float xaxisdata[2]; // range of x-axis in data units float yaxisdata[2]; // range of y-axis in data units }; typedef struct _mjvFigure mjvFigure;
Defined in mjvisualize.h
mjrRectstruct _mjrRect // OpenGL rectangle { int left; // left (usually 0) int bottom; // bottom (usually 0) int width; // width (usually buffer width) int height; // height (usually buffer height) }; typedef struct _mjrRect mjrRect;
Defined in mjrender.h
mjrContextstruct _mjrContext // custom OpenGL context { // parameters copied from mjVisual float lineWidth; // line width for wireframe rendering float shadowClip; // clipping radius for directional lights float shadowScale; // fraction of light cutoff for spot lights float fogStart; // fog start = stat.extent * vis.map.fogstart float fogEnd; // fog end = stat.extent * vis.map.fogend float fogRGBA[4]; // fog rgba int shadowSize; // size of shadow map texture int offWidth; // width of offscreen buffer int offHeight; // height of offscreen buffer int offSamples; // number of offscreen buffer multisamples // parameters specified at creation int fontScale; // font scale int auxWidth[mjNAUX]; // auxiliary buffer width int auxHeight[mjNAUX]; // auxiliary buffer height int auxSamples[mjNAUX]; // auxiliary buffer multisamples // offscreen rendering objects unsigned int offFBO; // offscreen framebuffer object unsigned int offFBO_r; // offscreen framebuffer for resolving multisamples unsigned int offColor; // offscreen color buffer unsigned int offColor_r; // offscreen color buffer for resolving multisamples unsigned int offDepthStencil; // offscreen depth and stencil buffer unsigned int offDepthStencil_r; // offscreen depth and stencil buffer for resolving multisamples // shadow rendering objects unsigned int shadowFBO; // shadow map framebuffer object unsigned int shadowTex; // shadow map texture // auxiliary buffers unsigned int auxFBO[mjNAUX]; // auxiliary framebuffer object unsigned int auxFBO_r[mjNAUX]; // auxiliary framebuffer object for resolving unsigned int auxColor[mjNAUX]; // auxiliary color buffer unsigned int auxColor_r[mjNAUX];// auxiliary color buffer for resolving // texture objects and info int ntexture; // number of allocated textures int textureType[100]; // type of texture (mjtTexture) unsigned int texture[100]; // texture names // displaylist starting positions unsigned int basePlane; // all planes from model unsigned int baseMesh; // all meshes from model unsigned int baseHField; // all hfields from model unsigned int baseBuiltin; // all buildin geoms, with quality from model unsigned int baseFontNormal; // normal font unsigned int baseFontShadow; // shadow font unsigned int baseFontBig; // big font // displaylist ranges int rangePlane; // all planes from model int rangeMesh; // all meshes from model int rangeHField; // all hfields from model int rangeBuiltin; // all builtin geoms, with quality from model int rangeFont; // all characters in font // skin VBOs int nskin; // number of skins unsigned int* skinvertVBO; // skin vertex position VBOs unsigned int* skinnormalVBO; // skin vertex normal VBOs unsigned int* skintexcoordVBO; // skin vertex texture coordinate VBOs unsigned int* skinfaceVBO; // skin face index VBOs // character info int charWidth[127]; // character widths: normal and shadow int charWidthBig[127]; // chacarter widths: big int charHeight; // character heights: normal and shadow int charHeightBig; // character heights: big // capabilities int glewInitialized; // is glew initialized int windowAvailable; // is default/window framebuffer available int windowSamples; // number of samples for default/window framebuffer int windowStereo; // is stereo available for default/window framebuffer int windowDoublebuffer; // is default/window framebuffer double buffered // framebuffer int currentBuffer; // currently active framebuffer: mjFB_WINDOW or mjFB_OFFSCREEN }; typedef struct _mjrContext mjrContext;
Defined in mjrender.h
mjuiStatestruct _mjuiState // mouse and keyboard state { // constants set by user int nrect; // number of rectangles used mjrRect rect[mjMAXUIRECT]; // rectangles (index 0: entire window) void* userdata; // pointer to user data (for callbacks) // event type int type; // (type mjtEvent) // mouse buttons int left; // is left button down int right; // is right button down int middle; // is middle button down int doubleclick; // is last press a double click int button; // which button was pressed (mjtButton) double buttontime; // time of last button press // mouse position double x; // x position double y; // y position double dx; // x displacement double dy; // y displacement double sx; // x scroll double sy; // y scroll // keyboard int control; // is control down int shift; // is shift down int alt; // is alt down int key; // which key was pressed double keytime; // time of last key press // rectangle ownership and dragging int mouserect; // which rectangle contains mouse int dragrect; // which rectangle is dragged with mouse int dragbutton; // which button started drag (mjtButton) }; typedef struct _mjuiState mjuiState;
Defined in mjui.h
mjuiThemeSpacingstruct _mjuiThemeSpacing // UI visualization theme spacing { int total; // total width int scroll; // scrollbar width int label; // label width int section; // section gap int itemside; // item side gap int itemmid; // item middle gap int itemver; // item vertical gap int texthor; // text horizontal gap int textver; // text vertical gap int linescroll; // number of pixels to scroll int samples; // number of multisamples }; typedef struct _mjuiThemeSpacing mjuiThemeSpacing;
Defined in mjui.h
mjuiThemeColorstruct _mjuiThemeColor // UI visualization theme color { float master[3]; // master background float thumb[3]; // scrollbar thumb float secttitle[3]; // section title float sectfont[3]; // section font float sectsymbol[3]; // section symbol float sectpane[3]; // section pane float shortcut[3]; // shortcut background float fontactive[3]; // font active float fontinactive[3]; // font inactive float decorinactive[3]; // decor inactive float decorinactive2[3]; // inactive slider color 2 float button[3]; // button float check[3]; // check float radio[3]; // radio float select[3]; // select float select2[3]; // select pane float slider[3]; // slider float slider2[3]; // slider color 2 float edit[3]; // edit float edit2[3]; // edit invalid float cursor[3]; // edit cursor }; typedef struct _mjuiThemeColor mjuiThemeColor;
Defined in mjui.h
mjuiItemstruct _mjuiItem // UI item { // common properties int type; // type (mjtItem) char name[mjMAXUINAME]; // name int state; // 0: disable, 1: enable, 2+: use predicate void *pdata; // data pointer (type-specific) int sectionid; // id of section containing item int itemid; // id of item within section // type-specific properties union { // check and button-related struct { int modifier; // 0: none, 1: control, 2: shift; 4: alt int shortcut; // shortcut key; 0: undefined } single; // static, radio and select-related struct { int nelem; // number of elements in group char name[mjMAXUIMULTI][mjMAXUINAME]; // element names } multi; // slider-related struct { double range[2]; // slider range double divisions; // number of range divisions } slider; // edit-related struct { int nelem; // number of elements in list double range[mjMAXUIEDIT][2]; // element range (min>=max: ignore) } edit; }; // internal mjrRect rect; // rectangle occupied by item }; typedef struct _mjuiItem mjuiItem;
Defined in mjui.h
Defined in mjui.h
mjuiSectionstruct _mjuiSection // UI section { // properties char name[mjMAXUINAME]; // name int state; // 0: closed, 1: open int modifier; // 0: none, 1: control, 2: shift; 4: alt int shortcut; // shortcut key; 0: undefined int nitem; // number of items in use mjuiItem item[mjMAXUIITEM];// preallocated array of items // internal mjrRect rtitle; // rectangle occupied by title mjrRect rcontent; // rectangle occupied by content }; typedef struct _mjuiSection mjuiSection;
Defined in mjui.h
mjUIstruct _mjUI // entire UI { // constants set by user mjuiThemeSpacing spacing; // UI theme spacing mjuiThemeColor color; // UI theme color mjfItemEnable predicate; // callback to set item state programmatically void* userdata; // pointer to user data (passed to predicate) int rectid; // index of this ui rectangle in mjuiState int auxid; // aux buffer index of this ui int radiocol; // number of radio columns (0 defaults to 2) // UI sizes (framebuffer units) int width; // width int height; // current heigth int maxheight; // height when all sections open int scroll; // scroll from top of UI // mouse focus int mousesect; // 0: none, -1: scroll, otherwise 1+section int mouseitem; // item within section int mousehelp; // help button down: print shortcuts // keyboard focus and edit int editsect; // 0: none, otherwise 1+section int edititem; // item within section int editcursor; // cursor position int editscroll; // horizontal scroll char edittext[mjMAXUITEXT]; // current text mjuiItem* editchanged; // pointer to changed edit in last mjui_event // sections int nsect; // number of sections in use mjuiSection sect[mjMAXUISECT]; // preallocated array of sections }; typedef struct _mjUI mjUI;
Defined in mjui.h
mjuiDefstruct _mjuiDef { int type; // type (mjtItem); -1: section char name[mjMAXUINAME]; // name int state; // state void* pdata; // pointer to data char other[mjMAXUITEXT]; // string with type-specific properties }; typedef struct _mjuiDef mjuiDef;
