
Aggregation Methods for Lineary-solvable
Markov Decision Process ⋆

Mingyuan Zhong ∗ Emanuel Todorov ∗∗

∗ Department of Applied Mathematics, University of Washington,
Seattle WA98195 USA(e-mail: zhongmy@u.washington.edu).
∗∗ Department of Applied Mathematics and Computer Science,
University of Washington, Seattle WA98195 USA (e-mail:

todorov@cs.washington.edu)

Abstract: A general class of stochastic optimal control problems has recently been reduced to
computing the principle eigenfunction of a linear operator. Here we present an approximation
framework for solving such problems by using soft state aggregation over a continuous space.
This approach enables us to avoid matrix factorization and take advantage of sparsity by using
efficient iterative solvers. Adaptive schemes for basis placement are developed so as to provide
higher resolution at the regions of state space that are visited more often. Numerical results on
test problems are provided.

Keywords: Optimal control; Stochastic control; Markov desicion processs; Robotics.

1. INTRODUCTION

Nonlinear stochastic optimal control problems are funda-
mental in control theory, yet they remain difficult to solve
globally. This motivates exploring more restricted formu-
lations leading to more efficient algorithms. Previous work
Kappen et al. [2005], Todorov [2006, 2009a] has identified
a class of nonlinear stochastic optimal control problems
which reduce to solving a linear problem in terms of
the exponentiated optimal cost-to-go function. In infinite-
horizon average-cost settings (which are the focus of the
present paper) the problem comes down to computing
the principal eigenfunction of a linear operator. Despite
this linearity, when dealing with physical systems such as
vehicles or robots, the state space become continuous and
the curse of dimensionality emerges. Carefully designed
approximation schemes are needed for such problems.

Some numerical methods applicable to this problem class
have previously been developed, in particular direct MDP
discretization in Todorov [2009a] and function approx-
imation using Gaussian bases in Todorov [2009b]. Dis-
cretization is useful in terms of obtaining ”ground-truth”
solutions in low-dimensional problems and comparing to
the results of more advanced algorithms that need fine-
tuning, but is not applicable to higher-dimensional prob-
lems. Gaussian bases are promising, however they have
some disadvantages. First the resulting eigen-problem is
weighted (it is in the form λFw = Gw instead of λw =
Gw) which slows down the solver. Second, positivity of the
solution (which is needed since we are solving for the expo-
nent of a function) is hard to enforce without introducing
inequality constraints. Third, when λ is also unknown, the
methods might converge to the wrong eigenvector.

The new method proposed here is different from the
above methods in concept. Previous methods are function-
⋆ This work was supported by the US National Science Foundation.

approximation schemes. They approximate the desirability
function z(x) = exp(−v(x)) defined on the continuous
state space and solve the corresponding linear equation;
v is the optimal cost-to-go function. Here, we are propos-
ing a Problem-Approximation Scheme. Using aggregation
methods, see Bertsekas [2010], Singh et al. [1995], we
approximate the optimal control problem as one defined
on discrete states, which we call clusters, and then solve
the resulting linearly-solvable MDP (or LMDP). The new
approximation scheme leads to simple eigen-problems in
the form λw = QGw, so it always converges to the
principal eigenvalue and guarantees positivity of the so-
lution. This scheme also provides extra flexibility in terms
of constructing the approximation in first-exit problems
(see below). On the other hand, it requires more dynam-
ics evaluations compared to function approximation with
Gaussian bases – by a factor of O(m) where m is the
state dimensionality – because certain integrals cannot
be computed analytically and instead require numerical
approximations via Gaussian cubature.

2. LINEARLY-SOLVABLE OPTIMAL CONTROL
PROBLEMS

In this section, based on Todorov [2009a]Todorov [2009b],
we summarize the Linear Markov Decision Process (LMDP)
problem class in continuous space and time. Our work
mostly focuses on solving such continuous problems with
the average-cost setting, but we will also address first-exit
settings in later parts.

