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Abstract 
The role of primary motor cortex (M1) in arm movement control has been the subject of lasting and often 

heated debates. Early views of low-level muscle control have been discredited by numerous correlations 

with higher-level parameters related to hand kinematics. The abstract directional coding hypothesis 

advanced to explain these observations has also been discredited, this time by numerous correlations with 

lower-level muscle- or joint-related parameters. Taken at face value, the contradictions accumulated over 

the years may seem to suggest that no coherent account of M1 function can ever be given, and one has to 

accept a catalog of disparate empirical findings in place of an explanation. This is in principle possible, 

but, at the risk of disagreeing with some of the neurophysiologists whose findings we find it necessary to 

re-interpret, we prefer the following more optimistic approach: assume that many of the observed 

phenomena are in fact epiphenomena, and search for simple underlying mechanisms that give rise to the 

seemingly contradicting results. To uncover such mechanisms, we need models. 

The present chapter summarizes a series of recent studies as well as unpublished results aimed at 

building a coherent model of M1. A coherent model requires an answer to the following question: if the 

M1 population output encodes just one thing, what could that thing be? The model we arrive at is related 

to earlier views of muscle-based control. It accounts for later results by incorporating the properties of the 

musculo-skeletal system: M1 neurons are assumed to activate groups of muscles while taking into 

account the state-dependence of muscle force production and effects of multijoint mechanics. The M1 

signal needed to compensate for these peripheral properties turns out to be correlated with behavioral 

parameters on multiple levels of description, quantitatively explaining many results which appear 

unrelated to the pattern of muscle activation. The chapter ends with an extended discussion of several 

important issues (origins of directional tuning, muscle synergies, redundancy of population codes, spinal 

cord function, and equilibrium-point control) from the point of view of our model. 



 

 - 1 -  

1. Introduction 
Primary motor cortex (M1) plays a fundamental role in the control of voluntary arm movements, as 

evidenced by the profound deficits following M1 lesions. Precisely what that role is has been the subject 

of lasting debates. These debates are fueled by the numerous correlations found between the activity of 

M1 neurons and various behavioral parameters. 

The earliest experiments in awake behaving monkeys (Evarts, 1968) showed that M1 firing is 

better correlated with isometric force than limb position. Given the dense projection from M1 to the 

spinal cord, sometimes directly to motoneurons, it is natural to interpret these early observations as 

evidence that M1 controls muscle force or activation (Evarts, 1981). It was later observed, however, that 

in multijoint movement tasks the majority of M1 neurons encode not the acceleration (which is 

proportional to force), but the direction (Georgopoulos et al., 1982) or velocity (Schwartz, 1994) of hand 

movement. In addition the M1 directional tuning curves were quite broad, which, in the context of single-

joint studies that dominated the field at the time, seemed inconsistent with low-level muscle control. 

These observations, and the ability of the population vector (PV) to recover movement direction, led to 

the opposing view that M1 sends a much more abstract signal specifying a three-dimensional vector in 

extrapersonal space. 

To distinguish between the two alternatives, movement velocity and external load were varied 

separately in the same experiment (Kalaska et al., 1989). The results however supported both views: 

velocity- and load-related signals were both present and combined additively in the activity of the same 

neurons. Although the directional coding hypothesis can be extended to incorporate the observed tuning 

for load (Kalaska et al., 1989;Georgopoulos et al., 1992;Taira et al., 1996) as well as position 

(Georgopoulos et al., 1984;Kettner et al., 1988), it offers no explanation as to why all these parameters 

should be encoded simultaneously. Furthermore, many additional correlations have been observed (see 

(Todorov, 2000a) that do not seem to fit in either view of M1 function. One can use regression analysis to 

identify the multiple parameters correlated with the activity of each neuron (Ashe and Georgopoulos, 

1994;Fu et al., 1995;Taira et al., 1996); the activity of any one neuron is of course correlated with some 

parameters better than others, but the presence of simultaneous correlations makes it impossible to 

determine what that neuron really encodes (Fetz, 1992). 

Is it then possible to make any coherent statement regarding the role of M1 in arm movement 

control, at least to a first approximation? Is there one parameter of motor behavior which, if encoded in 

the M1 population, would explain most available results? We argue that of all the parameters previously 

considered, the only one that can provide the basis for a coherent model of M1 is muscle activation. The 

present chapter summarizes a series of recent studies (Todorov, 2000a;Todorov et al., 2000;Todorov, 
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2002) as well as unpublished work in which we have developed a model of direct cortical control of 

muscle activation. 

1.1. The case for muscle-based encoding 

If one were to approach the M1 literature without a preexisting bias and search for the single idea that is 

most likely to lead to a simple yet successful quantitative model, which idea should one choose? We 

found the idea of muscle-based encoding to be the most promising candidate, for the following reasons: 

 Evidence for muscle control. M1 neurons and muscles display similar patterns of directional 

variation in their onset times and activation magnitudes (Scott, 1997). The distributions of preferred 

directions of both M1 neurons and muscles are roughly uniform in the natural posture, but become 

substantially elongated (along the same axis) when the arm is constrained to the horizontal plane (Scott 

and Kalaska, 1997;Scott et al., 2001). Increased muscle cocontraction is accompanied by increased M1 

activity (Humphrey and Reed, 1983); see also Section 3.6. M1 and muscle activity are synchronized in 

certain frequency bands (Conway et al., 1995) 

 Evidence against directional coding. Several studies have found systematic differences in M1 

activity between experimental conditions with identical movement directions in extrapersonal space but 

different joint configurations (Caminiti et al., 1991;Scott and Kalaska, 1995;Sergio and Kalaska, 

1998;Kakei et al., 1999). Such results clearly contradict the hypothesis of directional coding in 

extrapersonal space. The changes of M1 activity observed in most of these experiments are consistent 

with both muscle- and joint-based encoding, except for the wrist movement task used by (Kakei et al., 

1999) which quite convincingly ruled out a joint-based encoding (see also Section 7.3). Interestingly, 

neural activity in ventral premotor cortex (PMv) was not affected by arm posture (Kakei et al., 2001), 

suggesting that the directional coding hypothesis is much more applicable to PMv than M1. 

 Direct projections. Some M1 neurons (labeled cortico-motoneuronal, or CM, neurons) project 

monosynaptically to motoneurons (Fetz and Cheney, 1980;Lemon et al., 1986). If the M1 population 

encoded just one parameter and that parameter was not closely related to muscle activation, motoneurons 

would not be able to "decode" the descending signal correctly and this direct pathway would have no 

reason to exist. Note that although monosynaptic projections are a minority, there is an evolutionary trend 

for their percentage to increase – being most prominent in the hand muscles of humans. Therefore the 

existence of this pathway is not an "accident" that can be ignored.  

 Proprioceptive feedback. Most M1 neurons are affected at short latencies by proprioceptive 

feedback, so that imposed movement in the preferred direction suppresses the activity of the neuron  in a 

stretch-reflex-like manner (Evarts, 1981). The existence of this pathway indicates that the M1 output is 

compatible with such feedback, i.e. adding the two signals on the level of individual neurons produces a 



 

 - 3 -  

meaningful quantity. It is hard to imagine how the combination of abstract directional signals encoded in 

extrapersonal space, and proprioceptive feedback encoded in a muscle- or joint-related frame of reference, 

could be useful or even interpretable. 

 Evolutionary considerations. One would expect the general function of the spinal cord in 

primates, to the extent that it is used, to be related to functions it performed long before any supraspinal 

systems existed. The supraspinal systems most likely evolved to enhance those functions, by modulating 

the state of the spinal interneuronal networks in a way that helped them solve whatever problems they 

were already trying to solve(Loeb, 1999). The interpretation of abstract motor commands was not among 

these problems. A descending signal which modulates the state of the spinal networks should be 

compatible with the representation they use, and that representation is likely to be closely related to the 

pattern of muscle activation. 

 Computational considerations. While the motor system is clearly hierarchical, the division of 

labor implicit in the directional coding hypothesis is unlikely. According to that hypothesis the vast 

supraspinal system is dedicated to the rather trivial calculation of a three-dimensional vector, while all the 

difficult control problems (e.g. coordinating redundant nonlinear actuators, dealing with complex 

interaction forces, ensuring stability in the presence of delays and uncertainty) are left to the ancient 

spinal circuitry. 

1.2. Model overview 

As explained above there are plenty of reasons to adopt a muscle-based model of M1. The question is, 

how can such a model account for the correlations with various behavioral parameters that seem unrelated 

to muscle activation? The main contribution of our work is in answering that question. Here we outline 

the features of the model and explain intuitively how they help us account for the many disparate results. 

 M1 output. We focus exclusively on M1 neurons projecting to the spinal cord. Interneurons and 

output neurons projecting to other areas will not be modeled, since most of the arguments from Section 

1.1 do not apply to them. The activity of such neurons can be systematically different, and so by focusing 

on the M1 output we avoid some of the response diversity that a more complete model would have to 

explain. 

 M1-to-behavior mapping. We are only interested in the instantaneous activity of the M1 output 

neurons, and its causal relationship to the instantaneous motor behavior at some later point in time. All 

predictions regarding M1 will be derived by "inverting" that causal relationship (see Fig 1A). Motor 

planning, sensorimotor transformations, and transcortical feedback corrections are all enclosed in the 

black box labeled "brain" (Fig 1A) and do not concern us here. The  "brain" receives online feedback, 
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takes into account all goals, plans, expectations, preferences, etc. and somehow generates the M1 output. 

This pathway will not be used to draw any predictions, and so we do not need to model it. 

 Population analysis. Our goal is to explain average population (or subpopulation) responses 

rather than individual response types (Kalaska et al., 1989). Because of the redundancy in the M1-to-

muscle mapping, the same pattern of muscle activity can be generated with an infinite family of M1 

activation patterns. How the brain chooses one of them is an interesting question which we address 

separately in Sections 6 and 7. For the most part however we will not distinguish between M1 activity 

patterns that result in the same EMG pattern. 

Simplifications. We introduce a number of simplifications that allow us to avoid curve fitting and 

adhoc assumptions about poorly understood mechanisms (see Section 2). In particular, we use linear 

approximations to the spinal circuitry, muscle force production mechanisms, and kinematics of the 

multijoint arm. The effects of other descending systems are ignored, although there is evidence (Miller 

and Sinkjaer, 1998) that rubrospinal projections can be modeled similarly. Sensory feedback through 

spinal pathways is assumed to modulate the muscle activity generated by descending signals (see Section 

7). While such feedback modulation is very important for achieving stability, its effect is washed out in 

the trial-averaged analyses used in the M1 literature, and so we do not model it explicitly here. 

