
Efficient computation of optimal actions

Supplementary notes

Emanuel Todorov

This supplement provides derivations of the results summarized in Table 1 in the
main text, derivation of the relationship between the discrete and continuous formu-
lations, and details on the MDP embedding method and the car-on-a-hill simulations.

1 Discrete problems

1.1 Generic formulation

We first recall the general form of a Markov decision process (MDP) and then introduce our new
formulation which makes the problem more tractable. Consider a discrete set of states X , a set
U (x) of admissible actions at each state x ∈ X , a transition probability function p (x0|x, u), an
instantaneous cost function c (x, u), and (optionally) a final cost function g (x) evaluated at the
final state.

The objective of optimal control is to construct a control law u = π∗t (x) which minimizes the
expected cumulative cost. Once a control law π is given the dynamics become autonomous, namely
xt+1 ∼ p (·|xt, πt (xt)). The expectations below are taken over state trajectories sampled from these
dynamics. The expected cumulative cost for starting at state x and time t and acting according to
π thereafter is denoted vπt (x). This is called the cost-to-go function. It can be defined in multiple
ways, as follows:

first exit
total cost

vπ (x) = E
h
g
¡
xtf
¢
+
Xtf−1

τ=0
c (xτ , π (xτ))

i
infinite horizon
average cost

vπ (x) = lim
tf→∞

1

tf
E
hXtf−1

τ=0
c (xτ , π (xτ))

i
infinite horizon
discounted cost

vπ (x) = E
hX∞

τ=0
ατc (xτ , π (xτ))

i
finite horizon
total cost

vπt (x) = E
h
g
¡
xtf
¢
+
Xtf−1

τ=t
c (xτ , πτ (xτ))

i
(1)

In all cases the expectation is taken over trajectories starting at x. Only the finite horizon formula-
tion allows explicit dependence on the time index. All other formulations are time-invariant, which
is why the trajectories are initialized at time 0. The final time tf is predefined in the finite horizon
formulation. In the first exit formulation tf is determined online as the time when a terminal/goal
state x ∈ A is first reached. We can also think of the latter problem as being infinite horizon,
assuming the system can remain forever in a terminal state without incurring extra costs.

The optimal cost-to-go function v (x) is the minimal expected cumulative cost that any control
law can achieve starting at state x:

v (x) = min
π

vπ (x) (2)

1

The optimal control law is not always unique but the optimal cost-to-go is. The above minimum
is achieved by the same control law(s) for all states x. This follows from Bellman’s optimality
principle, and has to do with the fact that the optimal action at state x does not depend on how
we reached state x. The optimality principle also gives rise to the Bellman equation — which is a
self-consistency condition satisfied by the optimal cost-to-go function. Depending on the definition
of cumulative cost the Bellman equation takes on different forms, as follows:

first exit
total cost

v (x) = minu∈U(x)
©
c (x, u) + Ex0∼p(·|x,u) [v (x

0)]
ª
, v (x ∈ A) = g (x)

infinite horizon
average cost

c+ ev (x) = minu∈U(x) ©c (x, u) + Ex0∼p(·|x,u) [ev (x0)]ª
infinite horizon
discounted cost

v (x) = minu∈U(x)
©
c (x, u) + Ex0∼p(·|x,u) [αv (x

0)]
ª

finite horizon
total cost

vt (x) = minu∈U(x)
©
c (x, u) + Ex0∼p(·|x,u) [vt+1 (x

0)]
ª
, vtf (x) = g (x)

(3)

In the average cost formulation ev (x) has the meaning of a differential cost-to-go function, while c
is the average cost which does not depend on the starting state. In the discounted cost formulation
the constant α < 1 is the exponential discount factor. In all formulations the Bellman equation
involves minimization over the action set U (x). For generic MDPs such minimization requires
exhaustive search. Our goal is to construct a class of MDPs for which this exhaustive search can
be replaced with an analytical solution.

