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Abstract

We present a theory of compositionality in stochastic optimal control, showing
how task-optimal controllers can be constructed from certain primitives. The
primitives are themselves feedback controllers pursuing their own agendas. They
are mixed in proportion to how much progress they are making towards their agen-
das and how compatible their agendas are with the present task. The resulting
composite control law is provably optimal when the problem belongs to a certain
class. This class is rather general and yet has a number of unique properties – one
of which is that the Bellman equation can be made linear even for non-linear or
discrete dynamics. This gives rise to the compositionality developed here. In the
special case of linear dynamics and Gaussian noise our framework yields analyt-
ical solutions (i.e. non-linear mixtures of LQG controllers) without requiring the
final cost to be quadratic. More generally, a natural set of control primitives can
be constructed by applying SVD to Green’s function of the Bellman equation. We
illustrate the theory in the context of human arm movements. The ideas of opti-
mality and compositionality are both very prominent in the field of motor control,
yet they have been difficult to reconcile. Our work makes this possible.

1 Introduction

Stochastic optimal control is of interest in many fields of science and engineering, however it re-
mains hard to solve. Dynamic programming [1] and reinforcement learning [2] work well in dis-
crete state spaces of reasonable size, but cannot handle continuous high-dimensional state spaces
characteristic of complex dynamical systems. A variety of function approximation methods are
available [3, 4], yet the shortage of convincing results on challenging problems suggests that exist-
ing approximation methods do not scale as well as one would like. Thus there is need for more
efficient methods. The idea we pursue in this paper is compositionality. With few exceptions [5, 6]
this good-in-general idea is rarely used in optimal control, because it is unclear what/how can be
composed in a way that guarantees optimality of the resulting control law.

Our second motivation is understanding how the brain controls movement. Since the brain remains
pretty much the only system capable of solving truly complex control problems, sensorimotor neu-
roscience is a natural (albeit under-exploited) source of inspiration. To be sure, a satisfactory un-
derstanding of the neural control of movement is nowhere in sight. Yet there exist theoretical ideas
backed by experimental data which shed light on the underlying computational principles. One such
idea is that biological movements are near-optimal [7, 8]. This is not surprising given that motor
behavior is shaped by the processes of evolution, development, learning and adaptation, all of which
resemble iterative optimization. Precisely what algorithms enable the brain to approach optimal per-
formance is not known, however a clue is provided by another prominent idea: compositionality. For
about a century, researchers have been talking about motor synergies or primitives which somehow
simplify control [9–11]. The implied reduction in dimensionality is now well documented [12–14].
However the structure and origin of the hypothetical primitives, the rules for combining them, and
the ways in which they actually simplify the control problem remain unclear.
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2 Stochastic optimal control problems with linear Bellman equations

We will be able to derive compositionality rules for first-exit and finite-horizon stochastic optimal
control problems which belong to a certain class. This class includes both discrete-time [15–17]
and continuous-time [17–19] formulations, and is rather general, yet affords substantial simplifi-
cation. Most notably the optimal control law is found analytically given the optimal cost-to-go,
which in turn is the solution to a linear equation obtained from the Bellman equation by exponen-
tiation. Linearity implies compositionality as will be shown here. It also makes a number of other
things possible: finding the most likely trajectories of optimally-controlled stochastic systems via
deterministic methods; solving inverse optimal control problems via convex optimization; applying
off-policy learning in the state space as opposed to the state-action space; establishing duality be-
tween stochastic optimal control and Bayesian estimation. An overview can be found in [17]. Here
we only provide the background needed for the present paper.

The discrete-time problem is defined by a state cost q (x) ≥ 0 describing how (un)desirable different
states are, and passive dynamics x0 ∼ p (·|x) characterizing the behavior of the system in the absence
of controls. The controller can impose any dynamics x0 ∼ u (·|x) it wishes, however it pays a price
(control cost) which is the KL divergence between u and p. We further require that u (x0|x) = 0
whenever p (x0|x) = 0 so that KL divergence is well-defined. Thus the discrete-time problem is

dynamics: x0 ∼ u (·|x)
cost rate: c (x, u (·|x)) = q (x) +KL (u (·|x) ||p (·|x))

Let I denote the set of interior states and B the set of boundary states, and let f (x) ≥ 0, x ∈ B be
a final cost. Let v (x) denote the optimal cost-to-go, and define the desirability function

z (x) = exp (−v (x))

Let G denote the linear operator which computes expectation under the passive dynamics:

G [z] (x) = Ex0∼p(·|x)z (x
0)

For x ∈ I it can be shown that the optimal control law u∗ (·|x) and the desirability z (x) satisfy

optimal control law: u∗ (x0|x) = p (x0|x) z (x0)
G [z] (x)

linear Bellman equation: exp (q (x)) z (x) = G [z] (x)
(1)

On the boundary x ∈ B we have z (x) = exp (−f (x)). The linear Bellman equation can be written
more explicitly in vector-matrix notation as

zI =MzI +NzB (2)

where M = diag (exp (−qI))PII and N = diag (exp (−qI))PIB . The matrix M is guaranteed
to have spectral radius less than 1, thus the simple iterative solver zI ←MzI +NzB converges.

