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Cosine tuning is ubiquitous in the motor system, yet a satisfying explana-
tion of its origin is lacking. Here we argue that cosine tuning minimizes
expected errors in force production, which makes it a natural choice for
activating muscles and neurons in the final stages of motor processing.
Our results are based on the empirically observed scaling of neuromotor
noise, whose standard deviation is a linear function of the mean. Such
scaling predicts a reduction of net force errors when redundant actuators
pull in the same direction. We confirm this prediction by comparing forces
produced with one versus two hands and generalize it across directions.
Under the resulting neuromotor noise model, we prove that the optimal
activation profile is a (possibly truncated) cosine—for arbitrary dimen-
sionality of the workspace, distribution of force directions, correlated or
uncorrelated noise, with or without a separate cocontraction command.
The model predicts a negative force bias, truncated cosine tuning at low
muscle cocontraction levels, and misalignment of preferred directions
and lines of action for nonuniform muscle distributions. All predictions
are supported by experimental data.

1 Introduction

Neurons are commonly characterized by their tuning curves, which de-
scribe the average firing rate f (x) as a function of some externally defined
variable x. The question of what constitutes an optimal tuning curve for
a population code (Hinton, McClelland, & Rumelhart, 1986) has attracted
considerable attention. In the motor system, cosine tuning has been well
established for motor cortical cells (Georgopoulos, Kalaska, Caminiti, &
Massey, 1982; Kettner, Schwartz, & Georgopoulos, 1988; Kalaska, Cohen,
Hyde, & Prud’homme, 1989; Caminiti, Johnson, Galli, Ferraina, & Burnod,
1991) as well as individual muscles (Turner, Owens, & Anderson, 1995; Her-
rmann & Flanders, 1998; Hoffman & Strick, 1999).1 The robustness of cosine

1 When a subject exerts isometric force or produces movements, each cell and muscle is
maximally active for a particular direction of force or movement (called preferred direction),
and its activity falls off with the cosine of the angle between the preferred and actual
direction.
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tuning suggests that it must be optimal in some meaningful sense, yet a
satisfactory explanation is lacking.

In this article, we argue that cosine tuning in the motor system is in-
deed optimal in the most meaningful sense one can imagine: it minimizes
the net effect of neuromotor noise, resulting in minimal motor errors. The
argument developed here is specific to the motor system. Since it deviates
from previous analyses of optimal tuning, we begin by clarifying the main
differences.

1.1 Alternative Approaches to Optimal Tuning. The usual approach
(Hinton et al., 1986; Snippe, 1996; Zhang & Sejnowski, 1999b; Pouget, Den-
eve, Ducom, & Latham, 1999) is to equate the goodness of a tuning function
f with how accurately the variable x can be reconstructed from a popula-
tion of noisy responses µ1 + ε1, . . . , µn + εn, where µi = f (x − ci) is the
mean response of neuron i with receptive field center ci. This approach to
the analysis of empirically observed tuning is mathematically appealing but
involves hard-to-justify assumptions:

• In the absence of data on higher-order correlations and in the inter-
est of analytical tractability, oversimplified noise models have to be
assumed.2 In contrast, when the population responses are themselves
the outputs of a recurrent network, the noise joint distribution is likely
to be rather complex. Ignoring that complexity can lead to absurd con-
clusions, such as an apparent increase of information (Pouget et al.,
1999).

• Since the actual reconstruction mechanisms used by the nervous sys-
tem as well as their outputs are rarely observable, one has to rely on
theoretical limits (i.e., the Cramér-Rao bound), ignoring possible bi-
ological constraints and noise originating at the reconstruction stage.
Optimality criteria that may arise from the need to perform computa-
tion (and not just represent or transmit information) are also ignored.

Even if these assumptions are accepted, it was recently shown (Zhang &
Sejnowski, 1999b) that the optimal tuning width is biologically implausible:
as narrow as possible3 when x is one-dimensional, irrelevant when x is two-
dimensional, and as broad as possible when x is more than two-dimensional.
Thus, empirical observations such as cosine tuning are difficult to interpret
as being optimal in the usual sense.

2 The noise terms ε1, . . . , εn are usually modeled as independent or homogeneously
correlated Poisson variables.

3 The finite number of neurons in the population prevents infinitely sharp tuning (i.e.,
the entire range of x has to be covered), but that is a weak constraint since a given area
typically contains large numbers of neurons.
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In this article, we pursue an alternative approach. The optimal tuning
function f ∗ is still defined as the one that maximizes the accuracy of the
reconstruction µ1 + ε1, . . . , µn + εn → x̂. However, we do not speculate
that the input noise distribution has any particular form or that the recon-
struction is optimal. Instead, we use knowledge of the actual reconstruction
mechanisms and measurements of the actual output x̂, which in the motor
system is simply the net muscle force.4 That allows us to infer a direct map-
pingµ1, . . . , µn →Mean(̂x),Var(̂x) from the mean of the inputs to the mean
and variance of the output. Once such a mapping is available, the form of
the input noise and the amount of information about x that in principle
could have been extracted become irrelevant to the investigation of optimal
tuning.

1.2 Optimal Tuning in the Motor System. We construct the mapping
µ1, . . . , µn → Mean(̂x),Var(̂x) based on two sets of observations, relating
(1) the mean activations to the mean of the net force and (2) the mean to the
variance of the net force.

Under isometric conditions, individual muscles produce forces in pro-
portion to the rectified and filtered electromyogram (EMG) signals (Zajac,
1989; Winter, 1990), and these forces add mechanically to the net force.5

Thus, the mean of the net force is simply the vector sum of the mean mus-
cle activations µ1, . . . , µn multiplied by the corresponding force vectors
u1, . . . ,un (defining the constant lines of action). If the output cells of pri-
mary motor cortex (M1) contribute additively to the activation of muscle
groups (Todorov, 2000), a similar additive model may apply for µ1, . . . , µn
corresponding to mean firing rates in M1. In the rest of the article,µ1, . . . , µn
will denote the mean activation levels of abstract force generators, which
correspond to individual muscles or muscle groups. The relevance to M1
cell tuning is addressed in Section 6.

Numerous studies of motor tremor have established that the standard
deviation of the net force increases linearly with its mean. This has been
demonstrated when tonic isometric force is generated by muscle groups
(Sutton & Sykes, 1967) or individual muscles (McAuley, Rothwell, & Mars-
den, 1997). The same scaling holds for the magnitude of brief force pulses
(Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979). This general finding

4 We focus predominantly on isometric force tasks and extend our results to movement
velocity and displacement tuning in the last section. Thus, the output (reconstruction) is
defined as net force (i.e., vector sum of all individual muscle forces) in the relevant work
space.

5 The contributions of different muscles to end-point force are determined by the Ja-
cobian transformation and the tendon insertion points. Each muscle has a line of action
(force vector) in end-point space, as well as in joint space. Varying the activation level
under isometric conditions affects the force magnitude, but the force direction remains
fixed.
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is also confirmed indirectly by the EMG histograms of various muscles,
which lie between a gaussian and a Laplace distribution, both centered at
0 (Clancy & Hogan, 1999). Under either distribution, the rectified signal |x|
has standard deviation proportional to the mean.6

The above scaling law leads to a neuromotor noise model where each
generator contributes force with standard deviation σ linear in the mean
µ: σ = aµ. This has an interesting consequence. Suppose we had two re-
dundant generators pulling in the same direction and wanted them to pro-
duce net forceµ. If we activated only one of them at levelµ, the net variance
would be σ 2 = a2µ2. If we activated both generators at level µ/2, the net
variance (assuming uncorrelated noise) would be σ 2 = a2µ2/2, which is two
times smaller. Thus, it is advantageous to activate all generators pulling in
the direction of desired net force. What about generators pulling in slightly
different directions? If all of them are recruited simultaneously, the noise in
the net force direction will still decrease, but at the same time, extra noise will
be generated in orthogonal directions. So the advantage of activating redun-
dant actuators decreases with the angle away from the net force direction.
The main technical contribution of this article is to show that it decreases as
a cosine, that is, cosine tuning minimizes expected motor errors.