1.2 Restricted formulation where the Bellman equation is linear

In the traditional MDP formulation the controller chooses symbolic actions u which in turn spec-
ify transition probabilities p (x0|x, u). In contrast, we allow the controller to choose transition
probabilities u (x0|x) directly, thus

p
¡
x0|x, u

¢
= u

¡
x0|x

¢
(4)

The actions u (·|x) are real-valued vectors with non-negative elements which sum to 1. To prevent
direct transitions to goal states, we define the passive or uncontrolled dynamics p (x0|x) and require
the actions to be compatible with it in the following sense:

if p
¡
x0|x

¢
= 0 then we require u

¡
x0|x

¢
= 0 (5)

Since U (x) is now a continuous set, we can hope to perform the minimization in the Bellman
equation analytically. Of course this also requires a proper choice of cost function c (x, u) and in
particular proper dependence of c on u:

c (x, u) = q (x) + KL (u (·|x) || p (·|x)) = q (x) + Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x)

¸
(6)

q (x) can be an arbitrary function. At terminal states q (x) = g (x). Thus, as far as the state cost
is concerned, we have not introduced any restrictions. The control cost however must equal the
Kullback-Leibler (KL) divergence between the controlled and passive dynamics. This is a natural
way to measure how "large" the action is, that is, how much it pushes the system away from its
default behavior.

2

With these definitions we can proceed to solve for the optimal actions given the optimal costs-
to-go. In all forms of the Bellman equation the minimization that needs to be performed is

minu∈U(x)

½
q (x) + Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x)

¸
+Ex0∼u(·|x)

£
w
¡
x0
¢¤¾

(7)

where w (x0) is one of v (x0), ev (x0), αv (x0), vt+1 (x0). Below we give the derivation for w = v; the
other cases are identical. The u-dependent expression being minimized in (7) is

Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x)

¸
+Ex0∼u(·|x)

£
v
¡
x0
¢¤
= Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x) + v

¡
x0
¢¸

(8)

= Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x) + log

1

exp (−v (x0))

¸
= Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x) exp (−v (x0))

¸
The latter expression resembles KL divergence between u and p exp (−v), except that p exp (−v)
is not normalized to sum to 1. In order to obtain a proper a KL divergence we introduce the
normalization term

G [z] (x) =
X

x0
p
¡
x0|x

¢
z
¡
x0
¢
= Ex0∼p(·|x)

£
z
¡
x0
¢¤

(9)

where the desirability function z is defined as

z (x) = exp (−v (x)) (10)

Now we multiply and divide the denominator on the last line of (8) by G [z] (x). The derivation
proceeds as follows:

Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x) z (x0)

¸
= Ex0∼u(·|x)

∙
log

u (x0|x)
p (x0|x) z (x0)G [z] (x) /G [z] (x)

¸
(11)

= Ex0∼u(·|x)

∙
− logG [z] (x) + log u (x0|x)

p (x0|x) z (x0) /G [z] (x)

¸
= − logG [z] (x) + KL

µ
u (·|x)

°°°°p (·|x) z (·)G [z] (x)

¶
Thus the minimization involved in the Bellman equation takes the form

minu∈U(x)

½
q (x)− logG [z] (x) + KL

µ
u (·|x)

°°°°p (·|x) z (·)G [z] (x)

¶¾
(12)

The first two terms do not depend on u. KL divergence achieves its global minimum of 0 if and
only if the two probability distributions are equal. Thus the optimal action is

u∗
¡
x0|x

¢
=

p (x0|x) z (x0)
G [z] (x) (13)

We can now drop the min operator, exponentiate the Bellman equations and write them in terms

3

of z as follows:

first exit
total cost

z (x) = exp (−q (x))G [z] (x) z = QPz

infinite horizon
average cost

exp (−c) ez (x) = exp (−q (x))G [ez] (x) exp (−c)ez = QPez
infinite horizon
discounted cost

z (x) = exp (−q (x))G [zα] (x) z = QPzα

finite horizon
total cost

zt (x) = exp (−q (x))G [zt+1] (x) zt = QPzt+1

(14)

The third column gives the matrix form of these equations. The elements of the function z (x) are
assembled into the n-dimensional column vector z, the passive dynamics p (x0|x) are expressed as
the n-by-n matrix P where the row index corresponds to x and the column index to x0, and Q is
the n-by-n diagonal matrix with elements exp (−q (x)) along its main diagonal. In the average cost
formulation it can be shown that λ = exp (−c) is the principal eigenvalue. In the discounted cost
formulation we have used the fact that exp (−αv) = exp (−v)α = zα.