 Muscle state dependence. It is well established that for a fixed activation level, the force 

generated by a muscle varies with its length and velocity (Joyce et al., 1969;Zajac, 1989;Brown et al., 

1999). The force-length-velocity surface at maximum (tetanic) activation is illustrated in Fig 1B, using 

the state-of-the-art muscle model of (Brown et al., 1999); details in Table 1 and Section 2. Note that for 

the same activation level and within the physiological range of muscle lengths and velocities, the force 

output varies from almost 0 to above maximum isometric force (defined as 1). Clearly the neural circuits 

controlling muscle activation have to take this state dependence into account if the resulting behavior is to 

resemble the desired one even remotely. The M1 signal compensating for the state dependence illustrated 

in Fig 1B plays a central role in our model since it correlates with position and velocity – and thus 

explains the observations that appear most problematic. 

2. From M1 output to motor behavior 
The relationship between M1 output and motor behavior is no doubt complex. If we incorporate every 

detail whose existence is currently suspected the resulting model will probably have enough free 

parameters to fit every available observation. The usefulness of a model, however, comes not from 

incorporating all proposed mechanisms and fitting all existing data, but from illuminating the underlying 

principles whose interplay gives rise to, or at least can give rise to the data. Our strategy is to avoid free 

parameters and the curve fitting associated with them. We do so with the help of simplifying assumptions: 
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linearizing functions that are mildly nonlinear, assuming quantities that vary slightly to be constant, 

ignoring terms that tend to average out, linking together parameters that have similar values. Every 

simplification is justified when first introduced, with the exception of cosine tuning which is addressed 

separately in Section 6. 

It is important to realize that the simplifications themselves do not give rise to the phenomena we 

are trying to explain. Therefore our ability to reproduce these phenomena indicates that they arise from 

the underlying principle behind the model: direct cortical control of muscle activation taking into account 

the basic properties of the musculo-skeletal system. 

2.1. From M1 output to muscle activation 

Let t  denote time, ( )tc j  the mean firing rate of the thj  pyramidal tract neuron relative to its baseline, 

( )tai  the EMG activity of the thi  muscle relative to its baseline, ijw  the net effect that neuron j  has on 

muscle i , and d  the average delay between movement-related activity in M1 and movement onset1. 

Baseline is defined as the mean activity during posture in the center of the workspace. To relate M1 

output to muscle activation we will use the first-order model 

 ( ) ( ) ( )i ij j i
j

a t w c t d tε= − +∑  (1) 

where ( )i tε  denotes the effects of other descending systems and spinal feedback. We will not impose 

any restrictions on the pattern of weights ijw , i.e. each neuron can excite or inhibit any combination of 

muscles. The weights ijw  represent not only monosynaptic projections from pyramidal tract neurons to 

motoneurons, but a linear approximation to the input-output behavior of the spinal cord. Similarly the 

delay d  corresponds not only to transmission delays, but approximates the net effect of any low-pass 

filtering or recurrent processing in the spinal cord. 

Note that Eq 1 will be used to describe the relationship between M1 and muscle activity during 

natural voluntary behaviors such as reaching or pushing. During instructed delay periods, sleep, or after 

training the subject to control a cursor with signals recorded in M1 (Helms Tillery et al., 2001), the 

                                                      

1 Notation: x  is a scalar, x  is a column vector, Tx  is a transposed (row) vector , yxT  is the dot-product 

of x  and y , X  is a matrix, x�  and x��  are the temporal derivatives of x , x  is the vector length, X  is the 

matrix determinant, 1−X  is the matrix inverse,   xx =  for 0>x  and 0  otherwise, ( ) 1, =skδ  for sk =  and 0  

otherwise. 
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descending activity may somehow be gated at the spinal level. Anatomically the M1 output is not the only 

descending source of activation: there are other descending systems, and the pyramidal tract itself 

originates from multiple cortical areas (Dum and Strick, 1991). It is not yet known, however, whether the 

pyramidal tract neurons in premotor and supplementary motor areas behave more similarly to the mixed 

population in their respective area, or to the pyramidal tract neurons in M1 (in which case the present 

model applies to them as well). Recordings from the red nucleus (Miller and Sinkjaer, 1998) indicate that 

Eq 1 may be a reasonable approximation to the effects of other descending systems. It should also be 

noted that lesions in M1 produce more profound deficits than lesions in any other supraspinal motor area 

(Johnson, 1992), further justifying our emphasis on M1. As discussed above and in Section 7, the spinal 

feedback contributions are assumed to average out over repeated trials. 

2.2. From muscle force to endpoint force 

Let ( )tf i  be the force (tension) that muscle i generates, and ( )tie  the corresponding endpoint force in the 

two-dimensional workspace of the hand. While the direction of ( )tie  depends on joint configuration,  that 

dependence (see Fig 1A) is negligible for the small workspaces and stereotyped postures adopted in M1 

experiments, so we will ignore it. Then 

 ( ) ( )tft iii pe =  (2) 

where ip  is a constant 2D vector whose length determines the scaling from muscle force to endpoint 

force. Note that the present formulation ignores the effects of muscle forces causing redundant joint 

rotations. If we take this redundant subspace into account as outlined in (Todorov, 2000a), we could 

derive additional constraints on the M1 population activity (without affecting the constraints derived 

below). However M1 data has traditionally been analyzed in endpoint space, so these additional 

constraints could not be compared to existing experimental results. 

2.3. Arm dynamics in endpoint space 

Let M  be the 2x2 matrix expressing arm inertia in endpoint space, ( )textf  the endpoint force that the 

hand applies against external objects, and ( )tx  the hand position in endpoint space (the origin of the 2D 

coordinate system is defined at the center of the workspace). We will assume that changes in inertia are 

negligible for the small movement extents and velocities used in the M1 literature, and approximate the 

arm dynamics with an anisotropic point mass. Making explicit the dependence of muscle force on 

activation, length and velocity (the latter two being functions of x  and x� ), the endpoint dynamics is 
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 ( ) ( ) ( )( ) ( ) ( )tMttttaf
i

iii xfxxp ��� +=∑ ext,,  (3) 

We now encounter a redundancy problem: there are many more muscle activations ia  (and even 

more cell activations jc ) than constraints given by Eq 3. We can proceed in two ways: a) linearize the 

left hand side of Eq 3 to obtain a first-order approximation to the M1-to-behavior mapping; b) introduce 

further assumptions that resolve redundancy and allow us to use the detailed muscle model illustrated in 

Fig 1B. We will pursue the first approach (described in Section 2.4A) throughout this chapter. The second 

approach (described in Section 2.4B) will only be used when conclusions reached on the basis of the 

linearization might seem sensitive to details of the muscle model. 

2.4A. Using a linearized muscle model 

Assembling all ia ’s in the vector a , all jc ’s in the vector c , all if ’s in the vector f , all ijw ’s in the 

matrix W , and all ip ’s in the columns of the matrix P , Eq 3 can be written in matrix form 

 ( ) xfxxaf ��� MP += ext,,  (3a) 

Linearizing f  around the baseline ( ) 0000f =,,  yields an approximation to the left hand side of Eq 3a: 

( ) xxaxxaf �� BKPSP −−=,, .  Here K  and B  are the endpoint stiffness and damping by definition, and 

the scaling matrix 
a
f
∂
∂

=S  is diagonal because each muscle is only affected by its own activation. From 

Eq 1 we have ca PSWPS = , and so xxxfc KBMPSW +++= ���ext . 

We will now approximate PSW  with FU , where the thj  column vector ju  of the matrix U  is 

a 2D unit vector pointing in the same direction as the thj  column vector of PSW . Thus the thj  neuron 

activates a linear combination of muscles generating endpoint force in the direction ju . The 2x2 matrix 

( ) 1−
= TT UUPSWUF , chosen to minimize the norm of the approximation error FUPSW − , can be 

thought of as fitting an ellipse to the direction-dependent variation of the lengths of the column vectors in 

PSW . Since the scaling from firing rates to forces is arbitrary, we can assume without loss of generality 

that 1=F . Summarizing the derivation so far 

 ( ) ( ) ( ) ( ) ( )tKtBtMtdtFU xxxfc +++=− ���ext  (4) 

The 2x2 matrices FKBM ,,,  all reflect the geometry of the arm, in roughly the same way. 

Consider a 4-degree-of-freedom arm, with the elbow pointing down and the hand constrained to a 
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horizontal plane at about shoulder level. Endpoint inertia is clearly larger along the forward-backward y-

axis than the lateral x-axis. Stiffness and damping are known to be larger along the hand-shoulder axis 

(Tsuji et al., 1995), which in this configuration coincides with the y-axis. Assuming that the weights W  

and the activation-to-force scaling terms S  do not vary systematically with direction, the only anisotropy 

in F  comes from the matrix P  and is due to the fact that generating endpoint force along the y-axis 

requires joint torques of smaller magnitude2. Then the ellipse corresponding to F  is also elongated along 

the y-axis, and since the aspect ratios of the four ellipses are similar we will assume the four matrices to 

be proportional to each other: kFKbFBmFM === ,, . Since 1=F , the scalars kbm ,,  are the 

direction-averaged inertia, damping and stiffness. Multiplying Eq 4 by 1−F  yields 

 ( ) ( ) ( ) ( ) ( )tktbtmtFdtU xxxfc +++=− − ���ext
1  (5) 

Eq 5 is the relationship between M1 population activity c  and motor behavior xxxf ,,,ext ���  that 

we wanted to derive. The left hand side is the sum of neuronal activities jc  multiplied by the 

corresponding vectors ju , or in other words a Population Vector (Georgopoulos et al., 1983). Note that 

unlike the PV methods used in the M1 literature, the vector ju  we assign to neuron j is a force direction 

rather than a physiological preferred direction. These two directions however are similar (Fetz and 

Cheney, 1980). Even if the difference between them is substantial for some neurons, the PV defined in 

the M1 literature is an unbiased estimate of the quantity cU  as long as that difference is zero on average. 

Once we fix the parameters kbm ,, , and the aspect ratio of F , we can generate predictions regarding 

population vectors without resolving the redundancy in Eq 5. The parameter values we use everywhere: 

kg1=m , Ns/m10=b , m/N50=k , 1:2ratioaspect =F , are derived from the human 

psychophysics literature (see (Todorov, 2000a)). Since the model predictions depend on the relative rather 

than absolute magnitudes of kbm ,, , scaling these constant down to values appropriate for the monkey 

arm should not affect our conclusions. 

The constraint given by Eq 5 is sufficient to model the PV, but the redundancy mentioned earlier 

has not yet been resolved (i.e. Eq 5 does not tell us how individual neurons behave). Since several of the 

phenomena we want to address require such a model, we augment Eq 5 with the assumption of cosine 

tuning and obtain individual neuron responses 

                                                      

2 In other words, the Jacobian relating endpoint force to joint torque is anisotropic. 
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 ( ) ( ) ( ) ( )( ) ( ) tbtktmtFdtc T
j

T
j

j xuxxf
u

��� +++=− −
ext

1

2
 (6) 

This equation is essentially the dot-product of ju  with the right hand side of Eq 5 (resulting in cosine 

tuning). The reason we treat the damping term differently is that muscle damping is known to be 

asymmetric – predominantly present during shortening (see Fig 1B). The truncated cosine term ( ) tT
j xu �  

implies that neuron j compensates for damping only when the hand is moving within 90 deg of its force 

direction ju  (corresponding to shortening of the muscles it activates). 