The continuous-time problem is a control-affine Ito diffusion with control-quadratic cost:

dynamics: dx = a (x) dt+B (x) (udt+ σdω)

cost rate: c (x,u) = q (x) +
1

2σ2
kuk2

The control u is now a (more traditional) vector and ω is a Brownian motion process. Note that
the control cost scaling by σ−2, which is needed to make the math work, can be compensated by
rescaling q. The optimal control law u∗ (x) and desirability z (x) satisfy

optimal control law: u∗ (x) = σ2B (x)
T zx (x)

z (x)

linear HJB equation: q (x) z (x) = L [z] (x)
(3)

where the 2nd-order linear differential operator L is defined as

L [z] (x) = a (x)T zx (x) +
σ2

2
tr
³
B (x)B (x)T zxx (x)

´
2



The relationship between the two formulations above is not obvious, but nevertheless it can be
shown that the continuous-time formulation is a special case of the discrete-time formulation. This
is done by defining the passive dynamics p(h) (·|x) as the h-step transition probability density of
the uncontrolled diffusion (or an Euler approximation to it), and the state cost as q(h) (x) = hq (x).
Then, in the limit h → 0, the integral equation exp

¡
q(h)

¢
z = G(h) [z] reduces to the differential

equation qz = L [z]. Note that for small h the density p(h) (·|x) is close to Gaussian. From the
formula for KL divergence between Gaussians, the KL control cost in the discrete-time formulation
reduces to the quadratic control cost in the continuous-time formulation.

The reason for working with both formulations and emphasizing the relationship between them is
that most problems of practical interest are continuous in time and space, yet the discrete-time for-
mulation is easier to work with. Furthermore it leads to better numerical stability because integral
equations are better behaved than differential equations. Note also that the discrete-time formula-
tion can be used in both discrete and continuous state spaces, although the latter require function
approximation in order to solve the linear Bellman equation [20].

3 Compositionality theory

The compositionality developed in this section follows from the linearity of equations (1, 3). We
focus on first-exit problems which are more general. An example involving a finite-horizon problem
will be given later. Consider a collection of K optimal control problems in our class which all have
the same dynamics – p (·|x) in discrete time or a (x) , B (x) , σ in continuous time – the same state
cost rate q (x) and the same sets I and B of interior and boundary states. These problems differ only
in their final costs fk (x). Let zk (x) denote the desirability function for problem k, and u∗k (·|x) or
u∗k (x) the corresponding optimal control law. The latter will serve as primitives for constructing
optimal control laws for new problems in our class. We will call the K problems we started with
component and the new problem composite.

Suppose the final cost for the composite problem is f (x), and there exist weights wk such that

f (x) = − log
³PK

k=1wk exp (−fk (x))
´

(4)

Thus the functions fk (x) define a K-dimensional manifold of composite problems. The above
condition ensures that for all boundary/terminal states x ∈ B we have

z (x) =
PK

k=1wkzk (x) (5)

Since z is the solution to a linear equation, if (5) holds on the boundary then it must hold everywhere.
Thus the desirability function for the composite problem is a linear combination of the desirability
functions for the component problems. The weights in this linear combination can be interpreted as
compatibilities between the control objectives in the component problems and the control objective
in the composite problem. The optimal control law for the composite problem is given by (1, 3).

The above construction implies that both z and zk are everywhere positive. Since z is defined as an
exponent, it must be positive. However this is not necessary for the components. Indeed if

f (x) = − log
³PK

k=1wkzk (x)
´

(6)

holds for all x ∈ B, then (5) and z (x) > 0 hold everywhere even if zk (x) ≤ 0 for some k and x.
In this case the zk’s are no longer desirability functions for well-defined optimal control problems.
Nevertheless we can think of them as generalized desirability functions with similar meaning: the
larger zk (x) is the more compatible state x is with the agenda of component k.