The optimal control law in the average cost, discounted cost and finite horizon cost formulations
is again in the form (13), but z is replaced with ez or zt+1 or zα respectively.
2 Continuous problems

2.1 Generic formulation

As in the discrete case, we first summarize the generic problem formulation and then introduce a
new formulation which makes it more tractable. Consider a controlled Ito diffusion of the form

dx = f (x,u) dt+ F (x,u) dω (15)

where x ∈ Rnx is a state vector, u ∈ Rnu is a control vector, ω ∈ Rnω is standard multidimensional
Brownian motion, f is the deterministic drift term and F is the diffusion coefficient. If a control
law u = π (x) is given the above dynamics become autonomous. We will need the 2nd-order linear
differential operator L(u) defined as

L(u) [v] = fTvx +
1

2
trace

³
FFTvxx

´
(16)

This is called the generator of the stochastic process (15). It is normally defined for autonomous
dynamics, however the same notion applies for controlled dynamics as long as we make L dependent
on u. The generator equals the expected directional derivative along the state trajectories. In the
absence of noise (i.e. when F = 0) we have L(u) [v] = fTvx which is the familiar directional
derivative. The trace term is common in stochastic calculus and reflects the noise contribution.

Let g (x) be a final cost evaluated at the final time tf which is either fixed or defined as a first
exist time as before, and let c (x,u) be a cost rate. The expected cumulative cost resulting from

4

control law π can be defined in the following ways:

first exit
total cost

vπ (x) = E

∙
g (x (tf)) +

Z tf

0
c (x (τ) , π (x (τ))) dτ

¸
infinite horizon
average cost

vπ (x) = lim
tf→∞

1

tf
E

∙Z tf

0
c (x (τ) , π (x (τ))) dτ

¸
infinite horizon
discounted cost

vπ (x) = E

∙Z ∞

0
exp (−ατ) c (x (τ) , π (x (τ))) dτ

¸
finite horizon
total cost

vπ (x, t) = E

∙
g (x (tf)) +

Z tf

t
c (x (τ) , π (x (τ) , τ)) dτ

¸
(17)

As in the discrete case, the optimal cost-to-go function is

v (x) = inf
π
vπ (x) (18)

This function satisfies the Hamilton-Jacobi-Bellman (HJB) equation. The latter has different forms
depending on the definition of cumulative cost, as follows:

first exit
total cost

0 = minu
©
c (x,u) + L(u) [v] (x)

ª
, v (x ∈ A) = g (x)

infinite horizon
average cost

c = minu
©
c (x,u) + L(u) [ev] (x)ª

infinite horizon
discounted cost

αv (x) = minu
©
c (x,u) + L(u) [v] (x)

ª
finite horizon
total cost

−vt (x, t) = minu
©
c (x,u) + L(u) [v] (x, t)

ª
, v (x, tf) = g (x)

(19)

Unlike the discrete case where the minimization over u had not been done analytically before,
in the continuous case there is a well-known family of problems where analytical minimization is
possible. These are problems with control-affine dynamics and control-quadratic costs:

dx = (a (x) +B (x)u) dt+ C (x) dω (20)

c (x,u) = q (x) +
1

2
uTR (x)u

For such problems the quantity c (x,u) + L(u) [v] (x) becomes quadratic in u, and so the optimal
control law can be found analytically given the gradient of the optimal cost-to-go:

u∗ (x) = −R (x)−1B (x)T vx (x) (21)

Substituting this optimal control law, the right hand side of all four HJB equations takes the form

q − 1
2
vTxBR

−1BTvx + a
Tvx +

1

2
tr
³
CCTvxx

´
(22)

where the dependence on x (and t when relevant) has been suppressed for clarity. The latter
expression is nonlinear in the unknown function v. Our goal is to make it linear.

5

2.2 Restricted formulation where the HJB equation is linear

As in the discrete case, linearity is achieved by defining the desirability function

z (x) = exp (−v (x)) (23)

and rewriting the HJB equations in terms of z. To do so we need to express v and its derivatives
in terms of z and its derivatives:

v = − log (z) , vx = −
zx
z
, vxx = −

zxx
z
+

zxz
T
x

z2
(24)

The last equation is key, because it contains the term zxz
T
x which will cancel the nonlinearity present

in (22). Substituting (24) in (22), using the properties of the trace operator and rearranging yields

q − 1
z

µ
aTzx +

1

2
tr
³
CCTzxx

´
+
1

2z
zTxBR

−1BTzx −
1

2z
zTxCC

Tzx

¶
(25)

Now we see that the nonlinear terms cancel when CCT = BR−1BT, which holds when

C (x) = B (x)

q
R (x)−1 (26)

The s.p.d. matrix square root of R−1 is uniquely defined because R is s.p.d. Note that in the main
text we assumed R = I/σ2 and so C = Bσ. The present derivation is more general. However the
noise and controls still act in the same subspace, and the noise amplitude and control cost are still
inversely related.