Note that Eq 6 prescribes an “ideal” response which does not capture the diversity of real 

neuronal responses (Kalaska et al., 1989), and should be thought of as the average response of all cells 

whose force directions are close to ju . To obtain an explicit model of response variability, we replace the 

endpoint impedance parameters kbm ,,  in Eq 6 with cell-specific jjj kbm ,, . These constants are 

sampled independently from uniform distributions between zero and twice the average value: 

[ ]2;0∈jm , [ ]20;0∈jb , [ ]100;0∈jk . Multiplying by 2  and adding a cell-specific baseline jc  

sampled uniformly from [ ]34;0∈jc  yields an average response of 45 Hz in the preferred direction and 

5Hz in the opposite direction, which is close to the range observed experimentally (Crammond and 

Kalaska, 1996). 

Eq 6 can also be used to analyse 1-degree-of-freedom movements, or to compute the average 

firing of all neurons in their preferred direction ( Au ) and the direction opposite to it ( Nu ). In either case 

there are only two directions of interest ( Au  and Nu ), which simplifies Eq 6 to 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )tkxtxmtfdtc

txbtkxtxmtfdtc

N

A

++−=−

+++=−

��

���

ext

ext

2
1

2
1

 (7) 

2.4B. Using a detailed muscle model 

We now return to Eq 3 and rederive the M1-to-behavior mapping using the detailed muscle model  

illustrated in Fig 1B. That model is identical to (Brown et al., 1999), except for the effects of sag, 

yielding, low-pass filtering and tendon elasticity which we ignore. The muscle force ( )vlaf ,,  given in 

Table 1 is a function of activation a, length l, and velocity v. All parameters are set to the average values 

for fast-twitch and slow-twitch muscles, which account for data from a wide range of experiments (Brown 
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et al., 1999). The activation a is normalized so that 0=a  corresponds to the recruitment threshold and 

1=a  to the frequency at which the force output saturates. Length l and velocity v are expressed in units 

of 0l  and sec/0l , where 0l  is the length at which maximum isometric force is generated. Force output 

f  is in units of maximum isometric force. 

The results from this section will only be applied to movement tasks where the directional 

asymmetries cancel each other (see Eq 5), so Eq 3 becomes 

 ( ) ( )( ) ( )( )( ) ( )tmtvtlatafe
i

iiiiii xxxp ��� =+∑ ,,max  (8) 

The vectors ip  now have unit length, il  and iv  denote the length and velocity of muscle i , ia  is the 

baseline activity corresponding to posture at the center of the workspace, and maxe  is the maximum 

isometric force each muscle can contribute in endpoint space. The baseline ia  is needed here because the 

muscle model is nonlinear and requires the total muscle activation. 

The direction of hand movement for which muscle i shortens most rapidly is very close to the 

direction ip  in which it produces endpoint force, and its orientation varies little over a small workspace 

(see Fig 1A). We will approximate3 this direction as being constant and equal to the (constant) line of 

action ip . Then the length il  is proportional to the projection xp T
i  of the endpoint position x  on ip . 

The relationship between endpoint and muscle kinematics becomes 

 
xp

xp

�T
ii

T
iii

hv

hrl

−=

−=
 (9) 

The negative sign is due to the fact that muscles shorten when the hand moves in the direction in which 

they produce force. The constants ir  specify the muscle lengths when the hand is at the center ( )0,0=x  

of the workspace, and h  is a  scaling constant that relates endpoint distance to muscle length. 

To resolve the redundancy in Eq 8 we will again use the assumption of cosine tuning. The total 

force x��m  that needs to be generated will be distributed among individual muscles as 

 ( )  xpx ���� T
ii mco

en
dis 21

max

+=  (10) 

where n  is the number of muscles, the cocontraction level co  is the scalar sum of the magnitudes of 

endpoint forces contributed by individual muscles, and the dot-product xp ��T
i  corresponds to cosine 

                                                      

3 This approximation is very similar to the linearization used in (Mussa-Ivaldi, 1988). 
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tuning. For a uniform distribution of ip ’s and co  large enough to ensure that the functions ( )x��idis  are 

full cosines, it can be verified that setting ( )x��ii disf =  satisfies Eq 8. 

 Given motor behavior xxx ,, ��� , we can use Eq 9, 10 to compute muscle forces ( )x��ii disf = ,  

lengths ( )xil , and velocities ( )x�iv . Let ( )iii vlfact ,,  be the activation level for which a muscle at length 

il  and velocity iv  generates force if . This function is uniquely defined because muscle force increases 

monotonically with activation for fixed length and velocity. The function act  is found by inverting the 

muscle model f  given in Table 1, i.e. solving numerically the equation ( ) iii fvlactf =,,  with respect to 

act. The baselines, and time-varying activations relative to the baselines can now be computed 

 

( ) ( )( ) ( )( ) ( )( )( ) iiiii

i

atvtltdisactta
en
coacta

−=









=

xxx ��� ,,

0,0,
max  (11) 

Eq 11 is the relationship between muscle activation and motor behavior that we wanted to derive. 

The population vector computed from muscle activations is ( )ta
i

ii∑p . Under the assumption that 

weight magnitudes ijw  do not vary systematically with direction (see Section 2.4A), it can be verified 

that the population vector computed from cell firing rates is identical (apart from the delay d ). 

The parameters of the model were set as follows: mass kg1=m , number of muscles 10=n , 

maximum endpoint isometric force per muscle N30max =e , scaling constant 6.0=h  mapping a m1  

range of motion in x  to a [ ]3.1;7.0  physiological range of normalized muscle lengths. The cocontraction 

level was adjusted to N30=co , which resulted in empirical stiffness m/N76=k  and damping 

m/Ns9=b . The empirical stiffness and damping were identified via perturbation experiments applied 

to the model. Note that unlike the linearized model in Section 2.4A, stiffness and damping cannot be set 

independently here. Instead they are implicitly determined by the time-varying muscle activations 

computed in Eq 11. The muscle lengths ir  at the center of the workspace were chosen randomly in the 

interval [ ]1.1;9.0 . Ten sets of random ir ’s were generated and the results averaged over the 10 simulation 

runs. 

3. Basic results 
Many experiments have been designed to identify what parameter of motor behavior is being represented 

in M1. Instead of a clear-cut answer, however, this effort has produced a long list of correlations. Our 
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model predicts that such a list should indeed accumulate, because muscle activation is correlated with all 

the candidate representations that have been considered. 

3.1. Position 

The postural activity of individual neurons predicted by the model (Eq 6) is illustrated in Fig 2A, for 8 

hand positions arranged in a circle around the center of the workspace. The gradient of the response 

surface is oriented along the neuron's preferred direction, and the slope is determined by the amount of 

stiffness that needs to be compensated. Such monotonically increasing, and roughly linear postural 

responses have been well documented (Georgopoulos et al., 1984;Kettner et al., 1988). 

3.2. Load 

The predicted M1 activity in isometric force conditions (Fig 2B) is a linear function of the force being 

generated. In the 1-dof case (Eq 7) the response increases linearly with force magnitude for neurons 

whose force vector u  is within 90 deg of the isometric force extf , and decreases otherwise. In the 2-dof 

case (Eq 6) the response varies linearly with the cosine of the angle between u  and extf . Such 

monotonically increasing, and roughly linear load responses have been well documented (Fetz and 

Cheney, 1980;Kalaska et al., 1989). 

3.3. Movement 

The average activity of all M1 neurons in their preferred and opposite directions (Eq 7) is illustrated in 

Fig 2C, for a typical 10 cm movement with 500 msec duration and bell-shaped speed profile. The M1 

signal predicted from the linearized muscle model (left) is the sum position, velocity, and acceleration 

terms weighted by the direction-averaged stiffness, damping, and inertia. When the detailed muscle model 

is used instead (Eq 11) the individual contributions of these terms can no longer be separated. The 

composite M1 signal however remains similar (right). 

The predicted movement response closely resembles the speed profile and varies with direction – 

explaining why the activity of M1 neurons has often been interpreted as an encoding of movement 

direction (Georgopoulos et al., 1982) or velocity (Schwartz, 1994). In our model this phenomenon occurs 

simply because the damping that needs to be compensated dominates the other terms making up the M1 

response. Note that the time-varying fluctuations relative to baseline are different in the preferred and 

opposite directions, which is a direct consequence of the fact that muscle damping is asymmetric. The  

asymmetry seen in Fig 2C has been observed experimentally (Kalaska et al., 1989;Crammond and 

Kalaska, 1996;Moran and Schwartz, 1999b). In comparison to the predicted response during an isometric 



 

 - 13 -  

force ramp, the signal in Fig 2C has a more elaborate temporal structure – in agreement with experiments 

comparing movement and isometric force conditions (Sergio and Kalaska, 1998). 

 One might wonder why the predictions in Fig 2C do not resemble the classic triphasic burst 

pattern of muscle activity. The reason is that this pattern is typical for large ballistic movements (Brooks, 

1986), which are much faster than the movements studied in the M1 literature. If we apply our model (Eq 

7) to a movement which is x  times faster, the magnitude of the position component remains the same, the 

velocity component scales by x , and the acceleration component scales by 2x . Thus for faster 

movements the model predicts that the acceleration component of the M1 signal will become more 

pronounced, causing PV reversals consistent with the triphasic burst pattern. 

 One might ask whether maintaining a position away from the center always requires a substantial 

increase of agonist activity (as shown in Fig 2C). This is indeed a side-effect of the linearized model 

where muscle stiffness is constant, but is no longer true in the detailed muscle model. As Fig 1B shows, 

the stiffness (i.e. partial derivative in the “length” direction) of realistic muscles is activation-dependent. 

Therefore the peripheral position can be maintained by substantially lower muscle activations. In the 

model, reducing muscle cocontration is accomplished by reducing the cocontraction parameter co in Eq 

10 and 11, and the prediction is that the overall activity in M1 will also decrease. The relation between 

overall M1 activity and muscle cocontraction is further discussed in Section 3.6. 

3.4. Movement with external load 

If a constant load is added during movement, the model prediction (Eq 6) is the sum of the corresponding 

movement and load responses – as observed experimentally (Kalaska et al., 1989). The predicted 

response as a function of movement and load direction is shown in Fig 2D. 

 If an isotropic inertial load extm  is added during movement, the model prediction (Eq 6) is the 

sum of the movement response and the term ( )tmF x��ext
1− . This added term accentuates the acceleration 

dependent component of the signal shown in Fig 2C, especially in lateral directions where 1−F  is larger. 