2.1 Linearly-solvable MDPs

Consider an MDP with state x ∈ X ⊆ Rn . Let
p(x′|x, u) = u(x′|x) denote the transition probability
given a certain control signal u, and p(x′|x) denote the
transition probability without any control, also known as

passive dynamics. The optimal cost-to-go function is given
by the Bellman equation

v(x) = min
u

{l(x, u) + Ex′∼p(·|x,u)[v(x
′)]}. (1)

For this problem class the immediate cost function is
defined as

l̃(x, u) = q̃(x) +KL(u(·|x)||p(·|x)), (2)

where KL denotes the Kullback-Leibler divergence be-
tween two probability distributions. Define the desirability
function z(x) = exp(−v(x)), where v(x) is the optimal
cost-to-go function. Then the optimal control law is

u∗(x′|x) = p(x′|x)z(x′)

G[z](x)
, (3)

where the operator G is defined as

G[z](x) =
∫
x′∈X

p(x′|x)z(x′)dx′. (4)

The Bellman equation for infinite-horizon average-cost
problems can be written as

exp (q̃(x)− c̃) z(x) = G[z](x). (5)

The desirability function is the principal eigenfunction
and it is guaranteed to be positive. The corresponding
eigenvalue is λ = exp(−c̃) where c̃ is the average cost
per step. For the first-exit formulation we have c̃ = 0 and
z(x) = exp(−qT (x)) at terminal states. This makes the
problem a linear equation rather than an eigenfunction
problem (see Todorov [2009a]).

2.2 Linearly-solvable controlled diffusions

Here we consider a class of continuous-time optimal control
problems with the following stochastic dynamics:

dx = a(x)dt+B(x)(udt+ σdω), (6)

where ω(t) represents Brownian motion, and σ is the noise
magnitude. The cost function is in the form

l(x,u) = q(x) +
1

2σ2
∥u∥2. (7)

Note that the noise is assumed to lie in the same subspace
as the control. The fact that the noise amplitude also
appears in the cost function is unusual; however, l(x,u)
can be scaled by σ2 without changing the optimal control
law, and this scaling factor can be absorbed in the state
cost q(x), so this is not a restriction. Now we can discretize
this dynamical system. The one-step transition probability
under the passive dynamics is approximated as a Gaussian
distribution

p(x′|x) = N (x+ ha(x), hΣ(x)), (8)

where hΣ(x) = hσ2B(x)B(x)T is the covariance of noise.
The transition probability with control u is

p(x′|x,u) = N (x+ ha(x) + hB(x)u, hΣ(x)). (9)

The formula for KL divergence between Gaussians gives

KL(p(x′|x,u)||p(x′|x)) = h

2σ2
∥u∥2. (10)

Thus, the familiar quadratic energy cost is a special case
of the KL divergence cost defined earlier. It can be shown
that in the limit h → 0, the solution to the above discrete-
time problem converges to the solution of the underlying
continuous-time problem. Thus, if we define

q̃(x) = hq(x), (11)

the continuous problem is approximated as a continuous-
space discrete-time LMDP. For example, for the infinite
horizon average-cost setting, (5) becomes

exp (hq(x)− hc) z(x) = G[z](x). (12)

3. SOFT STATE AGGREGATION SCHEME

In this section we first summarize the idea of soft state
aggregation Bertsekas [2010], Singh et al. [1995]. Then
we introduce our choice of aggregation and deaggregation
probabilities. After that, we show how to recover the
solution of the original problem using clusters obtained
from aggregation. Issues regarding setting parameters of
those clusters are discussed in the end.

3.1 Soft state aggregation for LMDPs

In order to aggregate the entire space into a finite number
of clusters, we need to construct the clusters S and define
two choices of probabilities relating the clusters to the
original system states.

Definition 1. (Aggregation and deaggregation probabili-
ties)

(1) Aggregation probability p(i|x) = ϕi(x), x ∈ X , i ∈ S is
a probability-like quantity that is interpreted as the
“degree of membership of x in the aggregate state i”.

(2) Deaggregation probability, p(x|i) = di(x) , x ∈ X , i ∈
S is a probability-like quantity that is interpreted as
the “degree to which i is represented by x”.