Assuming condition (26) is satisfied, the right hand side of all four HJB equations takes the
form

q − 1
z
L(0) [z] (27)

where L(0) is the generator of the passive dynamics (corresponding to u = 0). We will omit the
subscript (0) for clarity. For this class of problems the generator of the passive dynamics is

L [z] = aTzx +
1

2
tr
³
CCTzxx

´
(28)

Multiplying by −z 6= 0 we now obtain the transformed HJB equations

first exit
total cost

0 = L [z]− qz

infinite horizon
average cost

−cez = L [ez]− qez
infinite horizon
discounted cost

z log (zα) = L [z]− qz

finite horizon
total cost

−zt = L [z]− qz

(29)

As in the discrete case, these equations are linear in all but the discounted cost formulation.

6

3 Relation between the discrete and continuous formulations

Here we show how the continuous formulation can be obtained from the discrete formulation. This
will be done by first making the state space of the MDP continuous (which merely replaces the
sums with integrals), and then taking a continuous-time limit. Recall that the passive dynamics in
the continuous formulation are

dx = a (x) dt+ C (x) dω (30)

Let p(h) (·|x) denote the transition probability distribution of (30) over a time interval h. We can
now define an MDP in our class with passive dynamics p(h) (·|x) and state cost hq (x). Let z(h) (x)
denote the desirability function for this MDP, and suppose the following limit exists:

s (x) = lim
h→0

z(h) (x) (31)

The linear Bellman equation for the above MDP is

z(h) (x) = exp (−hq (x))Ex0∼p(h)(·|x)
£
z(h)

¡
x0
¢¤

(32)

Our objective now is to take the continuous-time limit h→ 0 and recover the PDE

qs = L [s] (33)

A straightforward limit in (32) yields the trivial result s = s because p(0) (·|x) is the Dirac delta
function centered at x. However we can rearrange (32) as follows:

exp (hq (x))− 1
h

z(h) (x) =
Ex0∼p(h)(·|x)

£
z(h) (x

0)− z(h) (x)
¤

h
(34)

The limit of the left hand side now yields qs. The limit of the right hand side closely resembles the
generator of the passive dynamics (i.e. the expected directional derivative). If we had s instead of
z(h) that limit would be exactly L [s] and we would recover (33). The same result is obtained by
assuming that z(h) converges to s sufficiently rapidly and uniformly, so that

Ex0∼p(h)(·|x)
£
z(h)

¡
x0
¢
− z(h) (x)

¤
= Ex0∼p(h)(·|x)

£
s
¡
x0
¢
− s (x)

¤
+ o

¡
h2
¢

(35)

Then the limit of (34) yields (33).

4 Embedding of traditional MDPs

In the main text we outlined a method for embedding traditional MDPs. The details are provided
here. Denote the symbolic actions in the traditional MDP with a, the transition probabilities withep (x0|x, a) and the costs with ec (x, a). We seek an MDP within our class such that for each (x, a) the
action ua (·|x) = ep (·|x, a) has cost c (x, ua) = ec (x, a). In other words, for each symbolic action in
the traditional MDP we want a corresponding continuous action with the same cost and transition
probability distribution. The above requirement for proper embedding is equivalent to

q (x) +
X

x0
ep ¡x0|x, a¢ log ep (x0|x, a)

p (x0|x) = ec (x, a) , ∀x ∈ X , a ∈ eU (x) (36)

7

This system of
¯̄̄ eU (x)¯̄̄ equations has to be solved separately for each x, where ep, ec are given and

q, p are unknown. Let us fix x and define the vectors m,b and the matrix D with elements

mx0 = log p
¡
x0|x

¢
(37)

ba = ec (x, a)−X
x0
ep ¡x0|x, a¢ log ep ¡x0|x, a¢

Dax0 = ep ¡x0|x, a¢
Then the above system of equations becomes linear:

q1−Dm = b (38)

D,b are given, q,m are unknown, 1 is a column vector of 1’s. In addition we require that p be a
normalized probability distribution, which holds whenX

x0
exp (mx0) = 1 (39)

The latter equation is nonlinear but nevertheless the problem can be made linear. Since D is a
stochastic matrix, we have D1 = 1. Then equation (38) is equivalent to

D (q1−m) = b (40)

which can be solved for c = q1 −m using a linear solver. For any q the vector m = q1 − c is a
solution to (38). Thus we can choose q so as to make m satisfy (39), namely

q = − log
X

x0
exp (−cx0) (41)

If D is row-rank-defficient the solution c is not unique, and we should be able to exploit the freedom
in choosing c to improve the approximation of the traditional MDP. If D is column-rank-defficient
then an exact embedding cannot be constructed. However this is unlikely to occur in practice
because it essentially means that the number of symbolic actions is greater than the number of
possible next states.