Thus our model predicts that when monkeys move with inertial loads of increasing magnitude, reversals 

of PV direction during the movement will begin to be observed – first in lateral movement directions. 

This is indeed the case (Kalaska et al., 1992). 

3.5. Population vectors 

Fig 2E shows the population vectors (Eq 5) for different postures, movements, loads, and movements in 

the presence of a constant load. In movement conditions the PV prediction has been averaged over the 
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movement time. For posture and movement, the PV successfully recovers the target direction as it does in 

experimental data (Georgopoulos et al., 1983). 

This is no longer the case during load compensation and movement with load. The load 

compensation PV is systematically distorted, so that vectors pointing in lateral directions are elongated 

and vectors pointing at 45 deg are rotated towards the lateral axis. These distortions result from the 

anisotropy of the matrix 1−F  in Eq 5 (which captures the anisotropy of the Jacobian transformation 

relating endpoint forces and joint torques). Very similar distortions in load PVs have been observed 

experimentally (Kalaska et al., 1989). It has also been observed that PVs computed in a mixed movement 

and load condition (Kalaska and Crammond, 1992) completely fail to reconstruct the movement direction, 

and show the same pattern of distortions as Fig 2E. This failure of the PV in the model is of course due to 

the added load-related signal. 

3.6. Muscle cocontraction 

A number of studies have found systematic differences in M1 activity recorded during movements with 

identical directions made under varying experimental conditions (Caminiti et al., 1991;Scott and Kalaska, 

1995;Kakei et al., 1999;Li et al., 2001). While these studies contradict the hypothesis of abstract 

directional encoding and are generally consistent with our model (see Sections 1 and 7), they do not point 

directly to a muscle-based representation in M1. To provide direct evidence for a muscle-based 

representation, one would have to compare experimental conditions in which both kinematic and kinetic 

parameters are identical but muscle activity is different. It is possible to design such an experiment by 

instructing, training, or otherwise provoking a subject to modulate the level of muscle cocontraction. 

Apart from some interesting early results (Humphrey and Reed, 1983), the control of muscle 

cocontraction has received surprisingly little attention in the M1 literature. 

 We analysed the changes in M1 activity associated with different levels of muscle cocontraction, 

in both monkeys and humans (Todorov et al., 2000). Monkeys trained in force field adaptation 

experiments (Li et al., 2001) show increased muscle cocontraction during the movement time, even in the 

baseline condition before any forces are applied. In that condition their movements are kinematically and 

kinetically indistinguishable from the typical movements that monkeys make in center-out reaching tasks, 

yet the M1 activity is markedly different. Both the directionally tuned and non-tuned populations of 

neurons increase their firing rates after movement onset, for all movement directions. In contrast, previous 

studies (Crammond and Kalaska, 1996;Moran and Schwartz, 1999b) have found that after movement 

onset, responses increase in the preferred direction and decrease in the anti-preferred direction – as our 
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model predicts in the absence of cocontraction. Thus increased muscle cocontraction is accompanied by a 

non-specific increase of activity in M1. 

We also conducted an fMRI experiment with human subjects asked to cocontract their forearm 

and wrist muscles while maintaining posture. Preliminary results were described in (Todorov et al., 2000). 

In agreement with the monkey data, activation over M1 was significantly elevated in the cocontraction 

condition compared to rest in the same posture. Since subjects were not producing movements or 

isometric forces in any direction, the observed change in M1 activity cannot correspond to any directional 

command. This converging evidence from monkeys and humans provides strong evidence against the 

directional coding hypothesis, and fits naturally in our framework. 

4. Trajectory reconstruction 
Given the correlations between M1 activity and various behavioral parameters illustrated in Fig 2, it 

should be possible to reconstruct the movement trajectory more or less accurately from a population of 

M1 responses. The potential for neuroprosthetic applications has recently generated substantial interest in 

this topic (Wessberg et al., 2000;Helms Tillery et al., 2001). Here we propose a simple reconstruction 

method that takes advantage of the multiple correlations. We also explain in the framework of our model 

why trajectory reconstructions based on the Population Vector hypothesis (Schwartz, 1994;Moran and 

Schwartz, 1999a) are systematically distorted. 

4.1. Reconstruction methods 

Since the M1 signal most closely resembles movement velocity (Fig 2C), the simplest viable method is to 

integrate the PV over time – yielding reasonably accurate trajectory reconstruction (Schwartz, 

1994;Moran and Schwartz, 1999a). We applied this method to the PV predicted by our model (Eq 5) in 

the spiral movements used experimentally (1.5-7.5 cm spiral radius, traced in 2.5 sec according to the 

3/2  power law). The reconstruction we obtained (Fig 3A) is very similar to (Schwartz, 1994;Moran and 

Schwartz, 1999a), and displays the same distortion near the center of the spiral (the reason for the 

distortion is discussed later). An alternative method that has been studied is fitting a multilinear regression 

model (or a neural network) that maps cell firing rates to hand trajectories (Wessberg et al., 2000). 

These methods implicitly assume that cell firing contains information about a single movement 

parameter: velocity in (Schwartz, 1994;Moran and Schwartz, 1999a) and position in (Wessberg et al., 

2000). Empirically this is not the case, and therefore it is possible to develop better methods taking 

advantage of the multiple correlations that have been documented (as well as the regularities of hand 

kinematics). Optimal reconstruction can be achieved by a Bayesian method which involves: i) a 
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generative model of how neural activity depends on arm state; ii) a dynamic model predicting the current 

arm state from the previous one; iii) a recursive estimator that computes the posterior distribution of the 

arm state given the distribution inferred previously and the current neural activity. Although steps towards 

building such a method are already being taken (Gao et al., 2001), this is a difficult estimation problem 

and the optimal solution is not likely to be found in the immediate future. 

 Here we propose a simple reconstruction method which is related to PV integration (Schwartz, 

1994) but also takes advantage of the correlations with hand position and acceleration (or load). 

According to our model (Eq 5) the population vector ( )dtU −c  can be interpreted as the force acting on a 

point mass that moves in a visco-elastic environment. Therefore we can reconstruct the hand trajectory by 

simulating such a point mass and driving it with the (instantaneously computed) population vector. The 

state of the simulation is our prediction regarding the state of the hand. As in the PV integration method, 

the initial state has to be known. Endpoint impedance and external loads also have to be known (or fitted 

to optimize performance). 

To assess the performance of our method, we generated a synthetic database containing 200 

minimum-jerk trajectories (100 straight, 100 curved) with 300-600 msec duration and 5-10 cm extent. 

Each trajectory was executed in 4 dynamic conditions: normal, external load, external friction, external 

spring. For each execution we simulated the responses of 100 Poisson-spiking cells with mean firing rates 

given by Eq 6 (using the model of response variability), binned the spike data in 20 msec bins, and 

smoothed it with a 4th order Butterworth filter whose parameters were optimized separately for each 

reconstruction method. Fig 3B shows that the reconstruction error of our method (Dynamic Simulation) is 

lower than multilinear regression. As expected, prediction error decreases with the number of cells in the 

dataset. Note that our method generates simultaneous predictions about position and velocity, while the 

regression model is different in each case. We do not show an explicit comparison to the PV integration 

method because it is a special case of multilinear regression applied to velocity prediction. 

The reconstruction method described here may appear to be tailored to our model of M1 

responses, but this is not quite true. It is a very generic method, applicable to any population that (for 

whatever reason) happens to correlate with position, velocity, and force. Such simultaneous correlations 

in M1 are an empirical fact, and therefore they can be taken advantage of by using similar reconstruction 

methods. 

4.2. Variable timelag 

The distortion seen in Fig 3A and (Schwartz, 1994;Moran and Schwartz, 1999a) is due to an interesting 

phenomenon described by (Schwartz, 1994). The timelag between the M1 population vector and hand 
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velocity is not constant, but increases with the curvature of the hand path. The increase observed 

experimentally is quantitatively similar to the model predictions (Fig 3C and 3D) in the spiral movements 

from Fig 3A. In the linearized muscle model (Eq 5) this increase can be computed analytically (Todorov, 

2000a). The answer is ( )( ) ωωω ///atan bkm − , where the angular velocity ω  is related to the 

curvature κ  by the 3/2  power law 3/212κω = , and the scaling constant sec/cmrad12  is extracted 

from the data in (Schwartz, 1994). 

 An intuitive explanation of why the model produces this effect is given in Fig 3C (top). In the 

outer part of the spiral the curvature is small (thus the acceleration component x��m  is small), while the 

distance from the center of the workspace is large (thus the position component xk  is large). As a result 

the PV direction is biased in a way that matches the direction of hand movement at some earlier point in 

time (i.e. the PV appears time-advanced). In the inner part of the spiral the interplay between the position 

and acceleration components causes the opposite bias, making the PV appear time-delayed. Note that the 

instantaneous speed in the inner and outer parts of the spiral is also different; this is not visible in the 

intuitive plot but is taken into account in the analytical calculation.  

Our explanation of the variable timelag phenomenon (Todorov, 2000a) has been challenged 

(Moran and Schwartz, 2000) on the basis that the model is too simple. It is not at all clear how the 

simplifications we introduced could cause a phenomenon so similar to the one observed experimentally, 

but to rule out that possibility we have repeated the analysis with the detailed muscle model (Todorov, 

2000b). Fig 3D shows the timelag between the PV and hand movement direction computed from Eq 11. 

The four parameters of the detailed model were each varied by a factor of 2, demonstrating the robustness 

of the phenomenon. In one simulation we added gravity compensation, which caused fluctuations of the 

curvature-timelag function similar to those observed experimentally (Moran and Schwartz, 1999a) but did 

not alter its underlying shape. It is not surprising that the detailed and linearized muscle models produce 

almost identical results: the variable timelag phenomenon in the detailed model is due to the 

compensation for visco-elasticity, and the linearized model captures that visco-elasticity to first order. 

5. Evidence for direction encoding? 
According to the hypothesis of directional control M1 encodes predominantly the direction, rather than 

the magnitude, of movement velocity (Georgopoulos et al., 1982) and isometric force (Taira et al., 

1996;Ashe and Georgopoulos, 1994). Apart from the damping asymmetry in Eq 5, 6, 7 (which makes the 

encoding of speed more difficult to detect) our model treats velocity and force as vectors whose direction 

and magnitude are nowhere separated. Thus it is important to examine in detail the results that have been 
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interpreted as encoding of direction irrespective of magnitude. After examining 6 such results (see 

below), we conclude that none of them is convincing evidence for direction encoding and in fact they are 

all consistent with our model. 

Note that the magnitude of both velocity (Schwartz, 1994) and force (Fetz and Cheney, 1980) is 

clearly being encoded in M1. So the question we are asking here is whether the encoding of direction 

dominates the encoding of magnitude, in a way inconsistent with treating either force or velocity as a 

vector. 

