
  Abstract�Coupling of actuators into motor synergies has 
been observed repeatedly, and is traditionally interpreted as a 
strategy for simplifying complex coordination problems. This 
view implies a small number of task-independent synergies. We 
have shown that optimal feedback control also gives rise to 
synergies in the absence of any simplification; the structure 
and number of such optimal synergies depends on the task. To 
compare these hypotheses, we recorded hand postures from a 
range of complex manipulation task. The structure of the 
synergies we extracted (via PCA) was task-dependent, and 
their number significantly exceeded previous observations in a 
simpler grasping task. Our results lend support to an optimal 
control explanation rather than a �simplicity� explanation. 
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I.  INTRODUCTION 

The notion of motor synergies, or high-level �control knobs� 
that have distributed action over sets of low-level actuators, 
arose in the context of motor coordination [1] and has 
remained a central topic in discussions of motor control. 
While synergies mean different things to different people 
[2], dimensionality reduction is generally accepted as the 
signature of synergistic control. Indeed, recent studies [3-5] 
have demonstrated that the set of experimentally observed 
postures, or muscle activation patterns, spans only a small 
subspace of the available multi-dimensional space. But what 
do such results tell us regarding the control strategies 
employed by the CNS? 
 The usual interpretation is in terms of a simplifying 
strategy: since the control of redundant biomechanical 
systems is a challenging problem, the CNS might simplify 
its life by coupling the actuators and effectively reducing the 
dimensionality. Such a view implies that the number of 
synergies is small, their structure is fixed in advance of 
learning a given task, and is therefore task-independent. 
Note that synergies simplify the solution of a new control 
problem only if they are fixed in advance; if instead we 
attempt to adapt them to the new task, we end up solving a 
synergy learning problem has the same dimensionality as 
the original control problem. This �simplification� view 
dominates the synergy literature, and consequently an 
implicit agenda of researchers has been to demonstrate small 
numbers of task-independent synergies. 
 Our optimal feedback control theory of motor 
coordination [6] offers a very different perspective on the 
origin of synergies. We have shown that optimal control 
laws for redundant systems obey a �minimal intervention� 
principle: they correct deviations from the average behavior 
only when such deviations interfere with task performance. 

Task-irrelevant deviations are better left uncorrected, 
because that reduces control effort and control-dependent 
noise. This selective control has two consequences: (i) 
variability in redundant dimensions is allowed to accumulate 
(as quantified by the Uncontrolled Manifold method); (ii) 
only a subspace of the available control space is utilized in 
the context of any given task � i.e. the actuators are 
synergistically coupled. Such task-optimal synergies of 
course reflect the biomechanical system, but they also 
reflect the task. In particular, the number of synergies is 
expected to increase in more complex tasks. 
 The goal of the present paper is to contrast these two 
hypothesis, by analyzing dimensionality reduction in a wide 
range of complex hand manipulation tasks.  

 
II. EXPERIMENTAL DESIGN 

Six right-handed subjects participated in the experiment. 
Each subject was fitted with a right-handed CyberGlove, 
which recorded all 20 joint angles of the hand. Each subject 
participated in 7 experimental conditions (see Fig 1): 
0. Subjects were instructed to generate a set of extreme 

hand postures, designed to reach all joint limits. The 
data from this condition was only used for calibration. 

1. Subjects were asked to turn a pair of Chinese balls in 
their hand, at a comfortable speed. The task was to 
make several turns in one direction, then reverse the 
direction. 

2. Subjects were asked to flip through the pages of a book. 
The book was placed on a table and held with the left 
hand for support; the right hand was used to separate 
and flip the pages. 

3. Subjects were asked to turn a credit card in their hand. 
There were two conditions: turning the card in the palm, 
and also turning it between the fingers. 

4. Subjects were asked to grasp a credit card presented by 
the experimenter, with the two fingers nearest to the 
card. The experimenter positioned the card near the 
subject�s right hand, in a random position and 
orientation. The subject had to grasp the car lightly, 
pause, and then return to a relaxed starting posture. 

5. The experimenter placed a key chain in the subjects 
palm (which was facing up at the beginning of each 
trial). Then the experimenter identified a desired key 
(using a verbal description), and the subject was asked 
to place that key in their hand in a position suitable for 
unlocking a door. 

6. A square sheet of paper was placed in the subjects hand 
(palm facing up). The task was to crumple the paper and 
turn it into a paper ball, using only one hand. 
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7. The final task was a control, designed to measure the 
maximum number of effective degrees of freedom 
available. The subject was asked to move one joint at a 
time, while keeping all other joints stationary. Note that 
if subjects succeeded in doing that, the measured 
dimensionality of the hand postures will be 20. 

 

 
 

Figure 1.  Illustration of the seven experimental conditions. 
See text for details 

III. DATA ANALYSIS AND RESULTS 

Data was collected at 100Hz. For each subject and each 
condition, our dataset contained on average 9000 hand 
postures (corresponding to 1.5 min of continuous recording). 
Rest periods were excluded by pausing the recording. The 
CyberGlove measures the integrated curvature over the span 
of each of its bend sensors, and encodes that measurement 
using 8 bit resolution. The measurements are known to be a 
linear function of integrated curvature, however the gain and 
offset of that function are subject-specific. The calibration 
problem is rather complex, and does not appear to have a 
reliable solution at present. For our purposes, however, 
having absolute joint angles was not critical. Instead, we 
normalized each joint angle for each subject to a 0-1 range, 
using the minimum and maximum sensor reading obtained 
in the calibration condition. This representation was the 
basis of most analyses. When absolute joint angles were 
needed, we scaled the normalized 0-1 range of each joint to 
the corresponding joint angle range of a commercial hand 
model (Poser 5). A third form of scaling used in the analyses 
was the following: for each subject, condition, and joint 
angle, the data was scaled to have unit variance. 

