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Abstract

Behavioral goals are achieved reliably and repeatedly with movements
rarely reproducible in their detail. Here we offer an explanation: we show
that not only are variability and goal achievement compatible, but indeed
that allowing variability in redundant dimensions is the optimal control
strategy in the face of uncertainty. The optimal feedback control laws for
typical motor tasks obey a “minimal intervention” principle: deviations
from the average trajectory are only corrected when they interfere with
the task goals. The resulting behavior exhibits task-constrained variabil-
ity, as well as synergetic coupling among actuators—which is another
unexplained empirical phenomenon.

1 Introduction

Both the difficulty and the fascination of the motor coordination problem lie in the ap-
parent conflict between two fundamental properties of the motor system: the ability to
accomplish its goal reliably and repeatedly, and the fact that it does so with variable move-
ments [1]. More precisely, trial-to-trial fluctuations in individual degrees of freedom are on
average larger than fluctuations in task-relevant movement parameters—motor variability
is constrained to a redundant or “uncontrolled” manifold [16] rather than being suppressed
altogether. This pattern has now been observed in a long list of behaviors [1, 6, 16, 14].
In concordance with such naturally occurring variability, experimentally induced perturba-
tions [1, 3, 12] are compensated in a way that maintains task performance rather than a
specific stereotypical movement pattern.

This body of evidence is fundamentally incompatible with standard models of motor co-
ordination that enforce a strict separation between trajectory planning and trajectory exe-
cution [2, 8, 17, 10]. In such serial planning/execution models, the role of the planning
stage is to resolve the redundancy inherent in the musculo-skeletal system, by replacing
the behavioral goal (achievable via infinitely many movement trajectories) with a specific
“desired trajectory.” Accurate execution of the desired trajectory guarantees achievement
of the goal, and can be implemented with relatively simple trajectory-tracking algorithms.
While this approach is computationally viable (and often used in engineering), the numer-
ous observations of task-constrained variability and goal-directed corrections indicate that
the online execution mechanisms are able to distinguish, and selectively enforce, the details
that are crucial for the achievement of the goal. This would be impossible if the behavioral



goal were replaced with a specific trajectory.

Instead, these observations imply a very different control scheme, one which pursues the
behavioral goal more directly. Efforts to delineate such a control scheme have led to the
idea of motor synergies, or high-level “control knobs,” that have invariant and predictable
effects on the task-relevant movement parameters despite variability in individual degrees
of freedom [9, 11]. But the computational underpinnings of such an approach—how the
synergies appropriate for a given task and plant can be constructed, what control scheme is
capable of utilizing them, and why the motor system should prefer such a control scheme
in the first place—remain unclear. This general form of hierarchical control implies corre-
lations among the control signals sent to multiple actuators (i.e., synergetic coupling) and
a corresponding reduction in control space dimesionality. Such phenonema have indeed
been observed [4, 18], but the relationship to the hypothetical functional synergies remains
to be established.

In this paper we aim to resolve the apparent conflict at the heart of the motor coordina-
tion problem, and clarify the relationship between variability, task goals, and motor syn-
ergies. We treat motor coordination within the framework of stochastic optimal control,
and postulate that the motor system approximates the best possible control scheme for a
given task. Such a control scheme will generally take the form of a feedback control law.
Whenever the task allows redundant solutions, the initial state of the plant is uncertain, the
consequences of the control signals are uncertain, and the movement duration exceeds the
shortest sensory-motor delay, optimal performance is achieved by a feedback control law
that resolves redundancy moment-by-moment—using all available information to choose
the most advantageous course of action under the present circumstances. By postponing
all decisions regarding movement details until the last possible moment, this control law
takes advantage of the opportunities for more successful task completion that are con-
stantly being created by unpredictable fluctuations away from the average trajectory. Such
exploitation of redundancy not only results in higher performance, but also gives rise to
task-constrained variability and motor synergies—the phenomena we seek to explain.