5.1. Force magnitude versus direction 

Let k  denote the trial number, ( )kr  the magnitude of the 3D isometric force vector ( )kextf  produced by 

the monkey, ( ) ( ) ( )kzkykx ,,  the coordinates of the unit vector which points in the same direction as 

( )kextf , and ( )kmfr  the rate at which a given neuron fires in trial k . To assess the relative contributions 

of force magnitude and direction to the firing rate of that neuron, it might seem reasonable to compare the 

two regression models 
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For 79% of the M1 neurons studied by (Taira et al., 1996) only regression model (D) provided a 

significant fit. Can we then conclude that 79% of the neurons in M1 do not encode force magnitude, and 

if we reach such a conclusion how can we reconcile it with earlier studies (Fetz and Cheney, 1980) 

showing the opposite? 

 All we can conclude from the results of (Taira et al., 1996) is that the majority of M1 neurons do 

not encode force magnitude in the way prescribed by regression model (M). Note however that model 

(M) prescribes a rather unnatural encoding of magnitude: the response of the neuron is supposed to 

increase when the force magnitude increases, even when the force direction is opposite to the neuron’s 

preferred direction. Consider instead a more natural encoding (Eq 6) where the response of the neuron is 

simply the dot-product of its preferred direction and the force vector. Geometrically such a response is a 

plane (Fig 4A left). The regression models used by (Taira et al., 1996) attempt to fit the surfaces shown in 

Fig 4A (right) to M1 data. If M1 neurons encode force as we predict, regression model (D) would clearly 

provide a significant (although not perfect) fit, while regression model (M) would not fit at all. We have 

confirmed this using synthetic responses generated from Eq 6 (Todorov, 2000a). 
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5.2. Bias versus dynamic force 

To assess the relative contributions of static and dynamic isometric force, monkeys were trained to 

maintain a static (bias) force in a specified direction and then produce an additional (dynamic) force pulse 

in the direction of a randomly chosen target (Georgopoulos et al., 1992). The finding that the preferred 

direction for dynamic force does not depend on the direction of bias force (and vice versa) was taken as 

evidence that bias and dynamic forces are somehow encoded separately in M1. This finding was 

illustrated with a plot almost identical to Fig 4B. 

 Our model predicts the same effect (Fig 4B) without explicitly separating bias and dynamic force. 

Consider a neuron whose firing mfr  is given by the dot-product of its preferred direction u  and the total 

isometric force totalf . Since totalf  is the sum of dynamicf  and biasf , we have 

( ) biasdynamicbiasdynamictotal fufuffufu TTTTmfr +=+==  

If we now fix biasf  and determine the preferred direction by varying dynamicf , the term biasfuT  will simply 

act as a baseline and the preferred direction will be u . If we change the direction or magnitude of biasf  

(or remove it completely) and repeat the same procedure, the only difference will be in the baseline and 

so the preferred direction will remain unchanged. The same holds for fixing dynamicf  and computing the 

preferred direction with respect to biasf . 

5.3. Cell classification 

Although it is clear that the responses of individual neurons are correlated with multiple movement 

parameters, one could classify neurons according to the movement parameter showing the strongest 

correlation. This was done in a 2D movement task (Ashe and Georgopoulos, 1994) where the time-

varying mean firing rate of each neuron was correlated with target direction (which does not vary within a 

trial), hand position, velocity, and acceleration. The responses classified as direction-related were most 

common (47%) while the acceleration-related responses were least common (6%). Does this finding 

contradict our model which contains no explicit representation of movement direction? The answer turns 

out to be negative: the same classification scheme applied to Eq 6 (with response variability) yields up to 

30% direction-related, and only 2% acceleration-related responses. 

How can a seemingly reasonable classification scheme find a large percentage of direction-related 

responses in a model without any explicit encoding of target direction? This is possible because a 

weighted sum of position, velocity and acceleration (Eq 6) does not necessarily resemble any one of these 

signals – as illustrated in Fig 4C. The family of synthetic response types given by Eq 6 is parameterized 
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by the cell-specific constants jjjj ckbm ,,, . The baseline and overall scale do not affect the outcome of 

the classification, so it is sufficient to study the family of responses parameterized by jj mk /  and 

jj mb / . Each point in that two-parameter family corresponds to a response type, one of which is shown 

as an inset in Fig 4C. The classification boundaries induced by the procedure of (Ashe and Georgopoulos, 

1994) are marked with thick lines, while the correct classification boundaries (correct classification is 

computed in the model by identifying the component signal with largest contribution) are marked with 

thin lines. The correlation-based classification boundaries are substantially different from the correct 

ones. In particular, a direction region (black lines) which should not exist has been created. This region is 

centered around the point where the correct boundaries meet, which corresponds to the synthetic response 

type most difficult to classify as either position, velocity, or acceleration-related. The correlation-based 

procedure is misclassifying the responses in this region as “directional” simply because they do not fit 

well in any of the alternative categories. For example, the response in the middle of the misclassified 

region resembles the velocity profile in the preferred direction and the acceleration profile in the opposite 

direction. 

The results in Fig 4C are obtained using the mean firing rates given by Eq 6, and do not reflect 

any classification biases due to data transformations. Smoothing single-trial spike trains can cause further 

biases as demonstrated on synthetic data (Todorov, 2000a). It was shown (Georgopoulos and Ashe, 2000) 

that smoothing does not affect the results of (Ashe and Georgopoulos, 1994), but that may happen in 

other datasets. 

A deeper problem with classifying cells into discrete categories is that even if we had access to 

the correct classification, it is likely to change between task conditions. That problem is illustrated in Fig 

4C where the dashed lines show the correct classification boundaries for a two times faster movement. As 

explained in Section 3.3, executing the movement faster increases the relative contribution of the 

acceleration component, shifting the classification boundaries substantially. What does it mean then to 

label a cell as “velocity-related”, if it can become “acceleration-related” in a faster movement, “position-

related” in a slower movement, and “direction-related” in a condition where the response is too complex 

to fit in any of the alternative categories? 

5.4. Phasic responses 

The simple relationship between M1 and EMG activity given by Eq 1 does not strictly hold, as (Fetz et 

al., 1989) showed by averaging the activity of all corticomotoneuronal cells and muscles they recorded 

(Fig 4D). In particular, the M1 response at the onset of an isometric force ramp is more phasic than 

muscle activation. Is this evidence for abstract directional encoding? The answer is obviously negative. 
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As Fig 4D illustrates, EMG activity is more phasic than joint torque, just like M1 activity is more phasic 

than EMG activity. If we agree to interpret such differences as evidence for directional encoding, we must 

conclude that muscle activation carries an abstract directional component – which is quite absurd. The 

EMG-force difference is to be expected given that muscles act as low-pass filters (Zajac, 1989;Brown et 

al., 1999). This suggests a similar explanation for the M1-EMG difference: if the processing in the spinal 

cord (which we approximated with a fixed delay in Eq 1) has the effect of a low-pass filter, the 

descending M1 signal has to be more phasic in order to generate the necessary EMG activity. The black 

lines in Fig 4D show that the M1 signal given in (Fetz et al., 1989) can be filtered and thresholded to 

yield a close match to the EMG signal, and filtered again (using the nonlinear muscle filter from (Zajac, 

1989)) to match the force trace. 

An alternative explanation is that the phasic M1 signal serves a “priming” role such as bringing 

near threshold the spinal networks that activate the group of agonist muscles. The difference between a 

signal designed to compensate the effects of low-pass filtering and a signal designed to overcome 

thresholds is that the former should always be present, while the latter should only be present around the 

onset of EMG activity. The fact that phasic responses have not been reported in drawing tasks of longer 

duration (Moran and Schwartz, 1999a;Schwartz, 1994) makes the priming explanation more likely. 

 Note that phasic responses found in movement tasks (Kalaska et al., 1989) are most common in 

superficial layer neurons which we are not concerned with here (since they do not project to the spinal 

cord). This may explain why recordings from a mixed M1 population show an unusually strong phasic 

component, leading to a large population vector for dynamic force and an almost nonexistent population 

vector for bias force (Georgopoulos et al., 1992). The latter result however is difficult to interpret: it is not 

clear how the population vector method could fail to reconstruct the bias force given that the majority of 

M1 neurons were significantly tuned for bias force (Georgopoulos et al., 1992). One possible explanation 

for this puzzling result is that the preferred directions for dynamic force (which were used in computing 

the bias force population vector) were not sufficiently close to the preferred directions for bias force 

(which should ideally be used). Even if the difference between dynamic and bias preferred directions 

averaged over the population is zero, the bias population vector computed in this way scales down by an 

amount related to the circular variance of the distribution of differences. 

5.5. Cell versus muscle tuning modulation 

To assess how directly M1 neurons control muscles, one can compute the ratio of maximal-to-minimal 

activation (which is a measure of directional modulation) and compare these ratios for M1 neurons and 

muscles. It has been shown that M1 tuning curves are less modulated by the direction of bias force than 

muscle tuning curves are (Georgopoulos et al., 1992). Is that finding inconsistent with Eq 1? Not at all, in 
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fact such a difference is to be expected if M1 output controls the activation of muscle groups directly. 

One possible mechanism is illustrated in Fig 4E: if we have just two neurons driving two muscles with 

both excitatory and inhibitory weights, an M1 tuning modulation of 2:1 can be transformed into a muscle 

tuning modulation of 8:1. Suppression of muscles pulling opposite to the neurons’ preferred direction – 

which is essential for this mechanism – has been documented (Fetz and Cheney, 1980). Another 

mechanism that can change the tuning modulation is simply the subtraction of some “baseline”, which 

physiologically could correspond to descending activity that results in subthreshold spinal activation. If 

we modify the setup in Fig 4E to have only excitatory projections and subtract a baseline of 4, an M1 

tuning modulation of 2:1 can be transformed into a muscle tuning modulation of 6:1. Therefore  

differences in tuning modulation are consistent with our model. 

5.6. Temporal multiplexing 

An interesting possibility suggested by (Fu et al., 1995) is that the nature of the M1 encoding changes in 

different phases of the movement (although it is not clear what “phase” means in continuous movements 

of longer duration). In the case of reaching it was shown that M1 activity is best correlated with target 

direction around movement onset, and correlations with other parameters (such as target location and 

distance) peak later in the movement (Fu et al., 1995). Does that imply an encoding of target direction in 

extrapersonal space around movement onset? It does not, for two reasons. 

The first explanation (already mentioned in Section 5.4) is that M1 may have to send a signal that 

brings spinal neurons to their thresholds. This signal will depend on which muscle groups need to be 

activated (and that depends on the movement direction) but will not be affected by how far the target is. 

Note that varying the arm posture (Scott and Kalaska, 1997) should affect such a compensation signal, so 

it can be distinguished experimentally from an abstract direction encoding. 