Aggregation and deaggregation probabilities naturally sat-
isfy the following conditions

Fact 2. (Aggregation and deaggregation probabilities)

(1) nonnegativity

ϕj(x) ≥ 0, di(x) ≥ 0. (13)

(2) normalization conditions∑
j∈S

ϕj(x) = 1,

∫
x∈X

di(x)dx = 1. (14)

(3) Bayes rule

ϕi(x) = p(i|x) = p(x|i)p(i)
p(x)

=
di(x)p(i)

p(x)
, i ∈ S, x ∈ X ,

(15)
where p(i) and p(x) are some probability densities
over S and X .

When the aggregation probabilities ϕi(x) are not all 0 or 1,
this method is called Soft Aggregation, which implies that
each state of the original system may belong to multiple
clusters.

Suppose we have a continuous-state LMDP with passive
dynamics p(x′|x), x, x′ ∈ X . We would like to approximate
the desirability function z(x), x ∈ X . Based on the aggre-
gation framework, the transition probabilities among the
clusters can be expressed as

p̂(j|i) =

∫∫
x,x′∈X

p(j|x′)p(x′|x)p(x|i)dxdx′

=

∫∫
x′,x∈X

ϕj(x
′)di(x)p(x

′|x)dxdx′.
(16)

Fig. 1. (a) Aggregation and deaggregation functions in
1D. Blue lines show aggregation, while red lines show
deaggregation functions. Black lines show the means
of the clusters. (b-d) shows several aggregation func-
tions in 2D. The ellipses correspond to the contours
of the Gaussian deaggregation functions.

The state cost function over clusters is

exp(−q̃i) =

∫
x∈X

exp(−hq(x))di(x)dx. (17)

This completes the construction of the approximating
LMDP on clusters, which is defined on a finite and discrete
state space.

3.2 Choice of aggregation and deaggregation probabilities

In this paper we choose the deaggregation probabilities as
multi-dimensional normal distributions:

di(x) = c−1
i exp(−(x−mi)

TSi(x−mi)/2), (18)

where c−1
i denotes the normalization factor. Then p(x) and

p(i) in (15) are chosen as the following mixtures(19):

p(i) = ci, p(x) = Σi∈Sp(i)p(x|i), (19)

then based on (15), the aggregation functions are

ϕi(x) =
exp(−(x−mi)

TSi(x−mi)/2)∑
i∈S exp(−(x−mi)TSi(x−mi)/2)

. (20)

The shape of the aggregation and deaggregation functions
is illustrated in Fig 1. In order to improve computational
efficiency and generate a sparse transition probability
matrix, the summation in (20) will be limited to nearby
clusters, and ϕi(x) will be set to 0 if the mi is not among
the k nearest neighbors to x. Note that we only choose
the shape of the deaggregation functions (Gaussian). The
aggregation functions are then constructed automatically
via normalization. The result of the normalization is to
reshape the Gaussians in a way that fills the gaps and
covers the space more uniformly.

3.3 Finding the desirability function z(x) and optimal
control law u∗(x)

The double integral (16) is not trivial to calculate nu-
merically (see Supplement). Currently we are employing
a cubature formula Lu et al. [2005], Stroud [1971] which
requires evaluating the aggregation function and the a(x)
function O(m) times, where m is the state space dimen-
sionality. Once the discrete-space LMDP is constructed,
we can solve it by finding the principal eigen-pair for a
problem in the form

λz = QPz. (21)

Here, Pij = p̂(j|i), λ = exp(−hc), Q is a diagonal matrix
with Qii = exp(−q̃i) in (17). One way to solve this
problem is the power iteration method(in Trefethen et al.
[1997]): λzk+1 = QPzk with ∥z∥ fixed. The matrix QP
is guaranteed to have a principal eigenvalue less than 1,
and the corresponding eigenvector is guaranteed to have
positive elements– because all elements of the matrix are
non-negative.