3.1 Compositionality of discrete-time control laws

When zk (x) > 0 the composite control law u∗ can be expressed as a state-dependent convex
combination of the component control laws u∗k. Combining (5, 1) and using the linearity of G,

u∗ (x0|x) =
X
k

wkG [zk] (x)P
swsG [zs] (x)

p (x0|x) zk (x0)
G [zk] (x)

3



The second term above is u∗k. The first term is a state-dependent mixture weight which we denote
mk (x). The composition rule for optimal control laws is then

u∗ (·|x) =
P

kmk (x)u
∗
k (·|x) (7)

Using the fact that zk (x) satisfies the linear Bellman equation (1) and q (x) does not depend on k,
the mixture weights can be simplified as

mk (x) =
wkG [zk] (x)P
swsG [zs] (x)

=
wkzk (x)P
swszs (x)

(8)

Note that
P

kmk (x) = 1 and mk (x) > 0.

3.2 Compositionality of continuous-time control laws

Substituting (5) in (3) and assuming zk (x) > 0, the control law given by (3) can be written as

u∗ (x) =
X
k

wkzk (x)P
swszs (x)

∙
σ2

zk (x)
B (x)T

∂

∂x
zk (x)

¸
The term in brackets is u∗k (x). We denote the first term with mk (x) as before:

mk (x) =
wkzk (x)P
swszs (x)

Then the composite optimal control law is
u∗ (x) =

P
kmk (x)u

∗
k (x) (9)

Note the similarity between the discrete-time result (7) and the continuous-time result (9), as well as
the fact that the mixing weights are computed in the same way. This is surprising given that in one
case the control law directly specifies the probability distribution over next states, while in the other
case the control law shifts the mean of the distribution given by the passive dynamics.

4 Analytical solutions to linear-Gaussian problems with non-quadratic costs

Here we specialize the above results to the case when the components are continuous-time linear
quadratic Gaussian (LQG) problems of the form

dynamics: dx = Axdt+B (udt+ σdω)

cost rate: c (x,u) =
1

2
xTQx+

1

2σ2
kuk2

The component final costs are quadratic:

fk (x) =
1

2
xTFkx

The optimal cost-to-go function for LQG problems is known to be quadratic [21] in the form

vk (x, t) =
1

2
xTVk (t)x+ αk (t)

At the predefined final time T we have Vk (T ) = Fk and αk (T ) = 0. The optimal control law is

u∗k (x, t) = −σ2BTVk (t)x

The quantities Vk (t) and αk (t) can be computed by integrating backward in time the ODEs

−V̇k = Q+ATVk + VkA
T − VkΣVk (10)

−α̇k =
1

2
tr (ΣVk)

Now consider a composite problem with final cost

f (x) = − log
µP

kwk exp

µ
−1
2
xTFkx

¶¶
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Figure 1: Illustration of compositionality in the LQG framework. (A) An LQG problem with
quadratic cost-to-go and linear feedback control law. T = 10 is the final time. (B, C) Non-LQG
problems solved analytically by mixing the solutions to multiple LQG problems.

This composite problem is no longer LQG because it has non-quadratic final cost (i.e. log of mix-
ture of Gaussians), and yet we will be able to find a closed-form solution by combining multiple
LQG controllers. Note that, since mixtures of Gaussians are universal function approximators, we
can represent any desired final cost to within arbitrary accuracy given enough LQG components.
Applying the results from the previous section, the desirability for the composite problem is

z (x, t) =
P

kwk exp

µ
−1
2
xTVk (t)x− αk (t)

¶
The optimal control law can now be obtained directly from (3), or via composition from (9). Note
that the constants αk (t) do not affect the component control laws (and indeed are rarely computed
in the LQG framework) however they affect the composite control law through the mixing weights.

We illustrate the above construction on a scalar example with integrator dynamics dx = udt+0.2dω.
The state cost rate is q (x) = 0. We set wk = 1 for all k. The final time is T = 10. The component
final costs are of the form

fk (x) =
dk
2
(x− ck)

2

In order to center these quadratics at ck rather than 0 we augment the state: x = [x; 1]. The matrices
defining the problem are then