The second explanation is even simpler, in the sense that it does not require additional 

assumptions. In the study of (Fu et al., 1995) monkeys made movements of different extent in each 

direction. As expected from Fitt’s law, both the duration and speed of the movement scaled with distance. 

Such scaling (Fig 4F) tends to make the initial portions of the trajectories indistinguishable, i.e. it is 

difficult to tell how far the indented target is given the arm kinematics around movement onset. Therefore 

our model (Eq 6) predicts a weak correlation with target distance or location at the beginning of the 

movement, and a stronger correlation with target direction – see Fig 4F. The details of the partial 2R  

calculation can be found in  (Todorov, 2000a). 
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6. Cosine tuning 
Cosine tuning of both M1 neurons (Georgopoulos et al., 1982;Kettner et al., 1988;Kalaska et al., 

1989;Caminiti et al., 1991) and muscles (Turner et al., 1995;Herrmann and Flanders, 1998;Hoffman and 

Strick, 1999) has been observed repeatedly. The robustness of this phenomenon suggests that cosine 

tuning curves must be “appropriate” in a rather fundamental way, yet a satisfactory explanation is lacking. 

In a historical context dominated by single-joint studies one could have interpreted the broad directional 

tuning of M1 neurons as a principle of cortical computation. But the fact that muscles (as well as muscle 

spindles) have the same tuning curves as cortical neurons suggests that the explanation is more likely to 

involve known peripheral properties rather than unknown computational principles (see also Section 7.1). 

Muscle length and velocity vary with the cosine of hand displacement and velocity (Eq 9) as first 

pointed out by (Mussa-Ivaldi, 1988). That would of course explain cosine tuning of spindle afferents, but 

is it an adequate explanation of cosine tuning in the motor output? We do not believe so, for the following 

reasons: i) cosine tuning is present in isometric force tasks and before movement onset; ii) muscle 

preferred directions can be systematically different from their lines of action (Cisek and Scott, 

1998;Hoffman and Strick, 1999); iii) many tuning curves are sharper than cosine (Hoffman and Strick, 

1999;Amirikian and Georgopoulos, 2000); iv) the arm musculature is redundant and so any set of net 

joint torques can be achieved with an infinite variety of EMG patterns (i.e. each muscle does not have to 

compensate for its own visco-elasticity or mimic the activity of its own spindle afferents). 

Why is it then that the motor system tends to choose one out of the infinitely many activation 

patterns which would generate the same behavior? We have recently argued that the apparent redundancy 

is only due to the traditional emphasis on average behavior (see also (Loeb, 2000)). If factors such as 

robustness to noise and fatigue are taken into account, it can be shown that cosine tuning is the unique 

muscle activation pattern that optimizes expected performance. Observed deviations from cosine tuning 

also fall out of this minimization (Todorov, 2002). This argument is summarized below. 

6.1. Consequences of multiplicative noise 

It is well established that neuromotor noise is multiplicative, in the sense that the standard deviation of the 

net force increases linearly with its mean. Such scaling has been demonstrated for tonic isometric force 

(Sutton and Sykes, 1967;McAuley et al., 1997) as well as brief isometric force pulses (Schmidt et al., 

1979). These empirical results lead to a neuromotor noise model where each muscle contributes endpoint 

force with standard deviation σ  linear in the mean µ :  λµσ = . Incorporating this scaling law into a 

minimum variance model of trajectory planning provides an explanation of Fitt's law and the smoothness 

of arm trajectories (Harris and Wolpert, 1998). 
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The above scaling law has another interesting consequence which is the basis for our explanation 

of cosine tuning. Suppose we have two identical muscles pulling in the same direction, and we want them 

to produce average net force µ . If we activate only one muscle so that it generates average force µ , the 

variance of the net force will be 22µλ . If instead we activate both muscles so that each one of them 

generates average force 2/µ , the force output of each muscle will have variance 4/22µλ . Assuming 

uncorrelated noise the variance of the net force will be 2/22µλ , which is two times smaller! We have 

confirmed experimentally both the scaling law and the predicted noise reduction due to redundancy 

(Todorov, 2002). Fig 5A shows that the standard deviation of isometric grip force is linear in the mean. 

As predicted, the noise magnitude decreases when subjects use both hands (instead of the dominant hand 

alone) to generate the same instructed force. 

Thus it is advantageous to activate all muscles pulling in the direction of desired net force. What 

about muscles pulling in slightly different directions? If all of them are recruited simultaneously the noise 

in the net force direction will still decrease, but at the same time extra noise will be generated in 

orthogonal directions. In other words the advantage of activating redundant muscles decreases with the 

angle away from the net force direction. Because of this systematic decrease, there exists a unique tuning 

curve for which the average net force is generated with minimum expected error. To identify that optimal 

tuning curve we need a formal model. 

6.2. A model of noisy force production 

As in Section 2.4B, muscle i  generates endpoint force along a fixed line of action given by the unit 

vector ip . The muscle force (or tension) if  is now divided in two components: iii zf += µ . The mean 

force iµ  is assumed to be under the control of the nervous system, while the zero-mean term iz  

combines all sources of noise affecting the force output of muscle i . The net endpoint force is then 

( )∑ +
i

iii z pµ . The cost of using the vector of mean muscle forces [ ]nµµ …;1=µ  to generate the 

desired net endpoint force *f  will be defined as 

 ( ) ( ) ∑∑ ++−=
i

i
i

iii z 2
2

| *E*,Cost µηµ pffµ µz  (12) 

The first term in Eq 12 penalizes the expected difference between the desired and realized endpoint force, 

the second term is an effort cost, and the weighting parameter η  sets the tradeoff between accuracy and 

effort. We use a supra-linear (i.e. quadratic) function to approximate effort because larger muscle forces 

are produced by larger and more rapidly fatiguing motor units (according to Henneman’s size principle). 
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The expectation is taken over the probability distribution of the noise terms iz  conditional on the mean 

forces iµ . Since the quantity whose expectation we have to compute is quadratic in the random variables 

iz , all we need to specify is the mean and covariance of the conditional distribution ( )µz |p . The mean 

is zero by definition, and the conditional covariance will be modelled as 

 ( ) ( )( ) ( )( )s
T

ksksksksk skzz pp4321 ,,|,Cov λλδµµλµµλµµ ++++=  (13) 

The quadratic function parameterized by 1λ  and 2λ  generalizes the scaling law discussed above. The 

linear term ( )sk µµλ +2  is needed because of the non-zero intercept in Fig 5A (a constant term is also 

needed to model the non-zero intercept, but it does not affect the minimization with respect to µ  so we 

ignore it). The second multiplicative term in Eq 13 does not depend on µ , but instead models the effects 

of the angle between the lines of action: the delta function ( )sk ,δ  corresponds to independent noise in 

the output of each muscle; 3λ  is a noise term common to all muscles; s
T

k pp4λ  is a noise correlation 

whose strength varies with the angle between the two lines of action. The latter term is needed to capture 

the observation that muscles with similar lines of action show correlated EMG fluctuations (Stephens et 

al., 1999). 

The constraints we impose on the mean forces iµ  are 

 (optional)
 allfor 0

co
i

i
i

i

=

≥

∑µ

µ
 (14) 

The non-negativity constraint is needed because muscles can only pull. The cocontraction constraint is 

optional, and allows us to specify the desired arm impedance (see Section 2.4B). Note that generating 

muscle forces that cancel each other is always suboptimal according to the cost function in Eq 12, because 

it increases both the noise and energy consumption without affecting the net force. Ideally the cost 

function would take into account the advantages of higher impedance (allowing us to derive the optimal 

impedance and tuning function simultaneously), but that leads to technical complications which we leave 

for future work. For the purposes of deriving the optimal tuning curve it is sufficient to minimize Eq 12 

subject to Eq 13 and 14, for every possible setting of the parameters 41 ,,,*, λλη …cof . 

6.3. Cosine tuning is optimal 

The general minimization problem defined above was solved for many cases of interest in (Todorov, 

2002). The main results are summarized here. 
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When the distribution of lines of action ip  is uniform, it can be shown analytically that the 

optimal tuning curve is either a cosine or a truncated cosine. If the optional cocontraction constraint is 

specified, the tuning curve is a cosine for co≤*2 f  and a truncated cosine otherwise (Fig 5B, 2=p ). 

If cocontraction is not specified, this condition becomes 12 2/*2 λλ−≤f . While analytical results could 

only be derived for a square cost (Eq 12), we also solved the minimization problem numerically for a 

variety of cost functions in which the force error term was raised to the power [ ]4;5.0∈p . As Fig 5B 

shows, the optimal tuning curves were very similar to those derived analytically for 2=p . Both cosine 

and truncated cosine tuning curves have been observed experimentally (Hoffman and Strick, 1999). Our 

model predicts that the tuning curves will become broader when the cocontraction level is increased. 

Indeed we have obtained indirect evidence supporting this prediction (Todorov et al., 2000). 

For a nonuniform distribution of lines of action ip  the optimal tuning curves are not exactly 

cosine, but very close (Fig 5C). The direction of net force for which a muscle is maximally active (i.e. its 

preferred direction) is no longer aligned with its line of action. Instead the optimal preferred direction is 

rotated to fill in gaps in the distribution of lines of action. This effect is illustrated for a bimodal 

distribution in Fig 5C. Such systematic misalignment has been observed experimentally for both arm 

(Cisek and Scott, 1998) and wrist (Hoffman and Strick, 1999) muscles. 

 Another prediction of the model is a negative force bias (or undershoot) which increases with 

force level. This is because both the error and effort terms in Eq 12 are minimized when the net force is 

smaller than desired. The predicted magnitude of the effect depends on the error-effort tradeoff specified 

by η . In our isometric force experiment (Todorov, 2002) we observed such a negative bias. As predicted, 

it increased with the force level and was larger in the one hand condition. 

7. The model in perspective 
There is an interesting parallel (Fig 6) between the M1 model presented here and the classical model of 

orientation selectivity in primary visual cortex (V1): both models involve a primary cortical area (M1 or 

V1), a corresponding peripheral organ (muscle or retina), and an intermediate processing stage (spinal 

cord or lateral geniculate nucleus) approximated with a linear mapping. Making this parallel explicit can 

help us place the issues discussed above within the broader context of computational neuroscience, and 

identify directions for future research. 
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7.1. The origin of directional tuning 

The defining feature of a muscle is its line of action (determined by the fixed attachment to the skeleton), 

while the defining feature of a photoreceptor is its location on the retina. In any given posture, a fixed line 

of action implies a preferred direction, just like a fixed retinal location implies a spatially localized 

receptive field. Therefore directional tuning in the motor system is no more surprising than spatial tuning 

in the visual system, in the sense that both types of tuning reflect fundamental peripheral properties. Of 

course, directional tuning of muscles does not necessitate such tuning in M1. Similarly, V1 neurons do 

not have to display spatial tuning – one can imagine for example a spatial Fourier transform4 in the retina 

or LGN that completely abolishes the localized receptive fields of photoreceptors. But perhaps the 

nervous system avoids such drastic changes in representation, and so the tuning properties that arise at 

one level propagate to neighbouring levels, regardless of the direction of connectivity. The same 

argument may apply with regard to topographic organization: 2D topography arises in the retina and is 

found in V1, whereas muscle lines of action are not topographically organized (at least not in a 

sufficiently low-dimensional space) and correspondingly no detailed topography has been found in M1 

(Schieber, 2001). 