5 Car-on-a-hill simulation

The continuous control problem illustrated in Fig. 5 in the main text is as follows. x1 and x2
denote the horizontal position and tangential velocity of the car. The state vector is x = [x1, x2]T.
The hill elevation over position x1 is

s (x1) = 2− 2 exp
¡
−x21/2

¢
(42)

The slope is s0 (x1) = 2x1 exp
¡
−x21/2

¢
and the angle relative to the horizontal plane is atan (s0 (x1)).

The tangential acceleration reflects the effects of gravity, damping, control signal u and noise. The
dynamics are

dx1 = x2 cos
¡
atan

¡
s0 (x1)

¢¢
dt (43)

dx2 = −g sgn (x1) sin
¡
atan

¡
s0 (x1)

¢¢
dt− βx2dt+ udt+ dω

g = 9.8 is the gravitational constant and β = 0.5 is the damping coefficient. The cost rate is
c (x, u) = q + 1

2u
2 with q = 5. The goal states are all states such that |x1 − 2.5| < 0.05 and

8

|x2| < 0.2. This cost model encodes the task of parking at horizontal position 2.5 in minimal
time and with minimal control energy. The constant q determines the relative importance of time
and energy. Some error tolerance is needed because the dynamics are stochastic. This continuous
problem is in the form given in the main text, so it can be approximated with an MDP in our class.
It can also be approximated with a traditional MDP. Both approximations use the same state space
discretization: a 101-by-101 grid spanning x1 ∈ [−3,+3], x2 ∈ [−9,+9]. The traditional MDP also
uses discretization of the control space: a 101 point grid spanning u ∈ [−30,+30]. The passive
dynamics p are constructed by discretizing the time axis (with time step h = 0.05) and defining
probabilistic transitions among discrete states so that the mean and variance of the continuous-
state dynamics are preserved. The noise distribution is discretized at 9 points spanning ±3 standard
deviations in the x2 direction, that is,

h
−3
√
h,+3

√
h
i
. The controlled dynamics are obtained from

p by shifting in the x2 direction. For each value of u the set of possible next states is a 2-by-9
sub-grid, except at the edges of the grid where non-existent states are removed and the distribution
is normalized to sum to 1.

(a) — Schematic illustration of the problem.
(b) — Comparison of Z-iteration (blue), policy iteration (red) and value iteration (black). The

vertical axis shows the empirical performance of the control policies. It was found by initializing 10
trajectories in each discrete state and sampling until the goal was reached or until the trajectory
length exceeded 500 steps. The sampling was done in discrete time and continuous space, using the
nearest discrete state to determine the control signal. The horizontal axis (note the log scale) shows
the number of updates for each method. One update involves a computation of the form Av+b for
policy and value iteration, and Az for Z-iteration. The computation of minima in policy and value
iteration is not counted, thus our method has an even bigger advantage than what is shown in the
figure. The evaluation step in policy iteration was done with an iterative linear solver which was
terminated at 20 iterations (or when convergence was reached) because complete evaluation slows
down policy iteration. The value of 20 was manually optimized. Recall that the evaluation step
in policy iteration, as well as the linear problem that needs to be solved in our formulation, can
also be handled with a direct solver. Then our method becomes equivalent to a single evaluation
step in policy iteration. Policy iteration using a direct solver converged in 10 iterations, thus our
method was more than 10 times faster.

(c) — The optimal cost-to-go function computed by Z-iteration (blue is small; red is large). Also
shown are two stochastic trajectories generated by the optimal controller (black). The magenta
curve is the most likely trajectory of the optimally-controlled stochastic system. It is computed
by solving the corresponding deterministic problem via dynamic programming applied to the dis-
cretization. Note that we could also solve a continuous deterministic problem (given in the main
text) and recover the same trajectory.

(d) — The optimal cost-to-go v (x) inferred from a dataset generated by the optimal controller.
The dataset contained 20 state transitions per state: the system was initialized 20 times in each
discrete state and the next discrete state was sampled from the optimal controller. The pixels
shown in brown correspond to states where none of the transitions landed. The cost-to-go at those
states cannot be inferred. The inference procedure is based on the diagonal Gauss-Newton method
applied to the function L (v) in the main text.

9