Defined in mjui.h
X MacrosThe X Macros are not needed in most user projects. They are used internally to allocate the model, and are also available for users who know how to use this programming technique. See the header file mjxmacro.h for the actual definitions. They are particularly useful in writing MuJoCo wrappers for scripting languages, where dynamic structures matching the MuJoCo data structures need to be constructed programmatically. MJOPTION_SCALARSScalar fields of mjOption. MJOPTION_VECTORSVector fields of mjOption. MJMODEL_INTSInt fields of mjModel. MJMODEL_POINTERSPointer fields of mjModel. MJDATA_SCALARScalar fields of mjData. MJDATA_VECTORVector fields of mjData. MJDATA_POINTERSPointer fields of mjData. Global variablesError callbacksAll user callbacks (i.e. global function pointers whose name starts with 'mjcb') are initially set to NULL, which disables them and allows the default processing to take place. To install a callback, simply set the corresponding global pointer to a user function of the correct type. Keep in mind that these are global and not model-specific. So if you are simulating multiple models in parallel, they use the same set of callbacks. mju_user_errorextern void (*mju_user_error)(const char*); This is called from within the main error function mju_error. When installed, this function overrides the default error processing. Once it prints error mesages (or whatever else the user wants to do), it must exit the program. MuJoCo is written with the assumption that mju_error will not return. If it does, the behavior of the software is undefined. mju_user_warningextern void (*mju_user_warning)(const char*); This is called from within the main warning function mju_warning. It is similar to the error handler, but instead it must return without exiting the program. Memory callbacksThe purpose of the memory callbacks is to allow the user to install custom memory allocation and deallocation mechanisms. One example where we have found this to be useful is a MATLAB wrapper for MuJoCo, where mex files are expected to use MATLAB's memory mechanism for permanent memory allocation. mju_user_mallocextern void* (*mju_user_malloc)(size_t); If this is installed, the MuJoCo runtime will use it to allocate all heap memory it needs (instead of using aligned malloc). The user allocator must allocate memory aligned on 8-byte boundaries. Note that the parser and compiler are written in C++ and sometimes allocate memory with the "new" operator which bypasses this mechanism. mju_user_freeextern void (*mju_user_free)(void*); If this is installed, MuJoCo will free any heap memory it allocated by calling this function (instead of using aligned free). Physics callbacks
The physics callbacks are the main mechanism for modifying the behavior of the simulator, beyond setting various options. The options control the operation of the default pipeline, while callbacks extend the pipeline at well-defined places. This enables advanced users to implement many interesting functions which we have not thought of, while still taking advantage of the default pipeline. As with all other callbacks, there is no automated error checking - instead we assume that the authors of callback functions know what they are doing.
mjcb_passiveextern mjfGeneric mjcb_passive; This is used to implement a custom passive force in joint space; if the force is more naturally defined in Cartesian space, use the end-effector Jacobian to map it to joint space. By "passive" we do not mean a force that does no positive work (as in physics), but simply a force that depends only on position and velocity but not on control. There are standard passive forces in MuJoCo arising from springs, dampers, viscosity and desnity of the medium. They are computed in mjData.qfrc_passive before mjcb_passive is called. The user callback should add to this vector instead of overwriting it (otherwise the standard passive forces will be lost). mjcb_controlextern mjfGeneric mjcb_control;
This is the most commonly used callback. It implements a control law, by writing in the vector of controls mjData.ctrl. It can also write in mjData.qfrc_applied and mjData.xfrc_applied. The values written in these vectors can depend on position, velocity and all other quantities derived from them, but cannot depend on contact forces and other quantities that are computed after the control is specified. If the callback accesses the latter fields, their values do not correspond to the current time step.
mjcb_contactfilterextern mjfConFilt mjcb_contactfilter; This callback can be used to replace MuJoCo's default collision filtering. When installed, this function is called for each pair of geoms that have passed the broad-phase test (or are predefined geom pairs in the MJCF) and are candidates for near-phase collision. The default processing uses the contype and conaffinity masks, the parent-child filter and some other considerations related to welded bodies to decide if collision should be allowed. This callback replaces the default processing, but keep in mind that the entire mechanism is being replaced. So for example if you still want to take advantage of contype/conaffinity, you have to re-implement it in the callback. mjcb_sensorextern mjfSensor mjcb_sensor; This callback populates fields of mjData.sensordata corresponding to user-defined sensors. It is called if it is installed and the model contains user-defined sensors. It is called once per compute stage (mjSTAGE_POS, mjSTAGE_VEL, mjSTAGE_ACC) and must fill in all user sensor values for that stage. The user-defined sensors have dimensionality and data types defined in the MJCF model which must be respected by the callback. mjcb_timeextern mjfTime mjcb_time; Installing this callback enables the built-in profiler, and keeps timing statistics in mjData.timer. The return type is mjtNum, while the time units are up to the user. simulate.cpp assumes the unit is 1 millisecond. In order to be useful, the callback should use high-resolution timers with at least microsecond precision. This is because the computations being timed are very fast. mjcb_act_dynextern mjfAct mjcb_act_dyn; This callback implements custom activation dynamics: it must return the value of mjData.act_dot for the specified actuator. This is the time-derivative of the activation state vector mjData.act. It is called for model actuators with user dynamics (mjDYN_USER). If such actuators exist in the model but the callback is not installed, their time-derivative is set to 0. mjcb_act_gainextern mjfAct mjcb_act_gain; This callback implements custom actuator gains: it must return the gain for the specified actuator with mjModel.actuator_gaintype set to mjGAIN_USER. If such actuators exist in the model and this callback is not installed, their gains are set to 1. mjcb_act_biasextern mjfAct mjcb_act_bias; This callback implements custom actuator biases: it must return the bias for the specified actuator with mjModel.actuator_biastype set to mjBIAS_USER. If such actuators exist in the model and this callback is not installed, their biases are set to 0. Collision tablemjCOLLISIONFUNCextern mjfCollision mjCOLLISIONFUNC[mjNGEOMTYPES][mjNGEOMTYPES]; Table of pairwise collision functions indexed by geom types. Only the upper-right triangle is used. The user can replace these function pointers with custom routines, replacing MuJoCo's collision mechanism. If a given entry is NULL, the corresponding pair of geom types cannot be collided. Note that these functions apply only to near-phase collisions. The broadphase mechanism is built-in and cannot be modified. String constantsThe string constants described here are provided for user convenience. They correspond to the English names of lists of options, and can be displayed in menus or dialogs in a GUI. The code sample simulate.cpp illustrates how they can be used. mjDISABLESTRINGextern const char* mjDISABLESTRING[mjNDISABLE]; Names of the disable bits defined by mjtDisableBit. mjENABLESTRINGextern const char* mjENABLESTRING[mjNENABLE]; Names of the enable bits defined by mjtEnableBit. mjTIMERSTRINGextern const char* mjTIMERSTRING[mjNTIMER]; Names of the mjData timers defined by mjtTimer. mjLABELSTRINGextern const char* mjLABELSTRING[mjNLABEL]; Names of the visual labeling modes defined by mjtLabel. mjFRAMESTRINGextern const char* mjFRAMESTRING[mjNFRAME]; Names of the frame visualization modes defined by mjtFrame. mjVISSTRINGextern const char* mjVISSTRING[mjNVISFLAG][3];
Descriptions of the abstract visualization flags defined by mjtVisFlag. For each flag there are three strings, with the following meaning:
mjRNDSTRINGextern const char* mjRNDSTRING[mjNRNDFLAG][3]; Descriptions of the OpenGL rendering flags defined by mjtRndFlag. The three strings for each flag have the same format as above, except the defaults here are set by mjv_makeScene. Numeric constants
Many integer constants were already documented in the primitive types above. In addition, the header files define several other constants documented here. Unless indicated otherwise, each entry in the table below is defined in mjmodel.h. Note that some extended key codes are defined in mjui.h which are not shown in the table below. Their names are in the format mjKEY_XXX. They correspond to GLFW key codes.