For the first-exit formulation Todorov [2006], the corre-
sponding linear equation is

diag(exp(qN))− PNN zN = PNT exp(−qT). (22)

Here N stands for non-terminal states and T stands for
terminal states, and PNN , PNT are the corresponding
blocks of P in (21). We can approximate the continuous-
state problem if we allocate several clusters as terminal
states. Note that this is not equivalent to the contin-
uous function approximation approach which requires a
boundary condition on z(x). Let T ⊂ Rm denote the
set of terminal states in the continuous state space. The
continuous function-approximation scheme would involve
integrals like

∫
x′∈Rm\T p(x′|x)f(x′)dx′ which would be dif-

ficult to evaluate in high-dimensional problems.

Once the discrete-space LMDP is solved, the continuous-
space desirability function is

z(x) =
∑
j∈S

ϕj(x)zj , (23)

and then the optimal control law u∗(x) can be computed
from (3).

With regard to computational complexity, estimating (16)
tends to be the bottleneck. Finding the K nearest neigh-
bors can be done efficiently using tree decompositions,
while evaluating (16) requires O(NKm3) computations
where N is the total number of clusters (see Supplement).

3.4 Determining the position and covariances of clusters

The clusters (defined by the Gaussian deaggregation func-
tions) are characterized by their means and covariances.
Obviously the choice of means and covariances will have
a large effect on the quality of the approximation. Here
we present a method for choosing these parameters in a
suitable way. First we address the choice of means, and
then the choice of covariances.

The approximation is more accurate near the clusters.
One approach is to attempt to cover the entire state
space with a grid of Gaussians, but this will not scale to
high dimensional systems. Instead we use the following
method. We only add clusters (nodes), restricted to be
sufficiently far away from the already included clusters.
If the clusters are further restricted to lie within a finite
region of state space, the method is guaranteed to termi-
nate. After solving for the optimal control law for current
selection of nodes, we generate prospective nodes based
on a stochastic dynamical simulation starting from the
current nodes (or given initial states). Then we introduce
random perturbations. A prospective node is added if it
is sufficiently far from all current nodes. Nodes with lower
z(x), or equivalently higher cost-to-go, usually lie far away
from target/limiting trajectory. They effectively surround

the region of good states and thus prevent the number of
nodes from expanding indefinitely.

We also implement a mechanism to avoid generating
prospective nodes at low z(x) regions or regions that have
already been filled with nodes. This effectively restricts
sampling to low z(x) regions, which is where the controlled
system spends most of its time. The quality of the approx-
imation is of course better if the initial sampling covers the
region where good states are found. The distances between
nodes should approximately match the characteristic dis-
tance of the system determined by ha(x) and

√
hσB(x),

which are the magnitudes of the passive dynamics and
transition probabilities. This means the time step should
be big enough if one wants to solve the problem with fewer
clusters.

Once the means of the clusters are chosen, we need to
choose the covariances. One possibility is to use gradient
descent, however this is likely to be slow because the
covariances have a large number of parameters. Instead
we use a heuristic method to ensure that the clusters have
some overlap. Since the solution z(x) tends to be more
spread out in the directions where the noise acts, the
covariances need to be more elongated in these dimensions.

Our current results involve setting covariances in the
following ways. (1) Manually set them, but this involves
some insight into the specific system. (2) Assume that they
have the same shape, i.e. the inverse covariance matrix Si

for all clusters is the same up to multiplication by a scalar;
this scalar is determined by the distance to other clusters
and how much overlap between clusters we need. Keeping
Si diagonal tends to give good enough results in most of
our test problems.

4. NUMERICAL RESULTS

In this section we present numerical results. First we
will illustrate that the results given by the aggregation
framework are meaningful. Second we will illustrate that
the method scales to high-dimensional system.

4.1 Test problems, solution and dynamical simulation

Here we will focus on the desirability function z(x),
cost-to-go function v(x), optimal control law u∗(x), and
dynamical simulations based on u∗(x). When possible, we
will compare these results to the ”ground truth” obtained
from an MDP discretization Todorov [2009b] on a dense
grid.

Example 1: Car-on-the-hill This test problem is adapted
from Todorov [2009a]. It has 2D state space (position and
horizontal velocity) and 1D control space. This dynamical
system simulates a point mass (the ”car”) moving along
a curved road (an inverted Gaussian). The control signal
is a force, which can only affect the tangential velocity
directly. One interesting property of this model is that the
dynamics are augmented with the following rule. When the
car hits the ”walls” at xmin or xmax , its speed drops to
0, at which point we have B = [0; 0] (i.e. the apparent
inertia goes to infinity at contact). This discontinuity
cannot be captured by the continuous-time diffusion model
(6), yet it is easily captured by our discrete-time LMDP.