The present paper is related to a recent publication targeted at a neuroscience audience
[14]. Here we provide a number of technical results missing from [14], and emphasize the
aspects of our work that are most likely to be of interest to the computational modeling
community.

2 The Minimal Intervention principle

Our general explanation of the above phenomena follows from an intuitive property of op-
timal feedback controllers which we call the “minimal intervention” principle: deviations
from the average trajectory are corrected only when they interfere with task performance.

If this principle holds, and the noise perturbs the system in all directions, the interplay of
the noise and control processes will result in variability which is larger in task-irrelevant
directions. At the same time, the fact that certain deviations are not being corrected im-
plies that the corresponding control subspace is not being used—which is the phenomenon
typically interpreted as evidence for motor synergies [4, 18].

Why should the minimum intervention principle hold? An optimal feedback controller has
nothing to gain from correcting task-irrelevant deviations, because its only concern is task
performance and by definition such deviations do not interfere with performance. On the
other hand, generating a corrective control signal can be detrimental, because: 1) the noise
in the motor system is known to be multiplicative [13] and therefore could increase; 2) the
cost being minimized most likely includes a control-dependent effort penalty which could
also increase.



We now formalize the notions of “redundancy” and “correction,” and show that for a sur-
prisingly general class of systems they are indeed related—as our intuition suggests.

2.1 Local analysis of a general class of optimal control problems

Redundancy is not easy to define. Consider the task of reaching, which requires the finger-
tip to be at a specified target at some point in time T . At time T , all arm configurations for
which the fingertip is at the target are redundant. But at times different from T this geo-
metric approach is insufficient to define redundancy. Therefore we follow a more general
approach.

Consider a system with state x (t) ∈ Rm, control u (t) ∈ Rn, instantaneous scalar cost
c (t,x (t) ,u (t)) ≥ 0, and dynamics

dx = f (t,x,u) dt+G (t,x,u) dε

where ε (t) ∈ Rk is multidimensional standard Brownian motion. Control signals are
generated by a feedback control law, which can be any mapping of the form u (t) =
π (t,x (t)). The analysis below heavily relies on properties of the optimal cost-to-go func-
tion, defined as

v∗ (t,x) = min
π(·,·)

Ex(·)

Z T

t

c (s,x (s) ,π (s,x (s))) ds

where the minimum is achieved by the optimal control law π∗ (t,x (t)).

Suppose that in a given task the system of interest (driven by the optimal control law)
generates an average trajectory x (t). On a given trial, let ∆x be the deviation form the
average trajectory at time t. Let ∆v∗ be the change in the optimal cost-to-go v∗ due to
the deviation ∆x; i.e., ∆v∗ (∆x) = v∗ (x+∆x) − v∗ (x). Now we are ready to define
redundancy: the deviation ∆x is redundant iff ∆v∗ (∆x) = 0. Note that our definition
reduces to the intuitive geometric definition at the end of the movement, where the cost
function c and optimal cost-to-go v∗ are identical.

To define the notion of “correction,” we need to separate the passive and active dynamics:

f (t,x,u) = a (t,x) +B (t,x)u

The (infinitesimal) expected change in x due to the control u = π∗ (t,x+∆x) can now
be identified: ẋu = B (t,x+∆x)π∗ (t,x+∆x). The corrective action of the control
signal is naturally defined as corr (∆x) = h−ẋu,∆xi.
In order to relate the quantities ∆v∗ (∆x) and corr (∆x), we obviously need to know
something about the optimal control law π∗. For problems in the above general form, the
optimal control law π∗ (t,x (t)) is given [7] by the minimum

argmin
u

c (t,x,u) + f (t,x,u)T v∗x (t,x) +
1

2
trace

³
G (t,x,u)T v∗xx (t,x)G (t,x,u)

´
where v∗x (t,x) and v∗xx (t,x) are the gradient and Hessian of the optimal cost-to-go func-
tion v∗ (t,x). To be able to minimize this expression explicitly, we will restrict the class of
problems to

G (t,x,u) = [ C1 (t,x)u · · · Ck (t,x)u ]

c (t,x,u) = q (t,x) +
1

2
uTR (t,x)u

The matrix notation means that the ith column of G is Ci (t,x)u. Note that the latter
formulation is still very general, and can represent realistic musculo-skeletal dynamics and
motor tasks.