Note that the above setting of the optimal tuning problem is in open loop;
the effects of activation level on feedback gains are not explicitly considered.
Such effects should be taken into account because coactivation of opposing
muscles may involve interesting trade-offs: it increases both neuromotor
noise and system impedance and possibly modifies sensory inputs (due to
α − γ coactivation). We incorporate these possibilities by assuming that an
independent cocontraction command C may be specified, in which case the
net activity of all generators is constrained to be equal to C. As shown below,
the optimal tuning curve is a cosine regardless of whether C is specified.
The optimal setting of C itself will be addressed elsewhere.

In the next section, we present new experimental results, confirming the
reduction of noise due to redundancy. The rest of the article develops the
mathematical argument for cosine tuning rigorously, under quite general
assumptions.

2 Actuator Redundancy Decreases Neuromotor Noise

The empirically observed scaling law σ = aµ implies that activating redun-
dant actuators should reduce the overall noise level. This effect forms the
basis of the entire model, so we decided to test it experimentally. Ideally, we
would ask subjects to produce specified forces by activating one versus two

6 For the Laplace distribution pσ (x) = 1
σ

exp(−|x|
σ
), the mean of |x| is σ and the variance

is σ 2. For the 0-mean gaussian with standard deviation σ , the mean of |x| is σ
√

2/π , and
the variance is σ 2(1− 2/π).
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synergistic muscles and compare the corresponding noise levels. But human
subjects have little voluntary control over which muscles they activate, so
instead we used the two hands as redundant force generators: we compared
the force errors for the same level of net instructed force produced with one
hand versus both hands. The two comparisons are not identical, since the
neural mechanisms coordinating the two hands may be different from those
coordinating synergistic muscles of one limb. In particular, one might ex-
pect coordinating the musculature of both hands to be more difficult, which
would increase the errors in the two-hands condition (opposite to our pre-
diction). Thus, we view the results presented here as strong supporting
evidence for the predicted effect of redundancy on neuromotor noise.

2.1 Methods. Eight subjects produced isometric forces of specified mag-
nitude (3–33 N) by grasping a force transducer disk (Assurance Technolo-
gies F/T Gamma 65/5, 500 Hz sampling rate, 0.05 N resolution) between
the thumb and the other four fingers. The instantaneous force magnitude
produced by the subject was displayed with minimum delay as a vertical
bar on a linear 0–40N scale. Each of 11 target magnitudes was presented
in a block of three trials (5 sec per trial, 2 sec between trials), and the sub-
jects were asked to maintain the specified force as accurately as possible.
The experiment was repeated twice: with the dominant hand and with both
hands grasping the force transducer. Since forces were measured along the
forward axis, the two hands can be considered as mechanically identical (i.e.,
redundant) actuators. To balance possible learning and fatigue effects, the
order of the 11 force magnitudes was randomized separately for each sub-
ject (subsequent analysis revealed no learning effects). Half of the subjects
started with both hands, the other half with the dominant hand. The first 2
seconds of each trial were discarded; visual inspection confirmed that the 2
second initial period contained the force transient associated with reaching
the desired force level. The remaining 3 seconds (1500 sample points) of
each trial were used in the data analysis.

2.2 Results. The average standard deviations are shown in Figure 1B for
each force level and hand condition. In agreement with previous results, the
standard deviation in both conditions was a convincingly linear function
of the instructed force level. As predicted, the force errors in the two-hands
condition were smaller, and the ratio of the two slopes was 1.42± 0.25 (95%
confidence interval), which is indistinguishable from the predicted value
of
√

2 ≈ 1.41. Two-way (2 conditions× 11 force levels) ANOVA with repli-
cations (eight subjects) indicated that both effects were highly significant
(p < 0.0001), and there was no interaction effect (p = 0.57). Plotting stan-
dard deviation versus mean (rather than instructed) force produced very
similar results.
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Figure 1: The last 3 seconds of each trial were used to estimate the bias (A) and
standard deviation (B) for each instructed force level and hand condition. Aver-
ages over subjects and trials, with standard error bars, are shown in the figure.
The standard deviation estimates were corrected for sensor noise, measured by
placing a 2.5 kg object on the sensor and recording for 10 seconds.

The nonzero intercept in our data was smaller than previous observations
but still significant. It is not due to sensor noise (as previously suggested),
because we measured that noise and subtracted its variance. One possible
explanation is that because of cocontraction, some force fluctuations are
present even when the mean force is 0.

Figure 2A shows the power spectral density of the fluctuations in the
two conditions, separated into low (3–15N) and high (21–33N) force lev-
els. The scaling is present at all frequencies, as observed previously (Sutton
& Sykes, 1967). Both increasing actuator redundancy and decreasing the
force level have similar effects on the spectral density. To identify possi-
ble differences between frequency bands, we low-pass-filtered the data at
5 Hz, and bandpass filtered at 5–25 Hz. As shown in Figure 2B, the noise
in both frequency bands obeys the same scaling law: standard deviation
linear in the mean, with higher slope in the one-hand condition. The slopes
in the two frequency bands are different, and interestingly the intercept
we saw before is restricted to low frequencies. If the nonzero intercept
is indeed due to cocontraction, Figure 2B implies that the cocontraction
signal (i.e., common central input to opposing muscles) fluctuates at low
frequencies.

We also found small but highly significant negative biases (defined as
the difference between measured and instructed force) that increased with
the instructed force level and were higher in the one-hand condition (see
Figure 1A). This effect cannot be explained with perceptual or memory
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Figure 2: (A) The power spectral density of the force fluctuations was estimated
using blocks of 500 sample points with 250 point overlap. Blocks were mean-
detrended, windowed using a Hanning window, and the squared magnitude of
the Fourier coefficients averaged separately for each frequency. This was done
separately for each instructed force level and then the low (3–15 N) and high
(21–33 N) force levels were averaged. The data from some subjects showed a
sharper peak around 8–10 Hz, but that is smoothed out in the average plot.
There appears to be a qualitative change in the way average power decreases
at about 5 Hz. (B) The data were low-pass-filtered at 5 Hz (fifth-order Butter-
worh filter) and also bandpass filtered at 5–25 Hz. The standard deviation for
each force level and hand condition was estimated separately in each frequency
band.

limitations, since subjects received real-time visual feedback on a linear
force scale. A similar effect is predicted by optimal force production: if
the desired force level is µ∗ and we specify mean activation µ for a single
generator, the expected square error is (µ− µ∗)2 + a2µ2, which is minimal
for µ = µ∗/(1 + a2) < µ∗. Thus, the optimal bias is negative, larger in
the one-hand condition, and its magnitude increases with µ∗. The slopes
in Figure 1A are substantially larger than predicted, which is most likely
due to a trade-off between error and effort (see section 5.2). Other possible
explanations include an inaccurate internal estimate of the noise magnitude
and a cost function that penalizes large fluctuations more than the square
error cost does (see section 5.4).