A =

∙
0 0
0 0

¸
, B =

∙
1
0

¸
, Fk = dk

∙
1 −ck
−ck c2k

¸

The ODEs (10) are integrated using ode45 in Matlab. Fig 1 shows the optimal cost-to-go func-
tions v (x, t) = − log (z (x, t)) and the optimal control laws u∗ (x, t) for the following problems:
{c = 0; d = 5}, {c = −1, 0, 1; d = 5, 0.1, 15}, and {c = −1.5 : 0.5 : 1.5; d = 5}. The first prob-
lem (Fig 1A) is just an LQG. As expected the cost-to-go is quadratic and the control law is linear
with time-varying gain. The second problem (Fig 1B) has a multimodal cost-to-go. The control law
is no longer linear but instead has an elaborate shape. The third problem (Fig 1C) resembles robust
control in the sense that there is a f1at region where all states are equally good. The corresponding
control law uses feedback to push the state into this f1at region. Inside the region the controller
does nothing, so as to save energy. As these examples illustrate, the methodology developed here
significantly extends the LQG framework while preserving its tractability.
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5 Constructing minimal sets of primitives via SVD of Green’s function

We showed how composite problems can be solved once the solutions to the component problems
are available. The choice of component boundary conditions defines the manifold (6) of problems
that can be solved exactly. One can use any available set of solutions as components, but is there a
set which is in some sense minimal? Here we offer an answer based on singular value decomposition
(SVD). We focus on discrete state spaces; continuous spaces can be discretized following [22].

Recall that the vector of desirability values z (x) at interior states x ∈ I, which we denoted zI ,
satisfies the linear equation (2). We can write the solution to that equation explicitly as

zI = G zB

where G = (diag (exp (qI))− PII)
−1

PIB. The matrix G maps values on the boundary to values
on the interior, and thus resembles Green’s function for linear PDEs. A minimal set of primitives
corresponds to the best low-rank approximation to G. If we define "best" in terms of least squares,
a minimal set of R primitives is obtained by approximating G using the top R singular values:

G ≈ USV T

S is an R-by-R diagonal matrix, U and V are |I|-by-R and |B|-by-R orthonormal matrices. If we
now set zB = V·r, which is the r-th column of V , then

zI = G zB ≈ USV TV·r = SrrU·r

Thus the right singular vectors (columns of V ) are the component boundary conditions, while the
left singular vectors (columns of U ) are the component solutions.

The above construction does not use knowledge of the family of composite problems we aim to
solve/approximate. A slight modification makes it possible to incorporate such knowledge. Let the
family in question have parametric final costs f (x, θ). Choose a discrete set {θk}k=1···K of values
of the parameter θ, and form the |B|-by-K matrixΦwith elementsΦik = exp (−f (xi, θk)), xi ∈ B.
As in (4), this choice restricts the boundary conditions that can be represented to zB = Φw, where
w is a K-dimensional vector. Now apply SVD to obtain a rank-R approximation to the matrix GΦ
instead of G. We can set R ¿ K to achieve significant reduction in the number of components.
Note that GΦ is smaller than G so the SVD here is faster to compute.

We illustrate the above approach using a discretization of the following 2D problem:

a (x) =

∙
−0.2 x2
0.2 |x1|

¸
, B = I, σ = 1, q (x) = 0.1

The vector field in Fig 2A illustrates the function a (x). To make the problem more interesting
we introduce an L-shaped obstacle which can be hit without penalty but cannot be penetrated. The
domain is a disk centered at (0, 0) with radius

√
21. The constant q implements a penalty for the

time spent inside the disk. The discretization involves |I| = 24520 interior states and |B| = 4163
boundary states. The parametric family of final costs is

f (x, θ) = 13− 13 exp (5 cos (atan 2 (x2, x1)− θ)− 5)
This is an inverted von Mises function specifying the desired location where the state should exit
the disk. f (x, 0) is plotted in red in Fig 2A. The set {θk} includes 200 uniformly spaced values of
θ. The SVD components are constructed using the second method above (although the first method
gives very similar results). Fig 2B compares the solution obtained with a direct solver (i.e. using
the exact G) for θ = 0, and the solutions obtained using R = 70 and R = 40 components. The
desirability function z is well approximated in both cases. In fact the approximation to z looks
perfect with much fewer components (not shown). However v = − log (z) is more difficult to
approximate. The difficulty comes from the fact that the components are not always positive, and
as a result the composite solution is not always positive. The regions where that happens are shown
in white in Fig 2B. In those regions the approximation is undefined. Note that this occurs only
near the boundary. Fig 2C shows the first 10 components. They resemble harmonic functions.
It is notable that the higher-order components (corresponding to smaller singular values) are only
modulated near the boundary – which explains why the approximation errors in Fig 2B are near the
boundary. In summary, a small number of components are sufficient to construct composite control
laws which are near-optimal in most of the state space. Accuracy at the boundary requires additional
components. Alternatively one could use positive SVD and obtain not just positive but also more
localized components (as we have done in preliminary work).
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Figure 2: Illustration of primitives obtained via SVD. (A) Passive dynamics and cost. (B) Solutions
obtained with a direct solver and with different numbers of primitives. (C) Top ten primitives zk (x).
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Figure 3: Preliminary model of arm movements. (A) Hand paths of different lengths. Red dots
denote start points, black circles denote end points. (B) Speed profiles for the movements shown
in (A). Note that the same controller generates movements of different duration. (C) Hand paths
generated by a composite controller obtained by mixing the optimal controllers for two targets. This
controller "decides" online which target to go to.
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6 Application to arm movements