Using the fact1 that GGT =
Pk

i=1Ciuu
TCTi and trace (UV ) = trace (V U), and elim-

inating terms that do not depend on u, the expression that has to be minimized w.r.t u
becomes

uTB (t,x)
T
v∗x (t,x) +

1

2
uT
µ
R (t,x) +

Xk

i=1
Ci (t,x)

T
v∗xx (t,x)Ci (t,x)

¶
| {z }

Z(t,x)

u

Therefore the optimal control law is

π∗ (t,x) = −Z (t,x)−1B (t,x)T v∗x (t,x)

We now return to the relationship between “redundancy” and “correction.” The time in-
dex t will be suppressed for clarity. We expand the optimal cost-to-go to second order:
v∗ (x+∆x) ≈ v∗ (x+∆x) + ∆xTv∗x (x) + ∆xTv∗xx (x)∆x, also expand its gradient
to first order: v∗x (x+∆x) ≈ v∗x (x) + v∗xx (x)∆x, and approximate all other quantities
as being constant in a small neighborhood of x. The effect of the control signal becomes
ẋu ≈ −B (x)Z (x)−1B (x)T (v∗x (x) + v∗xx (x)∆x). Substituting in the above defini-
tions yields

∆v∗ (∆x) ≈ h∆x,v∗x (x) + v∗xx (x)∆xi
corr (∆x) ≈ h∆x,v∗x (x) + v∗xx (x)∆xiB(x)Z(x)−1B(x)T

where the weighted dot-product notation hx,yiM stands for xTMy.

Thus both ∆v∗ (∆x) and corr (∆x) are dot-products of the same two vectors. When
v∗x (x) + v∗xx (x)∆x = 0 —which can happen for infinitely many ∆x when the Hessian
v∗xx (x) is singular—the deviation is redundant and the optimal controller takes no cor-
rective action. Furthermore, ∆v∗ (∆x) and corr (∆x) are positively correlated because
B (x)Z (x)

−1
B (x)

T is a positive semi-definite matrix2. Thus the optimal controller re-
sists single-trial deviations that take the system to more costly states, and magnifies devia-
tions to less costly states.

This analysis confirms the minimal intervention principle to be a very general property
of optimal feedback controllers, explaining why variability patterns elongated in task-
irrelevant dimensions (as well as synergetic actuator coupling) have been observed in such
a wide range of experiments involving different actuators and behavioral goals.

2.2 Linear-Quadratic-Gaussian (LQG) simulations

The local analysis above is very general, but it leaves a few questions open: i) what happens
when the deviation ∆x is not small; ii) how does the optimal cost-to-go (which defines
redundancy) relate to the cost function (which defines the task); iii) what is the distribution
of states resulting from the sequence of optimal control signals? To address such questions
(and also build models of specific motor control experiments) we need to focus on a class of
control problems for which the optimal control law can actually be found. To that end, we
have modified [15] the extensively studied LQG framework to include the multiplicative
control noise characteristic of the motor system. The control problems studied here and in

1Defining the unit vector ei as having a 1 in position i and 0 in all other positions, we can write
G =

Pk
i=1 Ciue

T
i . Then GGT =

P
i

P
j Ciue

T
i eju

TCT
j =

P
i Ciuu

TCT
i , since eTi ej = δji .