API functions
The main header mujoco.h exposes a very large number of functions. However the functions that most users are likely to need are a small fraction. For example, simulate.cpp which is as elaborate as a MuJoCo application is likely to get, calls around 40 of these functions, while basic.cpp calls around 20. The rest are explosed just in case someone has a use for them. This includes us as users of MuJoCo - we do our own work with the public library instead of relying on internal builds.
ActivationThe functions in this section expose the license manager. The main function that all applications need to call is mj_activate. Calling mj_deactivate before closing the program is good style but not really needed. The rest of the functions support a client-server model where the owner of the server has license to run MuJoCo simulations on behalf of clients who already have a valid MuJoCo license. mj_activateint mj_activate(const char* filename); This function activates the MuJoCo license for the session. Activation is required by all major simulation functions. It should be called with the path and name of the plain-text activation key, usually called mjkey.txt. It returns 1 on success, and calls mju_error on failure. Do not bother to replace mju_error with a user error handler and try to bypass the termination; the license manager is smarter than that :) mj_deactivatevoid mj_deactivate(void); Deactivate license, free memory. mj_certQuestionvoid mj_certQuestion(mjtNum question[16]); Server side: generate certificate question. mj_certAnswervoid mj_certAnswer(const mjtNum question[16], mjtNum answer[16]); Client side: generate certificate answer given question. mj_certCheckint mj_certCheck(const mjtNum question[16], const mjtNum answer[16]); Server side: check certificate question-answer pair; return 1 if match, 0 if mismatch. Virtual file system
Virtual file system (VFS) functionality was introduced in MuJoCo 1.50. It enables the user to load all necessary files in memory, including MJB binary model files, XML files (MJCF, URDF and included files), STL meshes, PNGs for textures and height fields, and HF files in our custom height field format. Model and resource files in the VFS can also be constructed programmatically (say using an XML library that writes to memory). Once all desired files are in the VFS, the user can call mj_loadModel or mj_loadXML with a pointer to the VFS. When this pointer is not NULL, the loaders will first check the VFS for any file they are about to load, and only access the disk if the file is not found in the VFS. The file names stored in the VFS have their name and extension but the path information is stripped; this can be bypassed however by using a custom path symbol in the file names, say "mydir_myfile.xml".
mj_defaultVFSvoid mj_defaultVFS(mjVFS* vfs); Initialize VFS to empty (no deallocation). mj_addFileVFSint mj_addFileVFS(mjVFS* vfs, const char* directory, const char* filename); Add file to VFS, return 0: success, 1: full, 2: repeated name, -1: not found on disk. mj_makeEmptyFileVFSint mj_makeEmptyFileVFS(mjVFS* vfs, const char* filename, int filesize); Make empty file in VFS, return 0: success, 1: full, 2: repeated name. mj_findFileVFSint mj_findFileVFS(const mjVFS* vfs, const char* filename); Return file index in VFS, or -1 if not found in VFS. mj_deleteFileVFSint mj_deleteFileVFS(mjVFS* vfs, const char* filename); Delete file from VFS, return 0: success, -1: not found in VFS. mj_deleteVFSvoid mj_deleteVFS(mjVFS* vfs); Delete all files from VFS. Parse and compileThe key function here is mj_loadXML. It invokes the built-in parser and compiler, and either returns a pointer to a valid mjModel, or NULL - in which case the user should check the error information in the user-provided string. The model and all files referenced in it can be loaded from disk or from a VFS when provided. mj_loadXMLmjModel* mj_loadXML(const char* filename, const mjVFS* vfs, char* error, int error_sz); Parse XML file in MJCF or URDF format, compile it, return low-level model. If vfs is not NULL, look up files in vfs before reading from disk. If error is not NULL, it must have size error_sz. mj_saveLastXMLint mj_saveLastXML(const char* filename, const mjModel* m, char* error, int error_sz); Update XML data structures with info from low-level model, save as MJCF. If error is not NULL, it must have size error_sz. mj_freeLastXMLvoid mj_freeLastXML(void); Free last XML model if loaded. Called internally at each load. mj_printSchemaint mj_printSchema(const char* filename, char* buffer, int buffer_sz, int flg_html, int flg_pad); Print internal XML schema as plain text or HTML, with style-padding or . Main simulation
These are the main entry points to the simulator. Most users will only need to call mj_step, which computes everything and advanced the simulation state by one time step. Controls and applied forces must either be set in advance (in mjData.ctrl, qfrc_applied and xfrc_applied), or a control callback mjcb_control must be installed which will be called just before the controls and applied forces are needed. Alternatively, one can use mj_step1 and mj_step2 which break down the simulation pipeline into computations that are executed before and after the controls are needed; in this way one can set controls that depend on the results from mj_step1. Keep in mind though that the RK4 solver does not work with mj_step1/2.
mj_stepvoid mj_step(const mjModel* m, mjData* d); Advance simulation, use control callback to obtain external force and control. mj_step1void mj_step1(const mjModel* m, mjData* d); Advance simulation in two steps: before external force and control is set by user. mj_step2void mj_step2(const mjModel* m, mjData* d); Advance simulation in two steps: after external force and control is set by user. mj_forwardvoid mj_forward(const mjModel* m, mjData* d); Forward dynamics: same as mj_step but do not integrate in time. mj_inversevoid mj_inverse(const mjModel* m, mjData* d); Inverse dynamics: qacc must be set before calling. mj_forwardSkipvoid mj_forwardSkip(const mjModel* m, mjData* d, int skipstage, int skipsensor); Forward dynamics with skip; skipstage is mjtStage. mj_inverseSkipvoid mj_inverseSkip(const mjModel* m, mjData* d, int skipstage, int skipsensor); Inverse dynamics with skip; skipstage is mjtStage. InitializationThis section contains functions that load/initialize the model or other data structures. Their use is well illustrated in the code samples. mj_defaultLROptvoid mj_defaultLROpt(mjLROpt* opt); Set default options for length range computation. mj_defaultSolRefImpvoid mj_defaultSolRefImp(mjtNum* solref, mjtNum* solimp); Set solver parameters to default values. mj_defaultOptionvoid mj_defaultOption(mjOption* opt); Set physics options to default values. mj_defaultVisualvoid mj_defaultVisual(mjVisual* vis); Set visual options to default values. mj_copyModelmjModel* mj_copyModel(mjModel* dest, const mjModel* src); Copy mjModel, allocate new if dest is NULL. mj_saveModelvoid mj_saveModel(const mjModel* m, const char* filename, void* buffer, int buffer_sz); Save model to binary MJB file or memory buffer; buffer has precedence when given. mj_loadModelmjModel* mj_loadModel(const char* filename, const mjVFS* vfs); Load model from binary MJB file. If vfs is not NULL, look up file in vfs before reading from disk. mj_deleteModelvoid mj_deleteModel(mjModel* m); Free memory allocation in model. mj_sizeModelint mj_sizeModel(const mjModel* m); Return size of buffer needed to hold model. mj_makeDatamjData* mj_makeData(const mjModel* m); Allocate