Summarizing the results of the experiment, the neuromotor noise scaling
law observed previously (Sutton & Sykes, 1967; Schmidt et al., 1979) was
replicated. Our prediction that redundant generators reduce noise was con-
firmed. Thus, we feel justified in assuming that each generator contributes
force whose standard deviation is a linear function of the mean.
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3 Force Production Model

Consider a set Ä of force generators producing force (torque) in D-dimen-
sional Euclidean space RD. Generator α ∈ Ä produces force proportional
to its instantaneous activation, always in the direction of the unit vector
u(α) ∈ RD.7 The dimensionality D can be only 2 or 3 for end-point force but
much higher for joint torque—for example, 7 for the human arm.

The central nervous system (CNS) specifies the mean activations µ(α),
which are always nonnegative. The actual force contributed by each gen-
erator is (µ(α) + z(α))u(α). The neuromotor noise z is a set of zero-mean
random variables whose probability distribution p(z|µ) depends on µ (see
below), and p(z(α) < −µ(α)) = 0 since muscles cannot push. Thus, the net
force r(µ) ∈ RD is the random variable:8

r(µ) = |Ä|−1
∑
α∈Ä

(µ(α)+ z(α))u(α).

Given a desired net force vector f ∈ RD and optionally a cocontraction
command-net activation C = |Ä|−1∑

α µ(α), the task of the CNS is to find
the activation profileµ(α) ≥ 0 that minimizes the expected force error under
p(z|µ).9 We will define error as the squared Euclidean distance between the
desired force f and actual force r (alternative cost functions are considered in
section 5.4). Note that both direction and magnitude errors are penalized,
since both are important for achieving the desired motor objectives. The
expected error is the sum of variance V and squared bias B,

Ez|µ
[
(r− f)T(r− f)

]
= trace(Covz|µ[r, r])︸ ︷︷ ︸

V

+ (r− f)T(r− f)︸ ︷︷ ︸
B

, (3.1)

where the mean force is r = |Ä|−1∑
α µ(α)u(α) since E[z(α)] = 0 for each α.

We first focus on minimizing the variance term V for specified mean force
r and then perform another minimization with respect to (w.r.t.) r. Exchang-

7 α will be used interchangeably as an index over force generators in the discrete case
and as a continuous index specifying direction in the continuous case.

8 The scaling constant |Ä|−1 simplifies the transition to a continuous Ä later:
|Ä|−1

∑
α
· · · will be replaced with |SD|−1

∫
· · · dα where |SD| is the surface area of the

unit sphere in RD. It does not affect the results.
9 µ(α) is the activation profile of all generators at one point in time, corresponding to

a given net force vector. In contrast, a tuning curve is the activation of a single generator
when the net force direction varies. When µ(α) is symmetric around the net force direc-
tion, it is identical to the tuning curve of all generators. This symmetry holds in most of
our results, except for nonuniform distributions of force directions. In that case, we will
compute the tuning curve explicitly (see Figure 4).
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ing the order of the trace, E,
∑

operators, the variance term becomes:

V = |Ä|−2 trace

(
Ez|µ

[∑
α∈Ä

∑
β∈Ä

z(α)z(β)u(α)u(β)T
])

= |Ä|−2
∑
α∈Ä

∑
β∈Ä

Covz|µ[z(α), z(β)]u(β)Tu(α).

To evaluate V, we need a definition of the noise covariance Covz|µ[z(α), z(β)]
for any pair of generators α, β. Available experimental results only suggest
the form of the expression for α = β; since the standard deviation is a linear
function of the mean force, Covz|µ[z(α), z(α)] is a quadratic polynomial of
µ(α). This will be generalized to a quadratic polynomial across directions
as

Covz|µ[z(α), z(β)] =
(
λ1µ(α)µ(β)+ λ2

µ(α)+ µ(β)
2

)
(δβα + λ3).

The δβα term is a delta function corresponding to independent noise for each
force generator. The correlation term λ3 corresponds to fluctuations in some
shared input to all force generators. A correlation term dependent on the
angle between u(α) and u(β) is considered in section 5.3.

Substituting in the above expression for V and defining U = |Ä|−1∑
α u(α), which is 0 when the force directions are uniformly distributed,

we obtain

V = |Ä|−2
∑
α∈Ä

(λ1µ(α)
2 + λ2µ(α))+ λ1λ3rTr+ λ2λ3rTU. (3.2)

The optimal activation profile can be computed in two steps: (1) for given
r in equation 3.2, find the constrained minimum V∗(r)w.r.t. µ; (2) substitute
in equation 3.1 and find the minimum of V∗(r)+B(r)w.r.t. r. Thus, the shape
of the optimal activation profile emerges in step 1 (see section 4), while the
optimal bias is found in step 2 (see section 5.1).

4 Cosine Tuning Minimizes Expected Motor Error

The minimization problem given by equation 3.2 is an instance of a more
general minimization problem described next. We first solve that general
problem and then specialize the solution to equation 3.2.

The setÄwe consider can be continuous or discrete. The activation func-
tion (vector)µ ∈R(Ä): Ä→ R is nonnegative for all α ∈ Ä. Given arbitrary
positive weighting function w ∈R(Ä), projection functions g1,...,N ∈R(Ä),
resultant lengths r1,...,N ∈ R, and offset λ ∈ R, we will solve the following
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minimization problem w.r.t. µ:

Minimize 〈µ+ λ,µ+ λ〉
Subject to µ(α) ≥ 0 〈µ, g1...N〉 = r1,...,N

Where 〈u, v〉 , |Ä|−1 ∑
α∈Ä

u(α)v(α)w(α).
(4.1)

The generalized dot product is symmetric, linear in both arguments, and
positive definite (since w(α) > 0 by definition). Note that the dot product is
defined between activation profiles rather than force vectors.

The solution to this general problem is given by the following result (see
the appendix):10

Theorem 1. If µ∗(α) = b∑n angn(α) − λc satisfies 〈µ∗, g1,...,N〉 = r1,...,N for
some a1,...,N ∈ R, then µ∗ is the unique constrained minimum of 〈µ+ λ,µ+ λ〉.

Thus, the unique optimal solution to equation 4.1 is a truncated linear
combination of the projection functions g1,...,N, assuming that a set of N
constants a1,...,N ∈R satisfying the N constraints 〈µ∗, g1,...,N〉 = r1,...,N exists.
Although we have not been able to prove their existence in general, for the
concrete problems of interest, these constants can be found by construction
(see below). Note that the analytic form of µ∗ does not depend on the ar-
bitrary weighting function w used to define the dot product (the numerical
values of the constants a1,...,N can of course depend on w).

In the case
∑

n angn(α) ≥ λ for all α ∈ Ä, the constants a1,...,N satisfy the
system of linear equations

∑
n an〈gn, gk〉 = rk + 〈λ, gk〉 for k = 1, . . . ,N. It

can be solved by inverting the matrix Gnk , 〈gn, gk〉; for the functions g1,...,N
considered in section 4.3, the matrix G is always invertible.

4.1 Application to Force Generation. We now clarify what this gen-
eral result has to do with our problem. Recall that the goal is to find the
nonnegative activation profile µ(α) ≥ 0 that minimizes equation 3.2 for
given net force r = |Ä|−1∑

α µ(α)u(α) and optionally cocontraction C =
|Ä|−1∑

α µ(α). Omitting the last two terms in equation 3.2, which are con-
stant, we have to minimize

∑
α(λ1µ(α)

2 + λ2µ(α)) = λ1
∑

α(µ(α) + λ)2 +
const, where λ , λ2

2λ1
. Choosing the weighting function w(α) = 1 and as-

suming λ1 > 0 as the experimental data indicate (λ1 is the slope of the
regression line in Fig 1B), this is equivalent to minimizing the dot product
〈µ+ λ,µ+ λ〉.