Fig. 2. Results for car-on-a-hill. (a)demonstrates the
problem. Curve represents the ”hill” and arrows
represents via points in average-cost formulation.
(b)demonstrates the state cost function q(x) of the
average cost formulation. (c-h) show results given by
average-cost formulation. (i-p) show results given by
the first-exit problem. Except for (a,b,o,p), the top
and third rows show the cost-to-go function(x) =
− log(z(x)), with blue represents low cost-to-go or
high desirability, dots represents where clusters are.
The second and fourth rows show the corresponding
optimal control law. Solid lines show the trajectories
given by a simulation with several random initial
states (indicated by yellow circles). (c-d,i-j) show the
results given by MDP with 151 x 151 states sampled
on bigger region than shown. (e-f,k-l) show the results
given by putting clusters on a 21x21 grid. (g-h,m-
n) shows the results given by putting clusters with
adaptive scheme. The average-cost one (g-f) uses 94
clusters, (m-n) the first-exit one uses 78 clusters. For
those results by adaptive clusters, their covariances
are adaptive to match their distance with the nearest
neighbor. (o) shows initial clusters and (p) shows
clusters after 3 iterations. The result given by (m-n)
is obtained after the 14th iteration. Except (a), hori-
zontal axis represents horizontal position and vertial
axis represents velocity.

The reason for constructing a model with collisions is
that we hope that our methods will work for locomotion
and hand manipulation where contact phenomena and
discontinuities are essential.

For the average-cost setting, we design a cost-function
q(x) (Fig.2(b)) which encourates the car to pass through
two targets that have non-zero desired velocities; thus
the optimal behavior involves a limit cycle. As shown in
Fig.2(c-h), the cost-go function and control law given by
our approximations are consistent with the dense MDP
solution, even though here we use a small number of bases.

−2 0 2
−2

0

2
(a) 2 masses

−2 0 2
−2

0

2
(b) N=138

−2 0 2
−2

0

2
(c) 3 masses

−2 0 2
−2

0

2
(d) N=224

−2 0 2
−2

0

2
(e) 5 masses

−2 0 2
−2

0

2
(f) N=250

−2 0 2
−2

0

2
(g) 7 masses

−2 0 2
−2

0

2
(h) N=399

Fig. 3. Results for N masses model. The first row represents
simulated simulated trajectories projected to x1 vs v1
plane, while the second row represents those projected
to x1 vs x2 plane. (a-b) for 2 masses, (c-d) for 3
masses, (e-f) for 5 masses, (g-h) for 7 masses. N stands
for number of clusters. Circles represents initial states.
All of them are calculated with hundreds of clusters.
We can see that most trajectories converge to the unit
circle on planes, which are projections of the theoritial
attracting trajectories.

We can also use this dynamical model to create a first-
exit problem. The goal of this model is to park the car
(i.e. achieve zero velocity) at horizontal position 2.35. The
running state cost is constant; thus it effectively acts as a
cost for time. Again, in Fig.2(i-p), the results are consistent
with the MDP method. Subplots (o-p) give the initial
clusters and the intermediate clusters during iterations.
We can see that there are fewer clusters at the right-
bottom corner, where the car visits less frequently.

For the car-on-a-hill model, one interesting result is that
our framework could capture collisions properly, by obtain-
ing control laws take advantage of collissions. This behav-
ior is difficult to capture using trajectory-based methods.

Example 2: Coupling a series of masses on ideal springs
This model simulates several identical 1D masses attached
on ideal frictionless springs, which are dynamically inde-
pendent (the only coupling is due to the cost function).
Each mass can oscillate with any amplitude. The cost
function encodes two concurrent objectives: (1) fix the
energy of each mass-spring to a constant; (2) make mass
number i oscillate with phase π/2 ahead of mass number
i+ 1, for all i. Here we use an average-cost setting.