mjData correponding to given model. mj_copyDatamjData* mj_copyData(mjData* dest, const mjModel* m, const mjData* src); Copy mjData. mj_resetDatavoid mj_resetData(const mjModel* m, mjData* d); Reset data to defaults. mj_resetDataDebugvoid mj_resetDataDebug(const mjModel* m, mjData* d, unsigned char debug_value); Reset data to defaults, fill everything else with debug_value. mj_resetDataKeyframevoid mj_resetDataKeyframe(const mjModel* m, mjData* d, int key); Reset data, set fields from specified keyframe. mj_stackAllocmjtNum* mj_stackAlloc(mjData* d, int size); Allocate array of specified size on mjData stack. Call mju_error on stack overflow. mj_deleteDatavoid mj_deleteData(mjData* d); Free memory allocation in mjData. mj_resetCallbacksvoid mj_resetCallbacks(void); Reset all callbacks to NULL pointers (NULL is the default). mj_setConstvoid mj_setConst(mjModel* m, mjData* d); Set constant fields of mjModel, corresponding to qpos0 configuration. mj_setLengthRangeint mj_setLengthRange(mjModel* m, mjData* d, int index, const mjLROpt* opt, char* error, int error_sz); Set actuator_lengthrange for specified actuator; return 1 if ok, 0 if error. PrintingThese functions can be used to print various quantities to the screen for debugging purposes. mj_printModelvoid mj_printModel(const mjModel* m, const char* filename); Print model to text file. mj_printDatavoid mj_printData(const mjModel* m, mjData* d, const char* filename); Print data to text file. mju_printMatvoid mju_printMat(const mjtNum* mat, int nr, int nc); Print matrix to screen. mju_printMatSparsevoid mju_printMatSparse(const mjtNum* mat, int nr, const int* rownnz, const int* rowadr, const int* colind); Print sparse matrix to screen. ComponentsThese are components of the simulation pipeline, called internally from mj_step, mj_forward and mj_inverse. It is unlikely that the user will need to call them. mj_fwdPositionvoid mj_fwdPosition(const mjModel* m, mjData* d); Run position-dependent computations. mj_fwdVelocityvoid mj_fwdVelocity(const mjModel* m, mjData* d); Run velocity-dependent computations. mj_fwdActuationvoid mj_fwdActuation(const mjModel* m, mjData* d); Compute actuator force qfrc_actuation. mj_fwdAccelerationvoid mj_fwdAcceleration(const mjModel* m, mjData* d); Add up all non-constraint forces, compute qacc_unc. mj_fwdConstraintvoid mj_fwdConstraint(const mjModel* m, mjData* d); Run selected constraint solver. mj_Eulervoid mj_Euler(const mjModel* m, mjData* d); Euler integrator, semi-implicit in velocity. mj_RungeKuttavoid mj_RungeKutta(const mjModel* m, mjData* d, int N); Runge-Kutta explicit order-N integrator. mj_invPositionvoid mj_invPosition(const mjModel* m, mjData* d); Run position-dependent computations in inverse dynamics. mj_invVelocityvoid mj_invVelocity(const mjModel* m, mjData* d); Run velocity-dependent computations in inverse dynamics. mj_invConstraintvoid mj_invConstraint(const mjModel* m, mjData* d); Apply the analytical formula for inverse constraint dynamics. mj_compareFwdInvvoid mj_compareFwdInv(const mjModel* m, mjData* d); Compare forward and inverse dynamics, save results in fwdinv. Sub componentsThese are sub-components of the simulation pipeline, called internally from the components above. It is very unlikely that the user will need to call them. mj_sensorPosvoid mj_sensorPos(const mjModel* m, mjData* d); Evaluate position-dependent sensors. mj_sensorVelvoid mj_sensorVel(const mjModel* m, mjData* d); Evaluate velocity-dependent sensors. mj_sensorAccvoid mj_sensorAcc(const mjModel* m, mjData* d); Evaluate acceleration and force-dependent sensors. mj_energyPosvoid mj_energyPos(const mjModel* m, mjData* d); Evaluate position-dependent energy (potential). mj_energyVelvoid mj_energyVel(const mjModel* m, mjData* d); Evaluate velocity-dependent energy (kinetic). mj_checkPosvoid mj_checkPos(const mjModel* m, mjData* d); Check qpos, reset if any element is too big or nan. mj_checkVelvoid mj_checkVel(const mjModel* m, mjData* d); Check qvel, reset if any element is too big or nan. mj_checkAccvoid mj_checkAcc(const mjModel* m, mjData* d); Check qacc, reset if any element is too big or nan. mj_kinematicsvoid mj_kinematics(const mjModel* m, mjData* d); Run forward kinematics. mj_comPosvoid mj_comPos(const mjModel* m, mjData* d); Map inertias and motion dofs to global frame centered at CoM. mj_camlightvoid mj_camlight(const mjModel* m, mjData* d); Compute camera and light positions and orientations. mj_tendonvoid mj_tendon(const mjModel* m, mjData* d); Compute tendon lengths, velocities and moment arms. mj_transmissionvoid mj_transmission(const mjModel* m, mjData* d); Compute actuator transmission lengths and moments. mj_crbvoid mj_crb(const mjModel* m, mjData* d); Run composite rigid body inertia algorithm (CRB). mj_factorMvoid mj_factorM(const mjModel* m, mjData* d); Compute sparse L'*D*L factorizaton of inertia matrix. mj_solveMvoid mj_solveM(const mjModel* m, mjData* d, mjtNum* x, const mjtNum* y, int n); Solve linear system M * x = y using factorization: x = inv(L'*D*L)*y mj_solveM2void mj_solveM2(const mjModel* m, mjData* d, mjtNum* x, const mjtNum* y, int n); Half of linear solve: x = sqrt(inv(D))*inv(L')*y mj_comVelvoid mj_comVel(const mjModel* m, mjData* d); Compute cvel, cdof_dot. mj_passivevoid mj_passive(const mjModel* m, mjData* d); Compute qfrc_passive from spring-dampers, viscosity and density. mj_subtreeVelvoid mj_subtreeVel(const mjModel* m, mjData* d); subtree linear velocity and angular momentum mj_rnevoid mj_rne(const mjModel* m, mjData* d, int flg_acc, mjtNum* result); RNE: compute M(qpos)*qacc + C(qpos,qvel); flg_acc=0 removes inertial term. mj_rnePostConstraintvoid mj_rnePostConstraint(const mjModel* m, mjData* d); RNE with complete data: compute cacc, cfrc_ext, cfrc_int. mj_collisionvoid mj_collision(const mjModel* m, mjData* d); Run collision detection. mj_makeConstraintvoid mj_makeConstraint(const mjModel* m, mjData* d); Construct constraints. mj_projectConstraintvoid mj_projectConstraint(const mjModel* m, mjData* d); Compute inverse constaint inertia efc_AR. mj_referenceConstraintvoid mj_referenceConstraint(const mjModel* m, mjData* d); Compute efc_vel, efc_aref. mj_constraintUpdatevoid mj_constraintUpdate(const mjModel* m, mjData* d, const mjtNum* jar, mjtNum* cost, int flg_coneHessian); Compute efc_state, efc_force, qfrc_constraint, and (optionally) cone Hessians. If cost is not NULL, set *cost = s(jar) where jar = Jac*qacc-aref. SupportThese are support functions that need access to mjModel and mjData, unlike the utility functions which do not need such access. Support functions are called within the simulator but some of them can also be useful for custom computations, and are documented in more detail below. mj_addContactint mj_addContact(const mjModel* m, mjData* d, const mjContact* con); Add contact to d->contact list; return 0 if success; 1 if buffer full. mj_isPyramidalint mj_isPyramidal(const mjModel* m); Determine type of friction cone. mj_isSparseint mj_isSparse(const mjModel* m); Determine type of constraint Jacobian. mj_isDualint mj_isDual(const mjModel* m); Determine type of solver (PGS is dual, CG and Newton are primal). mj_mulJacVecvoid mj_mulJacVec(const mjModel* m, mjData* d, mjtNum* res, const mjtNum* vec); This function multiplies the constraint Jacobian mjData.efc_J by a vector. Note that the Jacobian can be either dense or sparse; the function is aware of this setting. Multiplication by J maps velocities from joint space to constraint space. mj_mulJacTVecvoid mj_mulJacTVec(const mjModel* m, mjData* d, mjtNum* res, const mjtNum* vec); Same as