Let e1,...,D be an orthonormal basis ofRD, with respect to which r has coor-
dinates rTe1, . . . , rTeD and u(α) has coordinates u(α)Te1, . . . ,u(α)TeD. Then
we can define r1,...,D , rTe1, . . . , rTeD, rD+1 , C, g1...D(α) , u(α)Te1, . . . ,

10 bxc = x for x ≥ 0 and 0 otherwise. Similarly, dxe = x for x < 0 and 0 otherwise.
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u(α)TeD, gD+1(α) , 1, N , D + 1 or D depending on whether the cocon-
traction command is specified.

With these definitions, the problem is in the form of equation 4.1, the-
orem 1 applies, and we are guaranteed that the unique optimal activation
profile is µ∗(α) = b∑n angn(α) − λc as long as we can find a1,...,N ∈ R for
which µ∗ satisfies all constraints.

Why is that function a cosine? The function gn(α) = u(α)Ten is the co-
sine of the angle between unit vectors u(α) and en. A linear combination
of D-dimensional cosines is also a cosine:

∑
n angn(α) =

∑
n anu(α)Ten =

u(α)T(
∑

n anen), and thus µ∗(α) = bu(α)TE − λc for E = ∑n anen. When C
is specified, we have µ∗(α) = bu(α)TE+ aD+1 − λc since gD+1(α) = 1. Note
that if we are given E, the constants a are simply an = ETen since the basis
e1,...,D is orthonormal.

To summarize the results so far, we showed that the minimum general-
ized length 〈µ+ λ,µ+ λ〉 of the nonnegative activation profile µ(α) subject
to linear equality constraints 〈µ, g1,...,N〉 = r1,...,N is achieved for a truncated
linear combination b∑n angn(α)−λcof the projection functions g1,...,N. Given
a mean force r and optionally a cocontraction command C, this generalized
length is proportional to the variance of the net muscle force, with the pro-
jection functions being cosines. Since a linear combination of cosines is a
cosine, the optimal activation profile is a truncated cosine.

In the rest of this section, we compute the optimal activation profile in
two special cases. In each case, all we have to do is construct—by what-
ever means—a function of the specified form that satisfies all constraints.
Theorem 1 then guarantees that we have found the unique global
minimum.

4.2 Uniform Distribution of Force Directions in RD. For convenience,
we will work with a continuous set of force generators Ä = SD, the unit
sphere embedded in RD. The summation signs will be replaced by inte-
grals, and the force generator index α will be assumed to cover SD uni-
formly, that is, the distribution of force directions is uniform. The nor-
malization constant becomes the surface area11 of the unit sphere |SD| =
2π

D
2 /0(D

2 ). The unit vector u(α) ∈ RD corresponds to point α on SD.
The goal is to find a truncated cosine function that satisfies the constraints
|SD|−1 ∫

SD
µ∗(α)u(α)dα = r and optionally |SD|−1 ∫

SD
µ∗(α)dα = C.

We will look for a solution with axial symmetry around r, that is, aµ∗(α),
that depends only on the angle between the vectors r and u(α) rather than
the actual direction u(α). This problem can be transformed into a problem
on the circle in R2 by correcting for the area of SD being mapped into each
point on the circle.

11 The first few values of |SD| are: |S1,...,7| = (2, 2π, 4π, 2π2, 8
3π

2, π3, 16
15π

3). Numeri-
cally |SD| decreases for D > 7.
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The set of unit vectors u ∈ RD at angle α away from a given vec-
tor r ∈ RD is a sphere in RD−1 with radius | sin(α)|. Therefore, for any
function f : SD → R with axial symmetry around r, we have

∫
SD

f =
1
2 |SD−1|

∫ π
−π f (α)| sin(α)|D−2dα, where the correction factor |SD−1||sin(α)|D−2

is the surface area of an RD−1 sphere with radius | sin(α)|.
Without loss of generality, r can be assumed to point along the positive

x-axis: r = [R 0]. For given dimensionality D, define the weighting function
wD(α) , 1

2 |SD−1|| sin(α)|D−2 forα ∈ [−π;π ], which as before defines the dot
product 〈u, v〉D , |SD|−1 ∫ π

−π u(α)v(α)wD(α)dα. The projection functions on
the circle inR2 are g1(α) = cos(α), g2(α) = sin(α), and optionally g3(α) = 1.

Thus, µ∗ has to satisfy 〈µ∗, cos〉D = R, 〈µ∗, sin〉D = 0, and optionally
〈µ∗, 1〉D = C. Below, we set a2 = 0 and find constants a1, a3 ∈ R for
which the functionµ∗(α) = ba1 cos(α)+a3c satisfies those constraints. Since
〈ba1 cos(α) + a3c, sin〉D = 0 for any a1, a3, we are concerned only with the
remaining two constraints.

Note that 〈µ∗, cos〉D ≤ 〈µ∗, 1〉D and therefore R ≤ C whenever C is spec-
ified. Also, from the definition of wD(α) and the identity D

∫
cos2 sinD−2 =

sinD−1 cos+ ∫ sinD−2, it follows that 〈cos, 1〉D = 0, 〈1, 1〉D = 1, and 〈cos,
cos〉D = 1

D .

4.2.1 Specified Cocontraction C. We are looking for a function of the form
µ∗(α) = ba1 cos(α) + a3c that satisfies the equality constraints. For a3 ≥ a1,
this function is a full cosine. Using the above identities, we find that the
constraints R = 〈µ∗, cos〉D = a1〈cos, cos〉D + a3〈1, cos〉D and C = 〈µ∗, 1〉D =
a1〈cos, 1〉D + a3〈1, 1〉D are satisfied when a1 = DR and a3 = C.

Thus, the optimal solution is a full cosine when C
R ≥ D (corresponding

to a3 ≥ a1). When C
R < D, a full cosine solution cannot be found; thus, we

look for a truncated cosine solution. Let the truncation point be α = ±t,
that is, a3 = −a1 cos(t). To satisfy all constraints, t has to be the root of the
trigonometric equation,

C
R
= sin(t)D−1/(D− 1)− cos(t)ID(t)

ID(t)− cos(t) sin(t)D−1/D(D− 1)
,

where ID(t) ,
∫ t

0 sin(α)D−2dα. That integral can be evaluated analytically
for any fixed D. Once t is computed numerically, the constant a1 is given
by a1 = R |SD|

|SD−1| (ID(t) − cos(t) sin(t)D−1/D(D − 1))−1. It can be verified that
the above trigonometric equation has a unique solution for any value of
C
R in the interval (1,D). Values smaller than 1 are inadmissible because
R ≤ C.
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Figure 3: (A) The truncation point–optimal tuning width t computed from equa-
tion 4.2 for D = 2, . . . , 7. Since the solution is a truncated cosine when 1 < C

R < D,
it is natural to scale the x-axis of the plot as C/R−1

D−1 , which varies from 0 to 1 re-
gardless of the dimensionality D. For C

R ≥ D, we have the full cosine solution,
which technically corresponds to t = 180. (B) The truncation point–optimal tun-
ing width t computed from equation 4.3 for D = 2, . . . , 7. Since the solution is a
truncated cosine when −λR < D, it is natural to scale the x-axis of the plot as −λRD ,
which varies from −∞ to 1 regardless of the dimensionality D. For −λR ≥ D, we
have the full cosine solution: t = 180.

Summarizing the solution,

µ∗(α) =


DR cos(α)+ C :

C
R
≥ D

a1bcos(α)− cos(t)c :
C
R
< D.