This model is rather simple, but it has advantages when
tuning the algorithm. First, it has similar behavior when
scaling to higher dimensionality (simply changing the
number of masses). Second, the limiting behavior of this
system can be easily computed theoretically: it is in the
form of cosine functions cos(Ct+ϕ) with appropriate phase
changes. Note that the solver does not ”know” about this
analytical form and instead is applying a generic numerical
method.

Results in Fig 3 show that we can control systems with
2,3,5,7 masses using only hundreds of clusters. Since this
model is better used for fine-tuning this method, we will
discuss more details of this model in the following section
about scalability.

(a) Aggregation

(b) MPC(T
F
=0.5)

(c) Aggregation + MPC(T
F
=0.5)

Fig. 4. Results for acrobot. All figures shows acrobot
starting from the same position to t = 2.

Example 3: Acrobot The acrobot is a 2-link arm with
control torque only applied to the joint between the
two parts. The details of this model is well-explained in
Coulom [2002], and we used exactly the same model and
parameters. Our test focus on swing up the acrobot to
the upright position and balancing it, thus the state cost
function is set to be q(x) = −CH(x), C > 0, where C is a
constant and H(x) is the height of the acrobot’s tip.

We explored two approaches to solving this problem: the
aggregation method developed in this paper, and model-
predictive control (MPC) (Tassa [2011]). We found that
the two approaches have complementary stengths, which
can be combined to yield improved performance. MPC is
difficult here because the system is underactuated and the
optimal trajectory often has long duration and compicated
shape – thus trajectory optimization without aid from
a global function approximator can easily fail. The ag-
gregation method provides a more global approximation,
however it tends to smooth out the value function, often
resulting is control that are not sufficiently large. This
can be overcome by adding more bases, at the expense
of computational complexity.

Now we show how to combine them. At time i, the MPC
minimize the cost on trajectory, i.e., solving
minui,...,i+N

[
Σi+N−1

k=i l(xi,ui) + vF (xN)
]
, where the states

xk and controls xk are constrained by the dynamics . MPC
apply only ui to the system and then resolve the problem
at next time step. To combine MPC and aggregation
methods, we set vF (x) as the cost-to-go function solved
from aggregation method under average-cost setting.

Numerical results confirm above arguments as in Fig. 4.
With higher receding horizon (tF = 1), the combined
method would swing up the acrobot and also balance it.
Imposing noise on simulation would give similar results.
More work is needed to be done on the MPC-aggregation
combination.

4.2 Scalability to High dimensional system

Scalability to high dimensional systems is the primary
challenge of solving Bellman equations numerically. A suc-
cessful method needs to satisfy several conditions. First,
the method should give a controller not far away from

the true solution. Second, the computational complexity of
the method should scale well with the number of samples
used. Third, the number of samples needed to achieve good
accuracy should scale well with dimensionality. The first
and second conditions normally hold(e.g. MDP), and the
real challenge is the third one.

At least in the example 2 shown, our framework can
control a high-dimensional system semi-globally with a
surprisingly small number of clusters given the dimension-
ality. In general, the number of samples needed is likely
to be problem specific, and might blow up due to the
complexity of a system. Nevertheless our numerical results
up to date are encouraging.

We also note that the CPU time scales well with dimen-
sionality. Our code is written in C and is multithreaded. It
runs on a quad-core 3GHz Intel i7 processor. Going from
2 masses to 7 masses (4 to 14 state dimensions), the total
CPU time increases from 0.5 seconds to 4 seconds. The
CPU time for estimating the probability transition matrix
increases from around 15 milliseconds to 80 milliseconds.
When using 7 masses and 20000 clusters, computing the
transition matrix takes 56.5 seconds with 6 threads, as op-
posed to 243.7 seconds with 1 thread. Thus our algorithm
successfully takes advantage of multithreading.

5. SUMMARY

Here we presented a new problem-approximation scheme,
which transforms a linearly solvable optimal control prob-
lem with continuous state space into a problem with dis-
crete state space. This provides extra flexibility in the
problem formulation and also avoids numerical issues with
function approximation methods. Preliminary results show
that it can generate acceptable control laws and is scal-
able to higher dimensional systems. We also developed an
adaptive scheme for aggregation/deaggregation functions
that increases the approximation accuracy in the regions
of state space which are visited most often.