mj_mulJacVec but multiplies by the transpose of the Jacobian. This maps forces from constraint space to joint space. mj_jacvoid mj_jac(const mjModel* m, const mjData* d, mjtNum* jacp, mjtNum* jacr, const mjtNum point[3], int body); This function computes an "end-effector" Jacobian, which is unrelated to the constraint Jacobian above. Any MuJoCo body can be treated as end-effector, and the point for which the Jacobian is computed can be anywhere in space (it is treated as attached to the body). The Jacobian has translational (jacp) and rotational (jacr) components. Passing NULL for either pointer will skip part of the computation. Each component is a 3-by-nv matrix. Each row of this matrix is the gradient of the corresponding 3D coordinate of the specified point with respect to the degrees of freedom. The ability to compute end-effector Jacobians analytically is one of the advantages of working in minimal coordinates - so use it! mj_jacBodyvoid mj_jacBody(const mjModel* m, const mjData* d, mjtNum* jacp, mjtNum* jacr, int body); This and the remaining variants of the Jacobian function call mj_jac internally, with the center of the body, geom or site. They are just shortcuts; the same can be achieved by calling mj_jac directly. mj_jacBodyComvoid mj_jacBodyCom(const mjModel* m, const mjData* d, mjtNum* jacp, mjtNum* jacr, int body); Compute body center-of-mass end-effector Jacobian. mj_jacGeomvoid mj_jacGeom(const mjModel* m, const mjData* d, mjtNum* jacp, mjtNum* jacr, int geom); Compute geom end-effector Jacobian. mj_jacSitevoid mj_jacSite(const mjModel* m, const mjData* d, mjtNum* jacp, mjtNum* jacr, int site); Compute site end-effector Jacobian. mj_jacPointAxisvoid mj_jacPointAxis(const mjModel* m, mjData* d, mjtNum* jacPoint, mjtNum* jacAxis, const mjtNum point[3], const mjtNum axis[3], int body); Compute translation end-effector Jacobian of point, and rotation Jacobian of axis. mj_name2idint mj_name2id(const mjModel* m, int type, const char* name); Get id of object with specified name, return -1 if not found; type is mjtObj. mj_id2nameconst char* mj_id2name(const mjModel* m, int type, int id); Get name of object with specified id, return 0 if invalid type or id; type is mjtObj. mj_fullMvoid mj_fullM(const mjModel* m, mjtNum* dst, const mjtNum* M); Convert sparse inertia matrix M into full (i.e. dense) matrix. mj_mulMvoid mj_mulM(const mjModel* m, const mjData* d, mjtNum* res, const mjtNum* vec); This function multiplies the joint-space inertia matrix stored in mjData.qM by a vector. qM has a custom sparse format that the user should not attempt to manipulate directly. Alternatively one can convert qM to a dense matrix with mj_fullM and then user regular matrix-vector multiplication, but this is slower because it no longer benefits from sparsity. mj_mulM2void mj_mulM2(const mjModel* m, const mjData* d, mjtNum* res, const mjtNum* vec); Multiply vector by (inertia matrix)^(1/2). mj_addMvoid mj_addM(const mjModel* m, mjData* d, mjtNum* dst, int* rownnz, int* rowadr, int* colind); Add inertia matrix to destination matrix. Destination can be sparse uncompressed, or dense when all int* are NULL mj_applyFTvoid mj_applyFT(const mjModel* m, mjData* d, const mjtNum* force, const mjtNum* torque, const mjtNum* point, int body, mjtNum* qfrc_target); This function can be used to apply a Cartesian force and torque to a point on a body, and add the result to the vector mjData.qfrc_applied of all applied forces. Note that the function requires a pointer to this vector, because sometimes we want to add the result to a different vector. mj_objectVelocityvoid mj_objectVelocity(const mjModel* m, const mjData* d, int objtype, int objid, mjtNum* res, int flg_local); Compute object 6D velocity in object-centered frame, world/local orientation. mj_objectAccelerationvoid mj_objectAcceleration(const mjModel* m, const mjData* d, int objtype, int objid, mjtNum* res, int flg_local); Compute object 6D acceleration in object-centered frame, world/local orientation. mj_contactForcevoid mj_contactForce(const mjModel* m, const mjData* d, int id, mjtNum* result); Extract 6D force:torque for one contact, in contact frame. mj_differentiatePosvoid mj_differentiatePos(const mjModel* m, mjtNum* qvel, mjtNum dt, const mjtNum* qpos1, const mjtNum* qpos2); This function subtracts two vectors in the format of qpos (and divides the result by dt), while respecting the properties of quaternions. Recall that unit quaternions represent spatial orientations. They are points on the unit sphere in 4D. The tangent to that sphere is a 3D plane of rotational velocities. Thus when we subtract two quaternions in the right way, the result is a 3D vector and not a 4D vector. This the output qvel has dimensionality nv while the inputs have dimensionality nq. mj_integratePosvoid mj_integratePos(const mjModel* m, mjtNum* qpos, const mjtNum* qvel, mjtNum dt); This is the opposite of mj_differentiatePos. It adds a vector in the format of qvel (scaled by dt) to a vector in the format of qpos. mj_normalizeQuatvoid mj_normalizeQuat(const mjModel* m, mjtNum* qpos); Normalize all quaterions in qpos-type vector. mj_local2Globalvoid mj_local2Global(mjData* d, mjtNum* xpos, mjtNum* xmat, const mjtNum* pos, const mjtNum* quat, int body, mjtByte sameframe); Map from body local to global Cartesian coordinates. mj_getTotalmassmjtNum mj_getTotalmass(const mjModel* m); Sum all body masses. mj_setTotalmassvoid mj_setTotalmass(mjModel* m, mjtNum newmass); Scale body masses and inertias to achieve specified total mass. mj_versionint mj_version(void); Return version number: 1.0.2 is encoded as 102. Ray collisionsRay collision functionality was added in MuJoCo 1.50. This is a new collision detection module that uses analytical formulas to intersect a ray (p + x*v, x>=0) with a geom, where p is the origin of the ray and v is the vector specifying the direction. All functions in this family return the distance to the nearest geom surface, or -1 if there is no intersection. Note that if p is inside a geom, the ray will intersect the surface from the inside which still counts as an intersection. mj_raymjtNum mj_ray(const mjModel* m, const mjData* d, const mjtNum* pnt, const mjtNum* vec, const mjtByte* geomgroup, mjtByte flg_static, int bodyexclude, int* geomid); Intersect ray (pnt+x*vec, x>=0) with visible geoms, except geoms in bodyexclude. Return geomid and distance (x) to nearest surface, or -1 if no intersection. geomgroup, flg_static are as in mjvOption; geomgroup==NULL skips group exclusion. mj_rayHfieldmjtNum mj_rayHfield(const mjModel* m, const mjData* d, int geomid, const mjtNum* pnt, const mjtNum* vec); Interect ray with hfield, return nearest distance or -1 if no intersection. mj_rayMeshmjtNum mj_rayMesh(const mjModel* m, const mjData* d, int geomid, const mjtNum* pnt, const mjtNum* vec); Interect ray with mesh, return nearest distance or -1 if no intersection. mju_rayGeommjtNum mju_rayGeom(const mjtNum* pos, const mjtNum* mat, const mjtNum* size, const mjtNum* pnt, const mjtNum* vec, int geomtype); Interect ray with pure geom, return nearest distance or -1 if no intersection. mju_raySkinmjtNum mju_raySkin(int nface, int nvert, const int* face, const float* vert, const mjtNum* pnt, const mjtNum* vec, int* vertid); Interect ray with skin, return nearest vertex id. InteractionThese function implement abstract mouse interactions, allowing control over cameras and perturbations. Their use is well illustrated in simulate.cpp as well as mjvive.cpp. mjv_defaultCameravoid mjv_defaultCamera(mjvCamera* cam); Set default camera. mjv_defaultPerturbvoid