 Proponents of the directional coding hypothesis have criticized the idea of muscle control on the 

basis that M1 neurons cannot possibly be "just higher-level motoneurons". The parallel with V1 illustrates 

how unreasonable such arguments are. Consider criticizing the related V1 model on the basis that V1 

neurons cannot possibly be "just higher-level retinal ganglion neurons". Indeed they are not: V1 neurons 

display robust orientation tuning (Hubel and Wiesel, 1962) which emerges at the cortical level and does 

not reflect any peripheral properties. But that phenomenon is perfectly consistent with the simple linear 

model in Fig 6B, where V1 layer 4 neurons are driven by sets of retinal ganglion neurons with coaligned 

center-surround receptive fields. This parallel emphasizes the potential of structured high-dimensional 

mappings to generate interesting physiological responses, and the importance of elaborating the structure 

of the M1-to-muscle weight matrix W in future research. The latter would be much easier if a purely 

cortical phenomenon, comparable in robustness to V1 orientation selectivity, was discovered in M1. In 

contrast, all the phenomena addressed in this chapter reflect the basic properties of the musculo-skeletal 

system – which is why we could account for them without specific assumptions regarding the structure of 

W. 

                                                      

4 A Fourier transform is a linear mapping, and therefore can be implemented by the connectivity illustrated 

in Fig 6. 
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7.2. The organization of muscle synergies 

Each column of the M1-to-muscle weight matrix W corresponds to the “muscle field” of a pyramidal tract 

neuron. Are these muscle fields composed of arbitrary subsets of muscles, or is there some organizing 

principle, as is the case with V1? 

The short latency contributions of CM neurons to muscle activity, as measured by spike-triggered 

averaging, clearly have some structure: it is known that individual neurons tend to facilitate groups of 

muscles pulling in similar directions (i.e. agonists) and to suppress their antagonists (Fetz and Cheney, 

1980). This evidence, however, comes from single joint studies; in a multijoint setting the notions of 

agonists and antagonists are much more elusive, and a quantitative description of the biomechanical 

features that co-facilitated muscles share is yet to come. An interesting step towards a multijoint 

description of co-facilitated muscle groups is the recent finding that some CM neurons facilitate proximal 

muscles, others facilitate both proximal and distal muscles, but very few CM neurons facilitate distal 

muscles alone (McKiernan et al., 1998). This observation makes sense biomechanically, because the hand 

can only exert forces against external objects if those forces are transmitted via the proximal joints. Thus, 

muscle fields appear to be organized along some principles, but such principles are not nearly as clear as 

those underlying V1 organization. Furthermore, the CM neurons facilitating hand muscles appear to have 

rather uninterpretable muscle fields (Schieber, 2002); this is somewhat disturbing given that the CM 

pathway is most prominent in hand control. 

The above discussion focused on muscle fields as defined by spike-triggered averaging. But M1 

neurons exert most of their effects through spinal interneurons, and therefore a more proper definition of a 

muscle field would include both direct and indirect contributions. Unfortunately the indirect contributions 

are hard to quantify. One approach is to rely on long-term correlations between neuronal and EMG 

activity, keeping in mind that the results are likely to be affected by correlations with other neurons. 

Using that approach, it was recently shown that the so defined muscle fields appear to be grouped in a 

small number of clusters (Holdefer and Miller, 2002). But again, a (somewhat different) analysis of hand-

related neurons showed no evidence of clustering or any other easily interpretable form of organization 

(Poliakov and Schieber, 1999). Note also that the correspondence between a neuron’s direct and indirect 

contributions, as measured by spike-triggered averages and long-term correlations respectively, is 

somewhat loose (McKiernan et al., 2000). 

 In summary, the experimental literature on muscle synergies is far from conclusive, and the issues 

could probably be clarified if the empirical work was complemented by formal models. Is there a 

modeling approach that could yield specific predictions regarding the structure of muscle synergies? The 

parallel with V1 again turns out to be illuminating. The discovery of orientation tuning and its simple 

mechanistic explanation have generated great theoretical interest into why the mapping illustrated in Fig 
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6B should have that particular structure, and why V1 neurons should be orientation tuned. Several models 

have led to the same general answer, which is that the V1 encoding is optimized to capture the statistical 

regularities of natural images (Olshausen and Field, 1996). In other words, orientation tuning cannot be 

predicted from properties of the visual periphery alone, but only makes sense when the properties of the 

visual world are also taken into account. By analogy, theoretical predictions regarding the structure of 

muscle synergies might come from analysis of the dynamic interactions between the musculo-skeletal 

system and the natural environments in which it operates. We have began to develop a model of 

sensorimotor synergies (Todorov and Gharahmani, 2001) based on the same general idea: using 

unsupervised learning algorithms to capture the statistical regularities in the sensorimotor flow. Such an 

approach may also be useful in modeling the experience-dependent reorganizations in M1 (Nudo et al., 

1996). This work will be presented elsewhere. 

7.3. Using the redundancy of population codes 

The field of motor control has long suffered from the misconception that redundancy is a problem. It 

certainly is from the point of view of the researcher trying to understand why a specific motor pattern is 

being chosen. But from the point of view of the motor system redundancy is a solution rather than a 

problem, because the existence of multiple acceptable patterns can only make the discovery of one of 

them easier. Our recent theory of motor coordination (Todorov and Jordan, 2002) clarifies why musculo-

skeletal redundancy is useful, and summarizes a number of psychophysical results demonstrating that 

such redundancy is being utilized by the motor system. 

 Redundancy is also present, to a much greater extent, on the level of neurophysiology. Any 

muscle activation pattern can be generated by a large set of cortical activation patterns5, and therefore one 

might expect this flexibility to be somehow taken advantage of. Indeed, a number of studies have shown 

that individual neuronal responses, and the way they change between experimental conditions, can be 

hard to interpret; and yet, the population of such responses generally behaves in accordance with our 

model. The change of preferred directions, when averaged over the M1 population, matches: a) the 

amount of shoulder rotation in 3D reaching (Caminiti et al., 1991); b) the average rotation of muscle 

preferred directions in 2D force field adaptation (Li et al., 2001). In both cases, however, the changes 

displayed by individual neurons span a wide spectrum and are generally uninterpretable. Similarly, 

                                                      

5 In our linear model that redundant set is a linear subspace. The population vector is a projection that maps 

the entire redundant subspace into a point; this is why in the linear case we could predict population vectors without 

having to resolve redundancy. 
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adding the muscle fields of a number of hand-related cortical neurons provides reasonable reconstructions 

of the pattern of observed muscle activity (Schieber, 2002) – despite the fact that the relationship between 

the activity of individual M1 neurons and the muscles they directly facilitate or suppress is rather 

complex (McKiernan et al., 2000) and probably task-specific (Kilner et al., 2000). Finally, linear 

regression models that reconstruct movement trajectories from cortical population activity can work quite 

well in the face of substantial trial-to-trial fluctuations of single neuron activity (Wessberg et al., 2000). 

The above examples indicate that motor cortex may take advantage of the redundancy of 

population codes, but do not clarify the nature of that advantage. A rare case where the latter is possible is 

the center-out wrist movement task of (Kakei et al., 1999), who measured the changes of M1 responses 

caused by changing the forearm posture. While the preferred directions of one M1 subpopulation rotated 

as much as muscle preferred directions (and lines of action), another subpopulation showed smaller 

rotations accompanied by changes in overall firing rate (or gain). Such changes are clearly inconsistent 

with an abstract encoding of direction, which predicts no effect of posture on any aspect of neural 

activity. The observed changes can be consistent with our model, as follows. Consider a muscle whose 

activation a  is generated by two cosine-tuned neurons, with gains 2,1b  and preferred directions 2,1u . 

Under isometric force f  we have ( )22112211 uufufuf bbbba TTT +=+= , i.e. the muscle activity is 

cosine-tuned with preferred direction 2211 uu bb + . The latter vector can be rotated by rotating 2,1u , but 

also by keeping 2,1u  fixed and only varying 2,1b . Therefore, the same rotation in muscle space (required 

to perform the task in a different forearm posture) can be accomplished by two different changes of 

cortical output: a rotation of preferred directions, or a change in gains. Why would M1 employ a mix of 

the two mechanisms? We offer the following intuitive answer. It is reasonable to assume that, in the wrist 

movement task of interest, there are at least two relevant inputs to M1: one specifying the target location 

in extrapersonal space and probably originating in ventral premotor area (Kakei et al., 2001), and the 

other one specifying the current arm posture irrespective of the task. If these two input signals are 

combined additively, they will produce gain changes without preferred direction changes – resembling 

the “extrinsic-like” neurons of (Kakei et al., 1999). How should M1 transform such an input pattern into 

an output pattern appropriate for the task, given that many output patterns are task-appropriate? One 

might expect the transformation to be accomplished with the “least amount of work”, which means that 

the output should resemble the input as much as possible, subject to the constraint that the necessary 

rotation in muscle space is implemented. We have performed a number of neural network simulations, in 

which recurrent networks were trained to transform the input described above into any task-appropriate 

output. The learning algorithm always converged to networks whose output patterns were a mix 
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“intrinsic” and “extrinsic” responses, as observed by (Kakei et al., 1999). These network models will be 

described in detail elsewhere. 

7.4. On the role of the spinal cord 

Our model does not clarify how the spinal cord works, but clarifies how it does not work. The fact that so 

many M1 phenomena can be explained using the simple feedforward transformation in Eq 1 indicates that 

the spinal cord does not isolate or hide the basic properties of the musculo-skeletal system from the rest of 

the brain. Indeed that would be a poor strategy, because primate arms (and especially hands) are used in a 

wide range of tasks with different dynamic requirements, and so a peripheral “detail” that is a nuisance in 

one task may become a crucial feature in another. The spinal cord could, however, augment musculo-

skeletal properties in a way consistent with the model. For example, short latency stretch reflexes can 

compensate for muscle yielding, and thus maintain spring-like behavior on longer time scales (Nicols and 

Houk, 1976). To incorporate such a mechanism we simply have to modify the stiffness and damping 

terms in our model (in fact the psychophysical estimates we relied on probably reflect both muscle and 

reflex impedance). 