(4.2)

In Figure 3A we have plotted the optimal tuning width t in different dimen-
sions, for the truncated cosine case C

R < D.

4.2.2 Unspecified Cocontraction C. In this case, a3 = −λ, that is, µ∗(α) =
ba1 cos(α) − λc. For −λ ≥ a1, the solution is a full cosine, and a1 = DR as
before. When−λ <DR, the solution is a truncated cosine. Let the truncation
point be α = ±t. Then a1 = λ

cos(t) , and t has to be the root of the trigonometric
equation:

λ

cos(t)
= R

|SD|
|SD−1| (ID(t)− cos(t) sin(t)D−1/D(D− 1))−1.

Note that a1 as a function of t is identical to the previous case when C was
fixed, while the equation for t is different.
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Summarizing the solution:

µ∗(α) =


DR cos(α)− λ :

−λ
R
≥ D

a1bcos(α)− cos(t)c :
−λ
R
< D

. (4.3)

In Figure 3B we have plotted the optimal tuning width t in different dimen-
sions, for the truncated cosine case −λR < D.

Comparing the curves in Figure 3A and Figure 3B, we notice that in
both cases, the optimal tuning width is rather large (it is advantageous to
activate multiple force generators), except in Figure 3A for C/R ≈ 1. From
the triangle inequality, a solution µ(α) exists only when C ≥ R, and C = R
implies µ(α 6= 0) = 0. Thus, a small C “forces” the activation profile to
become a delta function. But as soon as that constraint is relaxed, the width
of the optimal solution increases sharply. Note also that in both figures,
the dimensionality D makes little difference after appropriate scaling of the
abscissa.

4.3 Arbitrary Distribution of Force Directions inR2. For a uniform dis-
tribution of force directions, it was possible to replace the term

∑
α(µ(α)+λ)2

with
∫
SD
(µ(α) + λ)2dα in equations 3.2. If the distribution is not uniform

but instead is given by some density function w(α), we have to take that
function into account and find the activation profile µ∗ that minimizes
|SD|−1 ∫

SD
(µ∗(α) + λ)2w(α)dα subject to |SD|−1 ∫

SD
µ∗(α)u(α)w(α)dα = r

and optionally |SD|−1 ∫
SD
µ∗(α)w(α)dα = C. Theorem 1 still guarantees that

the optimal µ∗ is a truncated cosine, assuming we can find a truncated
cosine satisfying the constraints. It is not clear how to do that for arbitrary
dimensionality D and arbitrary density w, so we address only the case D = 2.

For arbitrary w(α) and D = 2, the solution is in the form µ∗(α) =
ba1 cos(α)+ a2 sin(α)+ a3c. When C is not specified, we have a3 = −λ. Here
we evaluate these parameters only when C is specified and large enough
to ensure a full cosine solution. The remaining cases can be handled using
techniques similar to the previous sections. Expanding w(α) in a Fourier
series, w(α) = u0

2 +
∑∞

n=1(un cos nα + vn sin nα) and solving the system of
linear equations given by the constraints, we obtain

a1

a2

a3

 =


u0 + u2

2
v2

2
u1

v2

2
u0 − u2

2
v1

u1 v1 u0


−1 2R

0
2C

 .

The optimal µ∗ depends only on the Fourier coefficients of w(α) up to
order 2; the higher-order terms do not affect the minimization problem. In
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the previous sections, w(α)was equal to the dimensionality correction factor
| sin(α)|D−2, in which case only u0 and u2 were nonzero, the above matrix
became diagonal, and thus we had a1 ∼ R, a2 = 0, a3 ∼ C.

Note that µ∗(α) is the optimal activation profile over the set of force
generators for fixed mean force. In the case of uniformly distributed force
directions, this also described the tuning function of an individual force
generator for varying mean force direction, since µ∗(α) was centered at 0
and had the same shape regardless of force direction. That is no longer true
here. Since w(α) can be asymmetric, the directions of the force generator
and the mean force matter (as illustrated in Figures 4a and 4b). The tuning
functions of several force generators at different angles from the peak of
w(α) are plotted in Figures 4a and 4b. The direction of maximal activation
rotates away from the generator force direction and toward the short axis of
w(α), for generators whose force direction lies in between the short and long
axes of w(α). This effect has been observed experimentally for planar arm
movements, where the distribution of muscle lines of action is elongated
along the hand-shoulder axis (Cisek & Scott, 1998). In that case, muscles are
maximally active when the net force is rotated away from their mechanical
line of action, toward the short axis of the distribution. The same effect
is seen in wrist muscles, where the distribution of lines of action is again
asymmetric (Hoffman & Strick, 1999).

The tuning modulation (difference between the maximum and minimum
of the tuning curve) also varies systematically, as shown in Figures 4a and
4b. Such effects are more difficult to detect experimentally, since that would
require comparisons of the absolute values of signals recorded from differ-
ent muscles or neurons.

5 Some Extensions

5.1 Optimal Force Bias. The optimal force bias can be found by solving
equation 3.1: minimize V∗(r)+B(r)w.r.t. r. We will solve it analytically only
for a uniform distribution of force directions inRD and when the minimum
in equation 3.2 is a full cosine. It can be shown using equations 4.1 and 4.2
that for both C, specified and unspecified, the variance term dependent on
µ∗ in equation 3.2 is λ1D

|SD|R
2. It is clear that the optimal mean force r is parallel

to the desired force f, and all we have to find is its magnitude R = ‖r‖. Then
to solve equation 3.1, we have to minimize w.r.t. R the following expression:
λ1D
|SD|R

2 + λ1λ3R2 + (R − ‖f‖)2. Setting the derivative to 0, the minimum is
achieved for

‖r‖ = ‖f‖
1+ λ1λ3 + λ1D/|SD| .

Thus, for positive λ1, λ3 the optimal mean force magnitude ‖r‖ is smaller
than the desired force magnitude ‖f‖, and the optimal bias ‖r‖−‖f‖ increases
linearly with ‖f‖.
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Figure 4: Optimal tuning of generators whose force directions point at different
angles relative to the peak of the distribution w(a). 0 corresponds to the peak of
w(a), and 90 (180, respectively) corresponds to the minimum of w(a). The polar
plots show w(a), and the lines inside indicate the generator directions plotted
in each figure. We used R = 1, C = 5. (A) w(a) has a second-order harmonic.
In this case, the direction of maximal activation for generators near 45 rotates
toward the short axis of w(a). The optimal tuning modulation increases for
generators near 90. (B) w(a) has a first-order harmonic. In this case, the rotation
is smaller, and the tuning curves near the short axis of w(a) shift upward rather
than increasing their modulation.

5.2 Error-Effort Trade-off. Our formulation of the optimal control prob-
lem facing the motor system assumed that the only quantity being min-
imized is error (see equation 3.1). It may be more sensible, however, to
minimize a weighted sum of error and effort, because avoiding fatigue in
the current task can lead to smaller errors in tasks performed in the future.
Indeed, we have found evidence for error+effort minimization in movement
tasks (Todorov, 2001). To allow this possibility here, we consider a modified
cost function of the form

Ez|µ[(r− f)T(r− f)]+ β|Ä|−2
∑
α∈Ä

µ(α)2.

The only change resulting from the inclusion of the activation penalty term
is that the variance V previously given by equation 3.2 now becomes

V = |Ä|−2
∑
α∈Ä

((λ1 + β)µ(α)2 + λ2µ(α))+ λ1λ3rTr+ λ2λ3rTU.