mjv_defaultPerturb(mjvPerturb* pert); Set default perturbation. mjv_room2modelvoid mjv_room2model(mjtNum* modelpos, mjtNum* modelquat, const mjtNum* roompos, const mjtNum* roomquat, const mjvScene* scn); Transform pose from room to model space. mjv_model2roomvoid mjv_model2room(mjtNum* roompos, mjtNum* roomquat, const mjtNum* modelpos, const mjtNum* modelquat, const mjvScene* scn); Transform pose from model to room space. mjv_cameraInModelvoid mjv_cameraInModel(mjtNum* headpos, mjtNum* forward, mjtNum* up, const mjvScene* scn); Get camera info in model space; average left and right OpenGL cameras. mjv_cameraInRoomvoid mjv_cameraInRoom(mjtNum* headpos, mjtNum* forward, mjtNum* up, const mjvScene* scn); Get camera info in room space; average left and right OpenGL cameras. mjv_frustumHeightmjtNum mjv_frustumHeight(const mjvScene* scn); Get frustum height at unit distance from camera; average left and right OpenGL cameras. mjv_alignToCameravoid mjv_alignToCamera(mjtNum* res, const mjtNum* vec, const mjtNum* forward); Rotate 3D vec in horizontal plane by angle between (0,1) and (forward_x,forward_y). mjv_moveCameravoid mjv_moveCamera(const mjModel* m, int action, mjtNum reldx, mjtNum reldy, const mjvScene* scn, mjvCamera* cam); Move camera with mouse; action is mjtMouse. mjv_movePerturbvoid mjv_movePerturb(const mjModel* m, const mjData* d, int action, mjtNum reldx, mjtNum reldy, const mjvScene* scn, mjvPerturb* pert); Move perturb object with mouse; action is mjtMouse. mjv_moveModelvoid mjv_moveModel(const mjModel* m, int action, mjtNum reldx, mjtNum reldy, const mjtNum* roomup, mjvScene* scn); Move model with mouse; action is mjtMouse. mjv_initPerturbvoid mjv_initPerturb(const mjModel* m, const mjData* d, const mjvScene* scn, mjvPerturb* pert); Copy perturb pos,quat from selected body; set scale for perturbation. mjv_applyPerturbPosevoid mjv_applyPerturbPose(const mjModel* m, mjData* d, const mjvPerturb* pert, int flg_paused); Set perturb pos,quat in d->mocap when selected body is mocap, and in d->qpos otherwise. Write d->qpos only if flg_paused and subtree root for selected body has free joint. mjv_applyPerturbForcevoid mjv_applyPerturbForce(const mjModel* m, mjData* d, const mjvPerturb* pert); Set perturb force,torque in d->xfrc_applied, if selected body is dynamic. mjv_averageCameramjvGLCamera mjv_averageCamera(const mjvGLCamera* cam1, const mjvGLCamera* cam2); Return the average of two OpenGL cameras. mjv_selectint mjv_select(const mjModel* m, const mjData* d, const mjvOption* vopt, mjtNum aspectratio, mjtNum relx, mjtNum rely, const mjvScene* scn, mjtNum* selpnt, int* geomid, int* skinid); This function is used for mouse selection. Previously selection was done via OpenGL, but as of MuJoCo 1.50 it relies on ray intersections which are much more efficient. aspectratio is the viewport width/height. relx and rely are the relative coordinates of the 2D point of interest in the viewport (usually mouse cursor). The function returns the id of the geom under the specified 2D point, or -1 if there is no geom (note that they skybox if present is not a model geom). The 3D coordinates of the clicked point are returned in selpnt. See simulate.cpp for an illustration. VisualizationThe functions in this section implement abstract visualization. The results are used by the OpenGL rendered, and can also be used by users wishing to implement their own rendered, or hook up MuJoCo to advanced rendering tools such as Unity or Unreal Engine. See simulate.cpp for illustration of how to use these functions. mjv_defaultOptionvoid mjv_defaultOption(mjvOption* opt); Set default visualization options. mjv_defaultFigurevoid mjv_defaultFigure(mjvFigure* fig); Set default figure. mjv_initGeomvoid mjv_initGeom(mjvGeom* geom, int type, const mjtNum* size, const mjtNum* pos, const mjtNum* mat, const float* rgba); Initialize given geom fields when not NULL, set the rest to their default values. mjv_makeConnectorvoid mjv_makeConnector(mjvGeom* geom, int type, mjtNum width, mjtNum a0, mjtNum a1, mjtNum a2, mjtNum b0, mjtNum b1, mjtNum b2); Set (type, size, pos, mat) for connector-type geom between given points. Assume that mjv_initGeom was already called to set all other properties. mjv_defaultScenevoid mjv_defaultScene(mjvScene* scn); Set default abstract scene. mjv_makeScenevoid mjv_makeScene(const mjModel* m, mjvScene* scn, int maxgeom); Allocate resources in abstract scene. mjv_freeScenevoid mjv_freeScene(mjvScene* scn); Free abstract scene. mjv_updateScenevoid mjv_updateScene(const mjModel* m, mjData* d, const mjvOption* opt, const mjvPerturb* pert, mjvCamera* cam, int catmask, mjvScene* scn); Update entire scene given model state. mjv_addGeomsvoid mjv_addGeoms(const mjModel* m, mjData* d, const mjvOption* opt, const mjvPerturb* pert, int catmask, mjvScene* scn); Add geoms from selected categories. mjv_makeLightsvoid mjv_makeLights(const mjModel* m, mjData* d, mjvScene* scn); Make list of lights. mjv_updateCameravoid mjv_updateCamera(const mjModel* m, mjData* d, mjvCamera* cam, mjvScene* scn); Update camera. mjv_updateSkinvoid mjv_updateSkin(const mjModel* m, mjData* d, mjvScene* scn); Update skins. OpenGL renderingThese functions expose the OpenGL renderer. See simulate.cpp for illustration of how to use these functions. mjr_defaultContextvoid mjr_defaultContext(mjrContext* con); Set default mjrContext. mjr_makeContextvoid mjr_makeContext(const mjModel* m, mjrContext* con, int fontscale); Allocate resources in custom OpenGL context; fontscale is mjtFontScale. mjr_changeFontvoid mjr_changeFont(int fontscale, mjrContext* con); Change font of existing context. mjr_addAuxvoid mjr_addAux(int index, int width, int height, int samples, mjrContext* con); Add Aux buffer with given index to context; free previous Aux buffer. mjr_freeContextvoid mjr_freeContext(mjrContext* con); Free resources in custom OpenGL context, set to default. mjr_uploadTexturevoid mjr_uploadTexture(const mjModel* m, const mjrContext* con, int texid); Upload texture to GPU, overwriting previous upload if any. mjr_uploadMeshvoid mjr_uploadMesh(const mjModel* m, const mjrContext* con, int meshid); Upload mesh to GPU, overwriting previous upload if any. mjr_uploadHFieldvoid mjr_uploadHField(const mjModel* m, const mjrContext* con, int hfieldid); Upload height field to GPU, overwriting previous upload if any. mjr_restoreBuffervoid mjr_restoreBuffer(const mjrContext* con); Make con->currentBuffer current again. mjr_setBuffervoid mjr_setBuffer(int framebuffer, mjrContext* con); Set OpenGL framebuffer for rendering: mjFB_WINDOW or mjFB_OFFSCREEN. If only one buffer is available, set that buffer and ignore framebuffer argument. mjr_readPixelsvoid mjr_readPixels(unsigned char* rgb, float* depth, mjrRect viewport, const mjrContext* con); Read pixels from current OpenGL framebuffer to client buffer. Viewport is in OpenGL framebuffer; client buffer starts at (0,0). mjr_drawPixelsvoid mjr_drawPixels(const unsigned char* rgb, const float* depth, mjrRect viewport, const mjrContext* con); Draw pixels from client buffer to current OpenGL framebuffer. Viewport is in OpenGL framebuffer; client buffer starts at (0,0). mjr_blitBuffervoid mjr_blitBuffer(mjrRect src, mjrRect dst, int flg_color, int flg_depth, const mjrContext* con); Blit from src viewpoint in current framebuffer to dst viewport in other framebuffer. If src, dst have different size and flg_depth==0, color is interpolated with GL_LINEAR. mjr_setAuxvoid mjr_setAux(int index, const mjrContext* con); Set Aux buffer for custom OpenGL rendering (call restoreBuffer when done). mjr_blitAuxvoid