In the future, we hope to broaden our selection of aggre-
gation and deaggregation functions, explore different ways
to adapt them, explore combining MPC with aggregation,
and apply the method to more complex problems. Sys-
tematic comparison with other existing methods is also
needed.

ACKNOWLEDGEMENTS

This work was supported by the US National Science
Foundation.

REFERENCES

D. Bertsekas. Dynamic programming and optimal control
, 3rd Edition. . Volume II, Chap 6, revision at May 4,
2010

R. Coulom.Reinforcement learning using neural networks,
with applications to motor control. Ph.D. dissertation,
Institut National Polytechnique de Grenoble, 2002.

H. Kappen.Linear theory for control of nonlinear stochas-
tic systems.Phys Rev :ett 95: 200201 ,2005.

J Lu, DL Darmofal. Higher-dimensional integration with
Gaussian weight for applications in probabilistic design
.SIAM J. SCI. COMPUT, Vol. 26, No. 2, pp. 613, 2005

S. Singh, T. Jaakkola and M.Jordan.Reinforcement learn-
ing with soft state aggregation. Advances in Neural In-
formation Processing Systems, 1995.

A. H. Stroud. Approximate Calculation of Multiple Inte-
grals, Prentice-Hall.Englewood Cliffs,NJ, 1971.

Y. Tassa, T. Erez, and E. Todorov. Fast model predictive
control for complex robotic behavior. Manuscript under
review, 2011.

E. Todorov. Linearly-solvable Markov decision problems.
Advances in Neural Information Processing Systems,
2006.

E. Todorov. Efficient computation of optimal actions.
PNAS, July 14, 2009 vol. 106 no. 28 11478-11483 .

E. Todorov. Eigen-function approximation methods for
linearly-solvable optimal control problems.IEEE Interna-
tional Symposium on Adaptive Dynamic Programming
and Reinforcemenet Learning, 2009.

LN Trefethen, D Bau . Numerical Linear Algebra.
SIAM1997

Appendix A. NUMERICAL ISSUES FOR
ESTIMATING PROBABILITY TRANSITION

MATRIX OF CLUSTERS

p̂(j|i) =
∫∫

x′,x∈X
ϕj(x

′)di(x)p(x
′|x)dxdx′ (A.1)

is not trivial to be calculated numerically. With x′ = x+
ha(x) +

√
hσB(x)ξ, the integral becomes

p̂(j|i) =
∫∫

x∈X ,ξ∈Rmc

ϕj(x+ha(x)+
√
hσBξ)di(x)N (0, I)dξ.

(A.2)
Here N (0, I) represent the probability density function of
a unit Gaussian distribution. di(x)N (0, I) is a Gaussian
function. If problem defined in entire space or clusters are
small, the above integral can be approximately calculated
by the cubature formula. Those formulas approximate
the integral with a weighted summation of the function
evaluated at carefully selected sampling points.

I[Φ] =

∫
Φ(y) exp(−yTy)dy ≈ Q[Φ] = Σ

nsample

j=1 wjΦ(y
j)

(A.3)
We currently are using one with nsample = 2(m+mc) + 1
points, a variation from Stroud [1971], where m is the
dimensionality of the state space and mc is that of the
control space.

Q[Φ] = w1π
n/2Φ(0) + w2Σfull sym.Φ(

√
λ, 0, .., 0),

w1 =
2λ− 1

2λ
,w2 =

4

n
λ,

(A.4)

λ is an arbitrary parameter. Here, ”full sym.” means all
possible indexes, permutations and reflections. Therefore,
for a m dimensional system with N clusters, the time-
complexity for computing the entire matrix is O(NKm3),
where K corresponds to how many neighboring points you
have chosen to evaluate. That is due to :(1) calculating a
Gaussian needs O(m2) time, (2) calculating a row of the
probability transition matrix needs evaluating Gaussians
O(Km) times. In our trials, computing the transition
matrix seems to be a bottleneck.