Thus, the results in section 4 remain unaffected (apart from the substitution
λ1 ← λ1 + β), and the optimal tuning curve is the same as before. The only
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effect of the activation penalty is to increase the force bias. The optimal ‖r‖
computed in section 5.1 now becomes

‖r‖ = ‖f‖
1+ λ1λ3 + (λ1 + β)D/|SD| .

Thus, the optimal bias ‖r‖−‖f‖ increases with the weight β of the activation
penalty. This can explain why the experimentally observed bias in Figure 1A
was larger than predicted by minimizing error alone.

5.3 Nonhomogeneous Noise Correlations. Thus far, we allowed only
homogeneous correlations (λ3) among noise terms affecting different gener-
ators. Here, we consider an additional correlation term (λ4) that varies with
the angle between two generators. The noise covariance model Covz|µ[z(α),
z(β)] now becomes(

λ1µ(α)µ(β)+ λ2
µ(α)+ µ(β)

2

)
(δβα + λ3 + 2λ4u(β)Tu(α)).

We focus on the case when the force generators are uniformly distributed
in a two-dimensional work space (D = 2), the mean force is r = [R 0] as
before, the cocontraction level C is specified, and C

R ≥ D. Using the identities
u(β)Tu(α) = cos(α − β) and 2 cos2(α − β) = 1 + cos(2α − 2β), the force
variance V previously given by equation 3.2 now becomes

1
4π2

∫
(λ1µ(α)

2+λ2µ(α))dα + λ1λ3rTr+ λ1λ4

4
(p2

2 + q2
2)+ λ1λ4C2 + λ2λ4C,

where p2 = 1
π

∫
µ(α) cos(2α)dα and q2 = 1

π

∫
µ(α) sin(2α)dα are the sec-

ond order coefficients in the Fourier series µ(α) = p0
2 +

∑∞
n=1(pn cos nα +

qn sin nα).
The integral term in V can be expressed as a function of the Fourier coeffi-

cients using Parseval’s theorem. The constraints on µ(α) are 1
2π

∫
µ(α)dα =

C, 1
2π

∫
µ(α) cos(α)dα = R, and 1

2π

∫
µ(α) sin(α)dα = 0. These constraints

specify the p0, p1, and q1 Fourier coefficients. Collecting all unconstrained
terms in V yields

V = λ1

4

(
λ4 + 1

π

)
(p2

2 + q2
2)+

λ1

4π

∞∑
n=3

(p2
n + q2

n)+ const(C, r).

Since the parameter λ1 corresponding to the slope of the regression line
in Figure 1B is positive, the above expression is a sum of squares with
positive weights when λ4 > − 1

π
. The unique minimum is then achieved

when p2,...,∞ = q2,...,∞ = 0, and therefore the optimal tuning curve isµ(α) =
DR cos(α)+ C as before.
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If nonhomogeneous correlations are present, one would expect muscles
pulling in similar directions to be positively correlated (λ4 > 0), as simul-
taneous EMG recordings indicate (Stephens, Harrison, Mayston, Carr, &
Gibbs, 1999). This justifies the assumption λ4 > − 1

π
.

5.4 Alternative Cost Functions. We assumed that the cost being mini-
mized by the motor system is the square error of the force output. While a
square error cost is common to most optimization models in motor control
(see section 6), it is used for analytical convenience without any empirical
support. This is not a problem for phenomenological models that simply
look for a quantity whose minimum happens to match the observed be-
havior. But if we are to construct more principled models and claim some
correspondence to a real optimization process in the motor system, it is
necessary to confirm the behavioral relevance of the chosen cost function.
How can we proceed in the absence of such empirical confirmation? Our
approach is to study alternative cost functions, obtain model predictions
through numerical simulation, and show that the particular cost function
being chosen makes little difference.

Throughout this section, we assume that C is specified, the work space is
two-dimensional, and the target force (without loss of generality) is f = [R 0].
The cost function is now

Costp(µ) = E(‖r− f‖p).

We find numerically the optimal activations µ1,...,15 for 15 uniformly dis-
tributed force generators. The noise terms z1,...,15 are assumed independent,
with probability distribution matching the experimental data. In order to
generate such noise terms, we combined the data for each instructed force
level (all subjects, one-hand condition), subtracted the mean, divided by
the standard deviation, and pooled the data from all force levels. Samples
from the distribution of zi were then obtained as zi = λ1µis, where s was
sampled with replacement from the pooled data set. The scaling constant
was set to λ1 = 0.2. It could not be easily estimated from the data (because
subjects used multiple muscles), but varying it from 0.2 to 0.1 did not affect
the results presented here, as expected from section 4.

To find the optimal activations, we initializedµ1,...,15 randomly, and min-
imized the Monte Carlo estimate of Costp(µ) using BFGS gradient-descent
with numerically computed gradients (fminunc in the Maltab Optimization
Toolbox). The constraints µi ≥ 0 and 1

15
∑
µi = C were enforced by scaling

and using the absolute value of µi inside the estimation function. A small
cost proportional to | 1

15
∑
µi−C|was added to resolve the scaling ambigu-

ity. To speed up convergence, a fixed 15× 100,000 random sample from the
experimental data was used in each minimization run.

The average of the optimal tuning curves found in 40 runs of the algo-
rithm (using different starting points and random samples) is plotted in
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Figure 5: The average of 40 optimal tuning curves, for p = 0.2 and p = 4. The
different tuning curves found in multiple runs were similar. The solution for
p = 2 was computed using the results in section 4.

Figure 5, for p = 0.5 and p = 4. The optimal tuning curve with respect to the
quadratic cost (p = 2) is also shown. For both full and truncated cosine so-
lutions, the choice of cost function made little difference. We have repeated
this analysis with gaussian noise and obtained very similar results.

It is in principle possible to compare the different curves in Figure 5 to
experimental data and try to identify the true cost function used by the
motor system. However, the differences are rather small compared to the
noise in empirically observed tuning curves, so this analysis is unlikely to
produce unambiguous results.

5.5 Movement Velocity and Displacement Tuning. The above analysis
explains cosine tuning with respect to isometric force. To extend our results
to dynamic conditions and address movement velocity and displacement
tuning, we have to take into account the fact that muscle force production is
state dependent. For a constant level of activation, the force produced by a
muscle varies with its length and rate of change of length (Zajac, 1989), de-
creasing in the direction of shortening. The only way the CNS can generate a
desired net muscle force during movement is to compensate for this depen-
dence: since muscles pulling in the direction of movement are shortening,
their force output for fixed neural input drops, and so their neural input
has to increase. Thus, muscle activation has to correlate with movement
velocity and displacement (Todorov, 2000).

Now consider a short time interval in which neural activity can change,
but all lengths, velocities, and forces remain roughly constant. In this set-
ting, the analysis from the preceding sections applies, and the optimal tun-
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ing curve with respect to movement velocity and displacement is again a
(truncated) cosine. While the relationship between muscle force and activa-
tion can be different in each time interval, the minimization problem itself
remains the same; thus, each solution belongs to the family of truncated
cosines described above. The net muscle force that the CNS attempts to
generate in each time interval can be a complex function of the estimated
state of the limb and the task goals. This complexity, however, does not
affect our argument: we are not asking how the desired net muscle force is
computed but how it can be generated accurately once it has been computed.

The quasi-static setting considered here is an approximation, which is
justified because the neural input is low-pass-filtered before generating
force (the relationship between EMG and muscle force is well modeled by a
second-order linear filter with time constants around 40 msec; Winter, 1990),
and lengths and velocities are integrals of the forces acting on the limb, so
they vary even more slowly compared to the neural input. Replacing this
approximation with a more detailed model of optimal movement control is
a topic for future work.