mjr_blitAux(int index, mjrRect src, int left, int bottom, const mjrContext* con); Blit from Aux buffer to con->currentBuffer. mjr_textvoid mjr_text(int font, const char* txt, const mjrContext* con, float x, float y, float r, float g, float b); Draw text at (x,y) in relative coordinates; font is mjtFont. mjr_overlayvoid mjr_overlay(int font, int gridpos, mjrRect viewport, const char* overlay, const char* overlay2, const mjrContext* con); Draw text overlay; font is mjtFont; gridpos is mjtGridPos. mjr_maxViewportmjrRect mjr_maxViewport(const mjrContext* con); Get maximum viewport for active buffer. mjr_rectanglevoid mjr_rectangle(mjrRect viewport, float r, float g, float b, float a); Draw rectangle. mjr_figurevoid mjr_figure(mjrRect viewport, mjvFigure* fig, const mjrContext* con); Draw 2D figure. mjr_rendervoid mjr_render(mjrRect viewport, mjvScene* scn, const mjrContext* con); Render 3D scene. mjr_finishvoid mjr_finish(void); Call glFinish. mjr_getErrorint mjr_getError(void); Call glGetError and return result. mjr_findRectint mjr_findRect(int x, int y, int nrect, const mjrRect* rect); Find first rectangle containing mouse, -1: not found. UI frameworkmjui_themeSpacingmjuiThemeSpacing mjui_themeSpacing(int ind); Get builtin UI theme spacing (ind: 0-1). mjui_themeColormjuiThemeColor mjui_themeColor(int ind); Get builtin UI theme color (ind: 0-3). mjui_addvoid mjui_add(mjUI* ui, const mjuiDef* def); Add definitions to UI. mjui_resizevoid mjui_resize(mjUI* ui, const mjrContext* con); Compute UI sizes. mjui_updatevoid mjui_update(int section, int item, const mjUI* ui, const mjuiState* state, const mjrContext* con); Update specific section/item; -1: update all. mjui_eventmjuiItem* mjui_event(mjUI* ui, mjuiState* state, const mjrContext* con); Handle UI event, return pointer to changed item, NULL if no change. mjui_rendervoid mjui_render(mjUI* ui, const mjuiState* state, const mjrContext* con); Copy UI image to current buffer. Error and memorymju_errorvoid mju_error(const char* msg); Main error function; does not return to caller. mju_error_ivoid mju_error_i(const char* msg, int i); Error function with int argument; msg is a printf format string. mju_error_svoid mju_error_s(const char* msg, const char* text); Error function with string argument. mju_warningvoid mju_warning(const char* msg); Main warning function; returns to caller. mju_warning_ivoid mju_warning_i(const char* msg, int i); Warning function with int argument. mju_warning_svoid mju_warning_s(const char* msg, const char* text); Warning function with string argument. mju_clearHandlersvoid mju_clearHandlers(void); Clear user error and memory handlers. mju_mallocvoid* mju_malloc(size_t size); Allocate memory; byte-align on 8; pad size to multiple of 8. mju_freevoid mju_free(void* ptr); Free memory, using free() by default. mj_warningvoid mj_warning(mjData* d, int warning, int info); High-level warning function: count warnings in mjData, print only the first. mju_writeLogvoid mju_writeLog(const char* type, const char* msg); Write [datetime, type: message] to MUJOCO_LOG.TXT. Standard mathThe "functions" in this section are preprocessor macros replaced with the corresponding C standard library math functions. When MuJoCo is compiled with single precision (which is not currently available to the public, but we sometimes use it internally) these macros are replaced with the corresponding single-precision functions (not shown here). So one can think of them as having inputs and outputs of type mjtNum, where mjtNum is defined as double or float depending on how MuJoCo is compiled. We will not document these functions here; see the C standard library specification. mju_sqrt#define mju_sqrt sqrt mju_exp#define mju_exp exp mju_sin#define mju_sin sin mju_cos#define mju_cos cos mju_tan#define mju_tan tan mju_asin#define mju_asin asin mju_acos#define mju_acos acos mju_atan2#define mju_atan2 atan2 mju_tanh#define mju_tanh tanh mju_pow#define mju_pow pow mju_abs#define mju_abs fabs mju_log#define mju_log log mju_log10#define mju_log10 log10 mju_floor#define mju_floor floor mju_ceil#define mju_ceil ceil Vector mathmju_zero3void mju_zero3(mjtNum res[3]); Set res = 0. mju_copy3void mju_copy3(mjtNum res[3], const mjtNum data[3]); Set res = vec. mju_scl3void mju_scl3(mjtNum res[3], const mjtNum vec[3], mjtNum scl); Set res = vec*scl. mju_add3void mju_add3(mjtNum res[3], const mjtNum vec1[3], const mjtNum vec2[3]); Set res = vec1 + vec2. mju_sub3void mju_sub3(mjtNum res[3], const mjtNum vec1[3], const mjtNum vec2[3]); Set res = vec1 - vec2. mju_addTo3void mju_addTo3(mjtNum res[3], const mjtNum vec[3]); Set res = res + vec. mju_subFrom3void mju_subFrom3(mjtNum res[3], const mjtNum vec[3]); Set res = res - vec. mju_addToScl3void mju_addToScl3(mjtNum res[3], const mjtNum vec[3], mjtNum scl); Set res = res + vec*scl. mju_addScl3void mju_addScl3(mjtNum res[3], const mjtNum vec1[3], const mjtNum vec2[3], mjtNum scl); Set res = vec1 + vec2*scl. mju_normalize3mjtNum mju_normalize3(mjtNum res[3]); Normalize vector, return length before normalization. mju_norm3mjtNum mju_norm3(const mjtNum vec[3]); Return vector length (without normalizing the vector). mju_dot3mjtNum mju_dot3(const mjtNum vec1[3], const mjtNum vec2[3]); Return dot-product of vec1 and vec2. mju_dist3mjtNum mju_dist3(const mjtNum pos1[3], const mjtNum pos2[3]); Return Cartesian distance between 3D vectors pos1 and pos2. mju_rotVecMatvoid mju_rotVecMat(mjtNum res[3], const mjtNum vec[3], const mjtNum mat[9]); Multiply vector by 3D rotation matrix: res = mat * vec. mju_rotVecMatTvoid mju_rotVecMatT(mjtNum res[3], const mjtNum vec[3], const mjtNum mat[9]); Multiply vector by transposed 3D rotation matrix: res = mat' * vec. mju_crossvoid mju_cross(mjtNum res[3], const mjtNum a[3], const mjtNum b[3]); Compute cross-product: res = cross(a, b). mju_zero4void mju_zero4(mjtNum res[4]); Set res = 0. mju_unit4void mju_unit4(mjtNum res[4]); Set res = (1,0,0,0). mju_copy4void mju_copy4(mjtNum res[4], const mjtNum data[4]); Set res = vec. mju_normalize4mjtNum mju_normalize4(mjtNum res[4]); Normalize vector, return length before normalization. mju_zerovoid mju_zero(mjtNum* res, int n); Set res = 0. mju_copyvoid mju_copy(mjtNum* res, const mjtNum* data, int n); Set res = vec. mju_summjtNum mju_sum(const mjtNum* vec, int n); Return sum(vec). mju_L1mjtNum mju_L1(const mjtNum* vec, int n); Return L1 norm: sum(abs(vec)). mju_sclvoid mju_scl(mjtNum* res, const mjtNum* vec, mjtNum scl, int n); Set res = vec*scl. mju_addvoid mju_add(mjtNum* res, const mjtNum* vec1, const mjtNum* vec2, int n); Set res = vec1 + vec2. mju_subvoid mju_sub(mjtNum* res, const mjtNum* vec1, const mjtNum* vec2, int n); Set res = vec1 - vec2. mju_addTovoid mju_addTo(mjtNum* res, const mjtNum* vec, int n); Set res = res + vec. mju_subFromvoid mju_subFrom(mjtNum* res, const mjtNum* vec, int n); Set res = res - vec. mju_addToSclvoid mju_addToScl(mjtNum* res, const mjtNum* vec, mjtNum scl, int n); Set res = res + vec*scl. mju_addSclvoid mju_addScl(mjtNum* res, const mjtNum* vec1, const mjtNum* vec2, mjtNum scl, int n); Set res = vec1 + vec2*scl. mju_normalizemjtNum mju_normalize(mjtNum* res, int n); Normalize vector, return length before normalization. mju_normmjtNum mju_norm(const mjtNum* res, int n); Return vector length (without normalizing vector). mju_dotmjtNum mju_dot(const mjtNum* vec1, const mjtNum* vec2, const int n); Return dot-product of vec1 and vec2. mju_mulMatVecvoid mju_mulMatVec(mjtNum* res, const mjtNum* mat, const mjtNum* vec, int nr, int nc); Multiply matrix and vector: res = mat * vec. mju_mulMatTVecvoid