We are currently working on an optimal control model of arm movements based on compositionality.
The dynamics correspond to a 2-link arm moving in the horizontal plane, and have the form

τ =M (θ) θ̈ + n
³
θ, θ̇
´

θ contains the shoulder and elbow joint angles, τ is the applied torque, M is the configuration-
dependent inertia, and n is the vector of Coriolis, centripetal and viscous forces. Model parameters
are taken from the biomechanics literature. The final cost f is a quadratic (in Cartesian space) cen-
tered at the target. The running state cost is q = const encoding a penalty for duration. The above
model has a 4-dimensional state space (θ, θ̇). In order to encode reaching movements, we introduce
an additional state variable s which keeps track of how long the hand speed (in Cartesian space)
has remained below a threshold. When s becomes sufficiently large the movement ends. This aug-
mentation is needed in order to express reaching movements as a first-exit problem. Without it the
movement would stop whenever the instantaneous speed becomes zero – which can happen at rever-
sal points as well as the starting point. Note that most models of reaching movements have assumed
predefined final time. However this is unrealistic because we know that movement duration scales
with distance, and furthermore such scaling takes place online (i.e. movement duration increases if
the target is perturbed during the movement).

The above second-order system is expressed in general first-order form, and then the passive dy-
namics corresponding to τ = 0 are discretized in space and time. The time step is h = 0.02 sec.
The space discretization uses a grid with 514x3 points. The factor of 3 is needed to discretize the
variable s. Thus we have around 20 million discrete states, and the matrix P characterizing the
passive dynamics is 20 million - by - 20 million. Fortunately it is very sparse because the noise (in
torque space) cannot have a large effect within a single time step: there are about 50 non-zero entries
in each row. Our simple iterative solver converges in about 30 iterations and takes less than 2 min
of CPU time, using custom multi-threaded C++ code.

Fig 3A shows hand paths from different starting points to the same target. The speed profiles for
these movements are shown in Fig 3B. The scaling with amplitude looks quite realistic. In partic-
ular, it is known that human reaching movements of different amplitude have similar speed profiles
around movement onset, and diverge later. Fig 3C shows results for a composite controller ob-
tained by mixing the optimal control laws for two different targets. In this example the targets are
sufficiently far away and the final costs are sufficiently steep, thus the mixing yields a switching con-
troller instead of an interpolating controller. Depending on the starting point, this controller takes
the hand to one or the other target, and can also switch online if the hand is perturbed. An inter-
polating controller can be created by placing the targets closer or making the component final costs
less steep. While these results are preliminary we find them encouraging. In future work we will
explore this model in more detail and also build a more realistic model using 3rd-order dynamics
(incorporating muscle time constants). We do not expect to be able to discretize the latter system,
but we are in the process of making a transition from discretization to function approximation [20].

7 Summary and relation to prior work

We developed a theory of compositionality applicable to a general class of stochastic optimal control
problems. Although in this paper we used simple examples, the potential of such compositionality
to tackle complex control problems seems clear.

Our work is somewhat related to proto value functions (PVFs) which are eigenfunctions of the
Laplacian [5], i.e. the matrix I −PII . While the motivation is similar, PVFs are based on intuitions
(mostly from grid worlds divided into rooms) rather than mathematical results regarding optimality
of the composite solution. In fact our work suggests that PVFs should perhaps be used to approx-
imate the exponent of the value function instead of the value function itself. Another difference is
that PVFs do not take into account the cost rate q and the boundary B. This sounds like a good
thing but it may be too good, in the sense that such generality may be the reason why guarantees
regarding PVF optimality are lacking. Nevertheless the ambitious agenda behind PVFs is certainly
worth pursuing, and it will be interesting to compare the two approaches in more detail.

8



Finally, another group [6] has developed similar ideas independently and in parallel. Although
their paper is restricted to combination of LQG controllers for finite-horizon problems, it contains
very interesting examples from complex tasks such as walking, jumping and diving. A particularly
important point made by [6] is that the primitives can be only approximately optimal (in this case
obtained via local LQG approximations), and yet their combination still produces good results.
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