6 Discussion

In summary, we developed a model of noisy force production where opti-
mal tuning is defined in terms of expected net force error. We proved that
the optimal tuning curve is a (possibly truncated) cosine, for a uniform dis-
tribution w(α) of force directions in RD and for an arbitrary distribution
w(α) of force directions in R2. When both w(α) and D are arbitrary, the
optimal tuning curve is still a truncated cosine, provided that a truncated
cosine satisfying all constraints exists. Although the analytical results were
obtained under the assumptions of quadratic cost and homogeneously cor-
related noise, it was possible to relax these assumptions in special cases.
Redefining optimal tuning in terms of error+effort minimization did not
affect our conclusions.

The model makes three novel and somewhat surprising predictions. First,
the model predicts a relationship between the shape of the tuning curveµ(α)
and the cocontraction level C. According to equation 4.2, when C is large
enough, the optimal tuning curve µ(α) = DR cos(α) + C is a full cosine,
which scales with the magnitude of the net force R and shifts with C. But
when C is below the threshold value DR, the optimal tuning curve is a
truncated cosine, which becomes sharper as C decreases. Thus, we would
expect to see sharper-than-cosine tuning curves in the literature. Such ex-
amples can indeed be found in Turner et al. (1995) and Hoffman and Strick
(1999). A more systematic investigation in M1 (Amirikian & Georgopoulos,
2000) revealed that the tuning curves of most cells were better fit by sharper-
than-cosine functions, presumably because of the low cocontraction level.
We recently tested the above prediction using both M1 and EMG data and
found that cells and muscles that appear to have higher contributions to
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the cocontraction level also have broader tuning curves, whose average is
indistinguishable from a cosine (Todorov et al., 2000). This prediction can
be tested more directly by asking subjects to generate specified net forces
and simultaneously achieve different cocontraction levels.

Second, under nonuniform distributions of force directions, the model
predicts a misalignment between preferred and force directions, while the
tuning curves remain cosine. This effect has been observed by Cisek and
Scott (1998) and Hoffman and Strick (1999). Note that a nonuniform distri-
bution of force directions does not necessitate misalignment; instead, the
asymmetry can be compensated by using skewed tuning curves.

Third, our analysis shows that optimal force production is negatively
biased; the bias is larger when fewer force generators are active and increases
with mean force. The measured bias was larger than predicted from error
minimization alone, which suggests that the motor system minimizes a
combination of error and effort in agreement with results we have recently
obtained in movement tasks (Todorov, 2001).

The model for the first time demonstrates how cosine tuning could result
from optimizing a meaningful objective function: accurate force production.
Another model proposed recently (Zhang & Sejnowski, 1999a) takes a very
different approach. It assumes a universal rule for encoding motion infor-
mation in both sensory and motor areas,12 which gives rise to cosine tuning.
Its main advantage is that tuning for movement direction can be treated in
the same framework in all parts of the nervous system, regardless of whether
the motion signal is related to a body part or an external object perceived
visually. But that model has two disadvantages: (1) it cannot explain cosine
tuning with direction of force and displacement in the motor system, and
(2) cosine tuning is explained with a new encoding rule that remains to
be verified experimentally. If the new encoding rule is confirmed, it would
provide a mechanistic explanation of cosine tuning that does not address
the question of optimality. In that sense, the model of Zhang and Sejnowski
(1999a) can be seen as being complementary to ours.

6.1 Origins of Neuromotor Noise. The origin and scaling properties
of neuromotor noise are of central importance in stochastic optimization
models of the motor system. The scaling law relating the mean and standard
deviation of the net force was derived experimentally. What can we say
about the neural mechanisms responsible for this type of noise? Very little,
unfortunately.

Although a number of studies on motor tremor have analyzed the peaks
in the power spectrum and how they are affected by different experimen-

12 Assume each cell has a “hidden” function8(x) and encodes movement in x ∈ RD by
firing in proportion to d8(x(t))/dt. From the chain rule d8/dt = ∂8/∂x . dx/dt = ∇8 . ẋ.
This is the dot product of a cell-specific “preferred direction” ∇8 and the movement
velocity vector ẋ—thus, cosine tuning for movement velocity.
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tal manipulations, no widely accepted view of their origin has emerged
(McAuley et al., 1997). Possible explanations include noise in the central
drive, oscillations arising in spinal circuits, effects of afferent input, and
mechanical resonance.

One might expect the noise in the force output to reflect directly the noise
in the descending M1 signals, in agreement with the finding that mag-
netoencephalogram fluctuations recorded over M1 are synchronous with
EMG activity in contralateral muscles (Conway et al., 1995). On the level
of single cells and muscles, however, this relationship is quite complicated.
Cells in M1 (and most other areas of cortex) are well modeled as Poisson
processes with coefficients of variation (CV) around 1 (Lee, Port, Kruse, &
Georgopoulos, 1998). For a Poisson process, the spike count in a fixed in-
terval has variance (rather than standard deviation) linear in the mean. The
firing patterns of motoneurons are nothing like Poisson processes. Instead,
motoneurons fire much more regularly, with CVs around 0.1 to 0.2 (DeLuca,
1995). Furthermore, muscle force is controlled to a large extent by recruiting
new motor units, so noise in the force output may arise from the motor
unit recruitment mechanisms, which are not very well understood. Other
physiological mechanisms likely to affect the output noise distribution are
recurrent feedback through Renshaw cells (which may serve as a decorre-
lating mechanism; Maltenfort, Heckman, & Rymer, 1998), as well as plateau
potentials (caused by voltage-activated calcium channels) that may cause
sustained firing of motoneurons in the absence of synaptic input (Kiehn &
Eken, 1997). Also, muscle force is not just a function of motoneuronal fir-
ing rate, but depends significantly on the sequence of interspike intervals
(Burke, Rudomin, & Zajac, 1976).13 Thus, although the mean firing rates of
M1 cells seem to contribute additively to the mean activations of muscle
groups (Todorov, 2000), the small timescale fluctuations in M1 and muscles
have a more complex relationship.

The motor tremor illustrated in Figure 1B should not be thought of as be-
ing the only source of noise. Under dynamic conditions, various calibration
errors (such as inaccurate internal estimates of muscle fatigue, potentiation,
length, and velocity dependence) can have a compound effect resembling
multiplicative noise. This may be why the errors observed in dynamic force
tasks (Schmidt et al., 1979) as well as reaching without vision (Gordon, Ghi-
lardi, Cooper, & Ghez, 1994) are substantially larger than what the slopes
in Figure 1B would predict.

6.2 From Muscle Tuning to M1 Cell Tuning. Since M1 cells are synap-
tically close to motoneurons (in some cases, the projection can even be
monosynaptic; Fetz & Cheney, 1980), their activity would be expected to

13 Because of this nonlinear dependence, muscle force would be much noisier if mo-
toneurons had Poisson firing rates, which may be why they fire so regularly.
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reflect properties of the motor periphery. The defining feature of a mus-
cle is its line of action (determined by the tendon insertion points), in the
same way that the defining feature of a photoreceptor is its location on the
retina. A fixed line of action implies a preferred direction, just like a fixed
retinal location implies a spatially localized receptive field. Thus, given the
properties of the periphery, the existence of preferred directions in M1 is
no more surprising than the existence of spatially localized receptive fields
in V1.14 Of course, directional tuning of muscles does not necessitate sim-
ilar tuning in M1, in the same way that cells in V1 do not have to display
spatial tuning; one can imagine, for example, a spatial Fourier transform in
the retina or lateral geniculate nucleus that completely abolishes the spatial
tuning arising from photoreceptors. But perhaps the nervous system avoids
such drastic changes in representation, and tuning properties that arise (for
whatever reason) in one area “propagate” to other densely connected areas,
regardless of the direction of connectivity.