mju_mulMatTVec(mjtNum* res, const mjtNum* mat, const mjtNum* vec, int nr, int nc); Multiply transposed matrix and vector: res = mat' * vec. mju_transposevoid mju_transpose(mjtNum* res, const mjtNum* mat, int nr, int nc); Transpose matrix: res = mat'. mju_mulMatMatvoid mju_mulMatMat(mjtNum* res, const mjtNum* mat1, const mjtNum* mat2, int r1, int c1, int c2); Multiply matrices: res = mat1 * mat2. mju_mulMatMatTvoid mju_mulMatMatT(mjtNum* res, const mjtNum* mat1, const mjtNum* mat2, int r1, int c1, int r2); Multiply matrices, second argument transposed: res = mat1 * mat2'. mju_mulMatTMatvoid mju_mulMatTMat(mjtNum* res, const mjtNum* mat1, const mjtNum* mat2, int r1, int c1, int c2); Multiply matrices, first argument transposed: res = mat1' * mat2. mju_sqrMatTDvoid mju_sqrMatTD(mjtNum* res, const mjtNum* mat, const mjtNum* diag, int nr, int nc); Set res = mat' * diag * mat if diag is not NULL, and res = mat' * mat otherwise. mju_transformSpatialvoid mju_transformSpatial(mjtNum res[6], const mjtNum vec[6], int flg_force, const mjtNum newpos[3], const mjtNum oldpos[3], const mjtNum rotnew2old[9]); Coordinate transform of 6D motion or force vector in rotation:translation format. rotnew2old is 3-by-3, NULL means no rotation; flg_force specifies force or motion type. Quaternionsmju_rotVecQuatvoid mju_rotVecQuat(mjtNum res[3], const mjtNum vec[3], const mjtNum quat[4]); Rotate vector by quaternion. mju_negQuatvoid mju_negQuat(mjtNum res[4], const mjtNum quat[4]); Negate quaternion. mju_mulQuatvoid mju_mulQuat(mjtNum res[4], const mjtNum quat1[4], const mjtNum quat2[4]); Muiltiply quaternions. mju_mulQuatAxisvoid mju_mulQuatAxis(mjtNum res[4], const mjtNum quat[4], const mjtNum axis[3]); Muiltiply quaternion and axis. mju_axisAngle2Quatvoid mju_axisAngle2Quat(mjtNum res[4], const mjtNum axis[3], mjtNum angle); Convert axisAngle to quaternion. mju_quat2Velvoid mju_quat2Vel(mjtNum res[3], const mjtNum quat[4], mjtNum dt); Convert quaternion (corresponding to orientation difference) to 3D velocity. mju_subQuatvoid mju_subQuat(mjtNum res[3], const mjtNum qa[4], const mjtNum qb[4]); Subtract quaternions, express as 3D velocity: qb*quat(res) = qa. mju_quat2Matvoid mju_quat2Mat(mjtNum res[9], const mjtNum quat[4]); Convert quaternion to 3D rotation matrix. mju_mat2Quatvoid mju_mat2Quat(mjtNum quat[4], const mjtNum mat[9]); Convert 3D rotation matrix to quaterion. mju_derivQuatvoid mju_derivQuat(mjtNum res[4], const mjtNum quat[4], const mjtNum vel[3]); Compute time-derivative of quaternion, given 3D rotational velocity. mju_quatIntegratevoid mju_quatIntegrate(mjtNum quat[4], const mjtNum vel[3], mjtNum scale); Integrate quaterion given 3D angular velocity. mju_quatZ2Vecvoid mju_quatZ2Vec(mjtNum quat[4], const mjtNum vec[3]); Construct quaternion performing rotation from z-axis to given vector. Posesmju_mulPosevoid mju_mulPose(mjtNum posres[3], mjtNum quatres[4], const mjtNum pos1[3], const mjtNum quat1[4], const mjtNum pos2[3], const mjtNum quat2[4]); Multiply two poses. mju_negPosevoid mju_negPose(mjtNum posres[3], mjtNum quatres[4], const mjtNum pos[3], const mjtNum quat[4]); Negate pose. mju_trnVecPosevoid mju_trnVecPose(mjtNum res[3], const mjtNum pos[3], const mjtNum quat[4], const mjtNum vec[3]); Transform vector by pose. Decompositionsmju_cholFactorint mju_cholFactor(mjtNum* mat, int n, mjtNum mindiag); Cholesky decomposition: mat = L*L'; return rank. mju_cholSolvevoid mju_cholSolve(mjtNum* res, const mjtNum* mat, const mjtNum* vec, int n); Solve mat * res = vec, where mat is Cholesky-factorized mju_cholUpdateint mju_cholUpdate(mjtNum* mat, mjtNum* x, int n, int flg_plus); Cholesky rank-one update: L*L' +/- x*x'; return rank. mju_eig3int mju_eig3(mjtNum* eigval, mjtNum* eigvec, mjtNum* quat, const mjtNum* mat); Eigenvalue decomposition of symmetric 3x3 matrix. Miscellaneousmju_muscleGainmjtNum mju_muscleGain(mjtNum len, mjtNum vel, const mjtNum lengthrange[2], mjtNum acc0, const mjtNum prm[9]); Muscle active force, prm = (range[2], force, scale, lmin, lmax, vmax, fpmax, fvmax). mju_muscleBiasmjtNum mju_muscleBias(mjtNum len, const mjtNum lengthrange[2], mjtNum acc0, const mjtNum prm[9]); Muscle passive force, prm = (range[2], force, scale, lmin, lmax, vmax, fpmax, fvmax). mju_muscleDynamicsmjtNum mju_muscleDynamics(mjtNum ctrl, mjtNum act, const mjtNum prm[2]); Muscle activation dynamics, prm = (tau_act, tau_deact). mju_encodePyramidvoid mju_encodePyramid(mjtNum* pyramid, const mjtNum* force, const mjtNum* mu, int dim); Convert contact force to pyramid representation. mju_decodePyramidvoid mju_decodePyramid(mjtNum* force, const mjtNum* pyramid, const mjtNum* mu, int dim); Convert pyramid representation to contact force. mju_springDampermjtNum mju_springDamper(mjtNum pos0, mjtNum vel0, mjtNum Kp, mjtNum Kv, mjtNum dt); Integrate spring-damper analytically, return pos(dt). mju_minmjtNum mju_min(mjtNum a, mjtNum b); Return min(a,b) with single evaluation of a and b. mju_maxmjtNum mju_max(mjtNum a, mjtNum b); Return max(a,b) with single evaluation of a and b. mju_signmjtNum mju_sign(mjtNum x); Return sign of x: +1, -1 or 0. mju_roundint mju_round(mjtNum x); Round x to nearest integer. mju_type2Strconst char* mju_type2Str(int type); Convert type id (mjtObj) to type name. mju_str2Typeint mju_str2Type(const char* str); Convert type name to type id (mjtObj). mju_warningTextconst char* mju_warningText(int warning, int info); Construct a warning message given the warning type and info. mju_isBadint mju_isBad(mjtNum x); Return 1 if nan or abs(x)>mjMAXVAL, 0 otherwise. Used by check functions. mju_isZeroint mju_isZero(mjtNum* vec, int n); Return 1 if all elements are 0. mju_standardNormalmjtNum mju_standardNormal(mjtNum* num2); Standard normal random number generator (optional second number). mju_f2nvoid mju_f2n(mjtNum* res, const float* vec, int n); Convert from float to mjtNum. mju_n2fvoid mju_n2f(float* res, const mjtNum* vec, int n); Convert from mjtNum to float. mju_d2nvoid mju_d2n(mjtNum* res, const double* vec, int n); Convert from double to mjtNum. mju_n2dvoid mju_n2d(double* res, const mjtNum* vec, int n); Convert from mjtNum to double. mju_insertionSortvoid mju_insertionSort(mjtNum* list, int n); Insertion sort, resulting list is in increasing order. mju_HaltonmjtNum mju_Halton(int index, int base); Generate Halton sequence. mju_strncpychar* mju_strncpy(char *dst, const char *src, int n); Call strncpy, then set dst[n-1] = 0. MacrosmjMARKSTACK#define mjMARKSTACK int _mark = d->pstack; This macro is helpful when using the MuJoCo stack in custom computations. It works together with the next macro and the mj_stackAlloc funcion, and assumes that mjData* d is defined. The use pattern is this: mjMARKSTACK mjtNum* temp = mj_stackAlloc(d, 100); // ... use temp as needed mjFREESTACK mjFREESTACK#define mjFREESTACK d->pstack = _mark; Reset the MuJoCo stack pointer to the variable _mark, normally saved by mjMARKSTACK. mjDISABLED#define mjDISABLED(x) (m->opt.disableflags & (x)) Check if a given standard feature has been disabled via the physics options, assuming mjModel* m is defined. x is of type mjtDisableBit. mjENABLED#define mjENABLED(x) (m->opt.enableflags & (x)) Check if a given optional feature has been enabled via the physics options, assuming mjModel* m is defined. x is of type mjtEnableBit. mjMAX#define mjMAX(a,b) (((a) > (b)) ? (a) : (b)) Return maximum value. To avoid repeated evaluation with mjtNum types, use the function mju_max. mjMIN#define mjMIN(a,b) (((a) < (b)) ? (a) : (b)) Return minimum value. To avoid repeated evaluation with mjtNum types, use the function mju_min. |