2Z (x) has to be positive semi-definite—or else we could find a control signal that makes the
instantaneous cost negative, and that is impossible by definition. Therefore BZ−1BT is also positive
semi-definite.



the next section are in the form
Dynamics xt+1 = Axt +But + [ C1ut · · · Ckut ] εt
Feedback yt = Hxt + ωt

Cost xTt Qtxt + u
T
t Rut

Note that the system state xt is now partially observable, through noisy sensor readings yt.
When the noise is additive instead of being multiplicative, the optimal control problem has
the well-known solution [5]

π∗t (bxt) = −Ltbxt; bxt+1 = Abxt +But +Kt (yt −Hbxt)
where bxt is an internal estimate of the system state, updated recursively by a Kalman filter.
The sequences of matrices L and K are computed from the associated discrete-time Ricatti
equations [5]. Multiplicative noise complicates matters, but we have found [15] that for
systems with stable passive dynamics a similar control strategy is very close to optimal.
The modified equations for L and K are given in [15]. The optimal cost-to-go function is

v∗t (bxt) = bxTt Stbxt + const
St = Qt +ATSt+1 (A−BLt) ; SN = QN

The Hessian St of the optimal cost-to-go is closely related to the task cost Qt, but also
includes future task costs weighted by the passive (A) and closed-loop (A−BLt) dynam-
ics.

Specific motor control tasks are considered below. Here we generate 100 random problems
in the above form, compute the optimal control law in each case, and correlate the quantities
∆v∗ and corr. As the “dv : corr” curve in Figure 1 shows, they are positively correlated at
all times. We also show in Figure 1 that the Hessian of the optimal cost-to-go has similar
shape to the task cost (“dv : dq” curve), and that the state covariance is smaller along
dimensions where the task cost is larger; i.e., the correlation “dcov : dq” is negative. See
the figure legend for details.
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Figure 1: A,B,C,H,R,Q were generated randomly, with the restiction that A has sin-
gular values less than 1 (i.e. the passive dynamics is stable); the last component of the
state is 1 (for similarity with motor control tasks), R and Q are positive semi-definite,
and Qt = Q t

N . For each problem (N = 50) and each point in time t, we gen-
erated 100 random unit vector di and scaled them by mean(sqrt(svd(cov(x)))). Then
dvi , (di + x)

T
S (di + x) − xTSx, dqi , (di + x)

T
Q (di + x) − xTQx, dcovi ,

(di + x)
T cov (x) (di + x) − xTcov (x)x, corri , diTBL (di + x). The notation ”dv :

dq” stands for the correlation between the dvi and the dqi, etc.



Figure 2: Simulations of motor control tasks – see text.

3 Applications to motor coordination

We have used the modified LQG framework to model a wide range of specific motor control
tasks [14, 15], and always found that optimal feedback controllers generate variability that
is elongated in redundant dimensions. Here we illustrate two such models. The first model
(Figure 2, Bimanual Tasks) includes two 1D point masses with positions X1 and X2, each
driven with a force actuator whose output is a noisy second-order low-pass filtered version
of the corresponding control signal. The feedback contains noisy position, velocity, and
force information—delayed by 50 msec (by augmenting the system state with a sequence
of recent sensor readings). The “ Difference” task requires the two points to start moving
20cm apart, and stop at identical but unspecified locations. The covariance of the final
state is elongated in the task-irrelevant dimension: the two points always stop close to each
other, but the final location can vary substantially from trial to trial. A related phenomenon
has been observed in the more complex bimanual task of inserting a pointer in a cup [6].
We now modify the task: in “Sum,” the two points start at the same location and have
to stop so that the midpoint between them is at zero. Note that the state covariance is
reoriented accordingly. We also illustrate a Via Point task, where a 2D point mass has to
pass through a sequence of two intermediate targets and stop at a final target (tracing an
S-shaped curve). Variability is minimal at the via points. Furthermore, when one via point
is made smaller (i.e., the weight of the corresponding positional constraint is increased),
the variability decreases at that point. Due to space limitations, we refer the reader to [14]
for details of the models. In [14] we also report a via point experiment that closely matches
the predicted effect.