Using this line of reasoning and the fact that muscle activity has to cor-
relate with movement velocity and displacement in order to compensate
for muscle visco-elasticity (see section 5.5), we have previously explained
a number of seemingly contradictory phenomena in M1 without the need
to evoke abstract encoding principles (Todorov, 2000). This article adds co-
sine tuning to that list of phenomena. We showed here that because of the
multiplicative nature of motor noise, the optimal muscle tuning curve is
a cosine. This makes cosine tuning a natural choice for motor areas that
are close to the motor periphery. Motor areas that are further removed
from motoneurons have less of a reason to display cosine tuning. Cere-
bellar Purkinje cells, for example, are often tuned for a limited range of
movement speeds, and their tuning curves can be bimodal (Coltz, Johnson,
& Ebner, 1999).

6.3 Optimization Models in Motor Control. A number of earlier opti-
mization models explain aspects of motor behavior as emerging from the
minimization of some cost functional. The speed-accuracy trade-off known
as Fitt’s law has been modeled in this way (Meyer, Abrams, Kornblum,
Wright, & Smith, 1988; Hoff, 1992; Harris & Wolpert, 1998). The reaching
movement trajectory that minimizes expected end-point error is computed
under a variety of assumptions about the control system (intermittent versus
continuous, open loop versus closed loop) and the noise scaling properties
(velocity- versus neural-input-dependent). While each model has advan-
tages and disadvantages in fitting existing data, they all capture the ba-
sic logarithmic relationship between target width and movement duration.

14 From this point of view, orientation tuning in V1 is surprising because it does not
arise directly from peripheral properties. An equally surprising and robust phenomenon
in M1 has not yet been found.
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This robustness with respect to model assumptions suggests that Fitt’s law
indeed emerges from error minimization.

Another set of experimental results that optimization models have ad-
dressed are kinematic regularities observed in hand movements (Morasso,
1981; Lacquaniti, Terzuolo, & Viviani, 1983). While a number of physically
relevant cost functions (e.g., minimum time, energy, force, impulse) were
investigated (Nelson, 1983), better reconstruction of the bell-shaped speed
profiles of reaching movements was obtained (Hogan, 1984) by minimizing
squared jerk (derivative of acceleration). Recently, the most accurate recon-
structions of complex movement trajectories were also obtained by mini-
mizing under different assumptions the derivative of acceleration (Todorov
& Jordan, 1998) or torque (Nakano et al., 1999). While these fits to exper-
imental data are rather satisfying, the seemingly arbitrary quantity being
minimized is less so.

The stochastic optimization model of Harris and Wolpert (1998) takes a
more principled approach: it minimizes expected end-point error assum-
ing that the standard deviation of neuromotor noise is proportional to the
mean neural activation. Shouldn’t that result in minimizing force and ac-
celeration, which, as Nelson (1983) showed, yields unrealistic trajectories?
It should, if muscle activation and force were identical, but they are not; in-
stead muscle force is a low-pass-filtered version of activation (Winter, 1990).
As a result, the neural signal under dynamic conditions contains terms re-
lated to the derivative of force, and so the model of Harris and Wolpert
(1998) effectively minimizes a cost that includes jerk or torque change along
with other terms. It will be interesting to find tasks where maximizing accu-
racy and maximizing smoothness make different predictions and test which
prediction is closer to observed trajectories.

The noise model used by Harris and Wolpert (1998) is identical to ours
under isometric conditions. During movement, it is not known whether
noise magnitude is better fit by mean force (as in the present model) or
muscle activation (as in Harris & Wolpert, 1998). Our conclusions should
not be sensitive to such differences, since we do not rely on muscle low-pass
filtering to explain cosine tuning. Nevertheless, it is important to establish
experimentally the properties of neuromotor noise during movement.

Appendix

The crucial fact underlying the proof of theorem 1 is that the linear span
L of the functions g1,...,N is orthogonal to the hyperplane P defined by the
equality constraints in equation 4.1.

Lemma 1. For any a1,...,N ∈ R and u, v ∈ R(Ä) satisfying 〈u, g1,...,N〉 =
〈v, g1,...,N〉 = r1,...,N, the R(Ä) function l(α) = ∑

n angn(α) is orthogonal to
u− v, that is, 〈u− v, l〉 = 0.
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µ*(α)

µ~(α)

∆(α)

α ∈  F α ∈  F

Figure 6: Illustration of the functions µ∗(α), µ̃(α),1(α) in theorem 1, case 2,
with

∑
angn(α) = cos(α). The shaded region is the setzwhere cos(α) < 0. The

key point is that 1(α)µ̃(α) ≤ 0 for all α.

Proof. 〈u − v, l〉 = 〈u,∑n angn〉 − 〈v,
∑

n angn〉 =
∑

n an(〈u, gn〉 − 〈v, gn〉) =∑
n an(rn − rn) = 0.

The quantity 〈µ+λ,µ+λ〉we want to minimize is a generalized length,
the solution µ is constrained to the hyperplane P orthogonal to L, and L
contains the origin 0. Thus, we would intuitively expect the optimal solu-
tion µ∗ to be close to the intersection ofP andL, that is, to resemble a linear
combination of g1,...,N. The nonnegativity constraint on µ introduces com-
plications that are handled in case 2 (see Figure 6). The proof of theorem 1
is the following:

Proof of Theorem 1. Letµ = µ∗+1 for some1 ∈ R(Ä) be another function
satisfying all constraints in equation 4.1. Using the linearity and symmetry
of the dot product, 〈µ+λ,µ+λ〉 = 〈µ∗ +λ,µ∗ +λ〉+2〈µ∗ +λ,1〉+〈1,1〉.
The term 〈1,1〉 is always nonnegative and becomes 0 only when1(α) = 0
for all α. Thus, to prove thatµ∗ is the unique optimal solution, it is sufficient
to show that 〈µ∗ + λ,1〉 ≥ 0. We have to distinguish two cases, depending
on whether the term in the truncation brackets is positive for all α:

Case 1. Suppose
∑

n angn(α) ≥ λ for allα ∈ Ä, that is,µ∗(α)=∑n angn(α)−
λ. Then 〈µ∗ + λ,1〉 = 〈∑n angn, µ− µ∗〉 = 0 from the lemma 1.

Case 2. Consider the function µ̃(α) = d∑n angn(α) − λe, which has the
property that µ̃+µ∗ =∑n angn−λ. With this definition and using lemma 1,
0 = 〈∑n angn, µ − µ∗〉 = 〈µ̃ + µ∗ + λ,1〉 = 〈µ̃,1〉 + 〈µ∗ + λ,1〉. Then
〈µ∗ + λ,1〉 = −〈µ̃,1〉, and it is sufficient to show that 〈µ̃,1〉 ≤ 0. Let
z ⊂ Ä be the subset of Ä on which

∑
n angn(α) < λ. Then µ̃(α ∈ z) < 0

and µ̃(α /∈ z) = 0. Since µ = µ∗ + 1 satisfies µ ≥ 0 and by definition
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µ∗(α ∈ z) = 0, we have 1(α ∈ z) ≥ 0. The dot product 〈µ̃,1〉 can be
evaluated by parts on the two sets α ∈ z and α /∈ z. Since µ̃(α)1(α) ≤ 0
for α ∈ z, and µ̃(α)1(α) = 0 for α /∈ z, it follows that 〈µ̃,1〉 ≤ 0.
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