 More generally, one can think of the spinal cord as integrating two sources of activity: 

descending and afferent. The effects of the (pyramidal-tract) descending signal on muscle activity are 

modeled to first order by our linearization. Our results imply that the spinal cord generates the bulk of the 

muscle activity as a feedforward transformation of the descending signal, and that transformation is 

sufficiently smooth to appear linear over the small range of displacements, velocities, and loads typically 

used in the M1 literature. In this scheme, spinal feedback is used not to drive the movement or to translate 

abstract directional commands, but to counteract undesirable deviations by modulating muscle activity on 

short time scales. 

 This is in contrast with views where afferent signals play the leading role in generating muscle 

activity, while descending signals play the modulatory role of setting thresholds or gains for the spinal 

circuits. We disagree with such views for two general reasons. 1) Following deafferentations, both 

monkeys (Bizzi et al., 1984) and humans (Ghez and Sainburg, 1995) can produce substantial and quasi-

normal muscle activity, while a leading role of afferent signals would seem to predict a lack of muscle 

activity in that condition. 2) The large network of supraspinal areas has all the information needed to 

compute the average muscle activations that propel the arm – especially in simple and overtrained tasks 

where all the internal models underlying this computation have presumably been formed. The only thing 

that the supraspinal system is known to be incapable of is generating very rapid corrections for 

undesirable deviations. Such corrections are crucial for ensuring stability, and since the spinal cord is 
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ideally suited to generate them, we do not see why it should be burdened with other computations that are 

best performed elsewhere. 

 To make this discussion more concrete, we introduce some ideas from stochastic optimal 

feedback control (Davis and R.B., 1985) that are relevant here. Consider a system with (unobservable) 

state tx , control tu , noisy feedback t t tH= +y x ξ , and stochastic dynamics 1t t t tA B+ = + +x x u ω . 

Such systems are controlled optimally by computing an internal state estimate ˆ tx  using the Kalman filter 

( )1ˆ ˆ ˆt t t t t tA B K H+ = + + −x x u y x , and mapping this estimate (rather than the raw feedback) into a 

control signal ˆt t tL= −u x . It is not presently clear how this should be implemented in a sensorimotor 

hierarchy containing multiple feedback loops that operate simultaneously. Nevertheless, the above 

equations emphasize two important points. 1) Estimation and control are computationally separate 

processes, and involve separate sets of time-varying parameters (K and L respectively). The sensory gains 

K reflect the reliability of the afferent signal. When that signal becomes infinitely unreliable (or absent), 

the optimal K become 0, which automatically transforms the system into an open-loop controller with 

similar average behavior – in agreement with deafferentation studies. 2) The short-term contribution of 

the afferent signal y to the control u is given by the term ( )1 ˆt t t tL K H+ −x y , which is proportional to the 

difference between expected and observed feedback. Since the difference is 0 on average, that 

contribution will be washed out in analyses that average data over trials – even in tasks where rapid 

single-trial feedback corrections are large and crucial for achieving stability and overall performance. 

7.5. Equilibrium-Point control? 

The Equilibrium-Point (EP) hypothesis (Feldman and Levin, 1995) has not been extensively applied to 

the M1 literature, but we include here a brief discussion of it because EP control is a rare example of a 

coherent theoretical framework – of the kind that we argued for in the abstract. Unfortunately, we do not 

see how it can be reconciled with the M1 literature. While the presence of positional gradients and 

cocontraction-related signals in M1 correspond naturally to the R and C commands postulated by the EP 

hypothesis, a number of other well established facts appear inconsistent with it: 

1. The most salient finding from center-our reaching tasks is that movement-time activity is dominated 

by a velocity related signal. In particular, most neurons (during movement in their preferred direction) 

show an increase of firing followed by a decrease. In contrast, neural activity that encodes positional 

shifts should display monotonic changes in the course of reaching movements. The only way around 

that problem seems to be a proportional-derivative modification along the lines of (McIntyre and 

Bizzi, 1993), who proposed that both positional and velocity reference signals may be needed. This 
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still does not explain why the M1 encoding of velocity is strongly asymmetric – in the same way that 

muscle damping is asymmetric. Note also that including a transient velocity command results in a 

mode of control that is neither “equilibrium” nor “point”. 

2. Straight reaching movements produced under curl-viscous forces (Li et al., 2001) are encoded 

differently from kinematically identical movements produced in the absence of such forces. As 

mentioned above, the average rotation of muscle preferred directions coincides with the average 

rotation of M1 preferred directions. The only way to reconcile EP control with such observations is to 

admit that, after all, the control signal takes dynamics into account (Gribble and Ostry, 2000). Then 

one would have to also admit that the reference trajectory for reaching movements can exhibit 

reversals, because such reversals have been observed in M1 (Kalaska et al., 1992). Note that, in 

general, dynamic additions to EP control eliminate one of the main advantages of such control: the 

avoidance of (either explicit or implicit) dynamic calculations. At the same time, such additions bring 

EP control closer to being an irrefutable hypothesis. 

3. Finally, the ability of deafferented subjects (Bizzi et al., 1984;Ghez and Sainburg, 1995) to generate 

quasi-normal muscle activity seems fundamentally inconsistent with any view in which afferent 

signals play the leading role in activating muscles. One could postulate that, following 

deafferentation, both the spinal cord and M1 are reorganized so profoundly that they begin to 

function according to our model. But that would be merely a way to dismiss these important 

observations, rather than deal with them. 

All that being said, we readily admit that the apparent difficulties and lack of parsimony may be 

due to our limited experience with building EP control models. Indeed, Anatol Feldman (personal 

communication) has suggested that since the command signals do not directly correspond to any one 

behavioral parameter, they may in principle be correlated with all parameters in the ways observed. We 

look forward to a specific neural implementation of EP control that addresses the M1 literature in detail. 

In the meantime, however, we remain skeptical – for the reasons outlined above. 

Summary 
This chapter summarized a series of recent studies in which we have developed a simple mechanistic 

model of M1 control. The model accounts for a large number of experimental results, indicating that in 

the absence of major unpredictable events the trial-averaged M1 signal contains sufficient information to 

specify the trial-averaged pattern of muscle activations. This descending signal, which is the major output 

of the large supraspinal network of motor areas, takes into account peripheral properties such as muscle 

state dependence and perhaps spinal reflex gains. Therefore the essential dynamic properties of the motor 

periphery are not “hidden” by the spinal cord, as the directional coding hypothesis has suggested. In 
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retrospect this is hardly surprising: it would be a waste of resources if the entire supraspinal system was 

devoted to computationally trivial tasks such as calculating three-dimensional vectors, and the much more 

difficult problem of controlling the complex musculo-skeletal dynamics in real time was left to the 

ancient spinal circuits. 
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Legends 
 

Table 1: Detailed muscle model. 

The first equation shows the muscle force as a function of activation, length, and velocity. The remaining 

equations define the different terms in the first equation, and the corresponding parameter values. 

 

Figure 1: Model overview. 

A) Solid arrows denote pathways explicitly taken into account, dashed arrows correspond to pathways 

that we argue can be neglected in a first-order model. The force field illustrates the static position-

dependent endpoint forces produced by an elbow flexor, when the endpoint of a 2-link arm with 30cm 

links is moved over a 20x20 cm workspace (not drawn to scale). Note that the forces are roughly parallel, 

and become smaller when the endpoint is displaced in the force direction. B) Force output of the 

nonlinear muscle model at maximal activation, shown as a function of physiological length and velocity. 

 

Figure 2: Basic results. 

A) The predicted postural response for targets arranged in a circle is a planar surface. B) The predicted 

response for increasing load magnitude in a constant direction is linear. A linear response is also predicted 

when the direction of a constant-magnitude load is varied; in this case the response is linear in the cosine 

of the angle between preferred and actual direction. C) Predicted movement-time response. Note that the 

compound response (left) is a sum of positional, velocity, and acceleration terms weighted by system-

level stiffness, damping, and inertia respectively. In the nonlinear model (right) these components can no 

longer be separated, but the overall response is similar. D) Predicted response when both the movement 

direction and imposed load direction are varied independently. E) Population vector predictions for 

displacements or movements in different directions, loads in different directions, and movements in 

different directions in the presence of a constant load. 

 

Figure 3: Trajectory reconstruction. 

A) Comparison of simulated hand kinematics (top) and the sum of population vectors predicted by the 

model (bottom). B) Comparison of the reconstruction errors (Y axis) of different methods. C) Analysis of 

the variable time-lag effect in the linearized model. D) Demonstration that the conclusions of the simple 

analysis hold for the detailed nonlinear muscle model. 



 

 

Figure 4: Apparent evidence for direction encoding. 

A) The predicted response for 2D isometric force is planar (left). Attempts to fit such responses by 

separating the contributions of force magnitude and direction are expected to fail, because the 

corresponding surfaces (right) are inappropriate for fitting planar responses. B) Model predictions of 

firing rate modulation due to independently varying the directions of dynamic and bias force. C) 

Illustration of the problems associated with classifying cells as position-, velocity-, acceleration-, or 

direction-related. Thin solid lines mark correct classification boundaries; thick solid lines mark the 

classification boundaries generated by linear regression classifiers; thin dashed lines mark the correct 

classification boundaries when the movement is made two times faster. D) Both cortical and muscle 

activation are known to be more phasic than the resulting torque pattern, which can be due to low-pass 

filtering (filter parameters shown in the figure). E) Illustration of how simple summation of cortical 

signals on the muscle level can lead to very different modulation ratios of cortical and muscle tuning (2:1 

vs. 8:1). E) When targets at different distances are used, speed profiles scale both in magnitude and 

duration (left). As a result, the initial portion of the trajectory is roughly invariant of target distance, and 

so the predicted cortical signal is best correlated with direction early in movement (right). 

 

Figure 5: Cosine tuning. 

A) Measured isometric force fluctuations (Y axis) are a linear function of instructed grip force. Each 

subject participated in two conditions: gripping the force sensor with one hand or both hands. B) Optimal 

tuning curves can be full cosines or truncated cosines, depending on the ratio between specified 

cocontraction and force magnitude. p is the exponent of the cost function. The similarity of the curves for 

the three values of p indicates that our analytical results are not sensitive to the square cost (p=2) used to 

derive them. C) Optimal tuning curves when the distribution of pulling directions (illustrated on the 

bottom) is non-uniform. The preferred directions are misaligned relative to the lines of action, so that the 

gap in the distribution is filled. 

 

Figure 6: Mechanistic models of M1 and V1. 

Schematic comparison of the model proposed here (A) and the classic model of orientation selectivity in 

primary visual cortex (B). The structure of the weight matrix W in the case of V1 is known, and explains 

how orientation selectivity can emerge on the cortical level. In contrast, the M1-to-muscle weight matrix 

has unknown structure; as a result, our model can presently address only those phenomena that reflect 

basic properties of the musculo-skeletal system. Directional tuning is such a phenomenon, and closely 

corresponds to the spatial localization of receptive fields in the visual system. 
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