4 Multi-attribute costs and desired trajectory tracking

As we stated earlier, replacing the task goal with a desired trajectory (which achieves the
goal if executed precisely) is generally suboptimal. A number of examples of such subop-
timality are provided in [14]. Here we present a more general view of desired trajectory
tracking which clarifies its relationship to optimal control.

Desired trajectory tracking can be incorporated in the present framework by using a
modified cost, one that specifies a desired state at each point in time, and penalizes the
deviations from that state. Such a modified cost would normally include the original task
cost (e.g., the terms that specify the desired terminal state), but also a large number of



additional terms that do not need to be minimized in order to accomplish the actual task.
This raises the question: what happens to the expected values of the terms in the original
cost, when we attempt to minimize other costs simultaneously? Intuitively, one would
expect the original costs to increase (relative to the costs obtained by the task-optimal
controller). The geometric argument below formalizes these ideas, and confirms our
intuition.
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Consider a family of optimal control problems parameterized by the vector w, with
cost functions cw (t,x,u) =

Pd
i=1wici (t,x,u). Here ci are different component

costs, and wi are the corresponding non-negative weights. Without loss of generality
we can assume that

P
i w

2
i = 1, i.e., the weight vector w ∈ W ⊂ Rd lies in the

positive quadrant of the unit sphere. Let πw (t,x) be an optimal control law3, and
p (w) ∈ P ⊂ Rd be the vector of expected component costs achieved by πw; i.e.,

pi (w) = Ex(.)

Z T

0

ci (t,x (t) ,π
w (t,x (t))) dt. Consider a weight vector w and its cor-

responding p = p (w), such that the mapping p (w) is locally smooth and invertible. Then
we can define the inverse mappingw (p) from the expected component cost manifold P to
the weight manifold W , as illustrated in Figure 3.

From the definitions of cw and pi, the total expected cost achieved by πw is hw (p) ,pi.
Sinceπw is an optimal control law for the problem defined by the weight vectorw, no other
control law can achieve a smaller total expected cost, and so hw (p) ,pi ≤ w (p) ,p#®
for all p# ∈ P . Therefore, if we construct the d − 1 dimensional hyperplane H(p) that
contains p and is orthogonal to w (p), the entire manifold P has to lie in the half-space
not containing the origin. Thus H(p) is tangent to the manifold P at point p, P has
non-negative curvature, and the unit vector n (p) which is normal to P at p satisfies4

n (p) = w (p).

Let p (α) ∈ P , α ∈ R be a parametric curve that passes through the point of interest p:
p (0) = p. Define n (α) = n (p (α)) and w (α) = w (p (α)). By differentiating p (α) at
α = 0 we obtain the tangent p0 to the curve p (α) at p. Since n is normal to P , we have
hn,p0i = 0. Differentiating the latter equality once again yields hn,p00i + hn0,p0i = 0.
The non-negative curvature of P implies hn,p00i ≥ 0; i.e., the tangent p0 cannot turn away
from the normal n without p crossing the hyperplane H. Therefore hn0,p0i ≤ 0, and since

3If we assume that the optimal control law is unique, all inequalities below become strict.
4For a general 2D manifold P embedded in R3, the mapping P → W on the unit sphere W

that satisfies n (p) = w (p) is known as the Gauss map, and plays an important role in surface
differential geometry.



n = w, we have hw0,p0i ≤ 0.
The above result means that whenever we change the weight vector w, the corresponding
vector p (w) of expected component costs achieved by the (new) optimal control law will
change in an “opposite” direction. More precisely, suppose we vary w along a great circle
that passes through one of the corners of W , say (1, 0, . . . , 0), so that w1 decreases and all
wi6=1 increase. Then the component cost p1 (w) will increase.
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