A. Dimensionality Reduction 
The dimensionality of the hand postures was analyzed using 
Principal Components Analysis (PCA). The eigenspectrum 
of the covariance matrix in each condition is shown in Fig 2: 
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Figure 2.  Variance accounted for by the first 15 principal 

components in each task. Results are averaged over subjects. 



The fall-off in the bar graphs corresponds to dimensionality 
reduction, i.e. if the entire posture space was being used 
uniformly the plots in Fig 2 would be flat. If hand shapes 
were controlled by recombining N postural primitives, we 
should observe a relatively flat profile up to PC number N, 
and then a sharp fall-off. In reality the fall-off in PC plots is 
never sharp, which makes counting synergies complicated. 
To facilitate comparisons with previous results [3], we count 
the number of principal components needed to account for 
95% and 85% of the variance respectively. In the grasping 
task studied in [3], these numbers were 4 and 2. 
 Detailed synergy counts are shown in Tables 1 and 2, 
and the results summarized in Table 3. We present results in 
posture space (Table 1), and velocity space (Table 2). 
Instantaneous joint velocity was obtained by numerically 
differentiating position, and smoothing (mildly). Note that it 
may be possible to interpret postures as states, and velocities 
as controls that change states, although we will not pursue 
that interpretation here. In each table, we counted synergies 
from the absolute angle data, the 0-1 range data, and the unit 
variance data. This allowed us to assess the effects of data 
scaling. In general, absolute angle data [3] has a tendency to 
underestimate dimensionality: if two joints with very 
different ranges are controlled independently, the two 
principal components will account for different amounts of 
variance simply due to the different scale. The 0-1 range 
data and the unit variance data avoid this problem. Note that 
the covariance matrix for unit variance data is equal to the 
correlation matrix by definition. For each type of data 
scaling, we obtained synergy counts using all 20 joint 
angles, as well as a reduced set of 15 angles recorded 
previously [3]. Eliminating joint angles also has the effect of 
reducing dimensionality. As expected, the different ways of 
counting yield somewhat different results (Table 1, 2), but 
overall, the dimensionality we observed is much higher than 
previously found [3]. 
 To get a summary statistic, we simply averaged over all 
different ways of counting � Table 3. In the manipulation 
tasks, the effective dimensionality of hand postures was 6.5 
on average. Remarkably, the dimensionality in the 
individuated joint task was 8.7, or only 2 higher. The latter 
task is designed to reveal the maximal number of degrees of 
freedom humans have access to. Why this number is not 20 
is unclear; the most likely reason is biomechanical coupling, 
although limitations in neural control may also play a role. 
Furthermore, the number 8.7 intuitively seems too low � 
suggesting that such counting methods may underestimate 
the true dimensionality. Whatever the reason for this 
surprisingly low number, the fact remains that we counted 
synergies in the same way for the manipulation and 
individuation tasks, and found a difference of only 2. In 
other words, the neural controller is actively eliminating 
only 2 of the synergies it potentially has access to. The 
number of utilized synergies � 6.5 � was much greater than 
the 3 synergies found previously using similar counting [3]. 
Velocity DOFs were on average one more than position. 

Angle 0-1 range Unit var POS 
20 j 15 j 20 j 15 j 20 j 15 j 

Paper   8  4 7  4 10  6   8  5 11  6   9  6 
Book   6  3 6  3   8  5   7  4   9  6   9  6 
Key   8  5 7  4 10  6   8  5 10  6   9  6 
Card   8  4 7  4   9  6   8  5 10  7   8  6 
Grasp   9  5 7  4   9  6   8  5 11  7   9  6 
Ball   7  3 6  3   7  3   6  3   9  5   7  4 
Joint 10  7 9  6 11  7 10  7 12  8 10  7 
Table 1.  Synergy counts in position space. See text. 

 
Angle 0-1 range Unit var VEL 20 j 15 j 20 j 15 j 20 j 15 j 

Paper   9  5   8  5 11  7   9  6 12  8   9  6 
Book   8  4   7  4 10  6   8  5 11  7   9  6 
Key 10  6   8  5 11  7   9  6 12  8 10  7 
Card   9  5   8  5 11  7   9  6 12  8   9  7 
Grasp 10  5   8  4 11  7   9  6 13  8 10  7 
Ball   8  4   7  3   9  5   7  4 11  6   8  5 
Joint 12  8 10  7 12  8 10  7 14 10 11  8 
Table 2. Synergy counts in velocity space. See text. 

 
SUMMARY Pos DOFs Vel DOFs 
Manipulation 6.5 7.6 
Individuated 8.7 9.8 
Table 3. Summary of synergy counts. 

B. Differences between tasks and subjects 
We defined two measures of the difference between sets of 
synergies extracted from different datasets. Given two D-
dimensional datasets, we perform PCA in each, and keep the 
first N principal components. This gives us two N-
dimensional subspaces. How different are those subspaces? 
One measure is the average principal angle (a generalization 
of the notion of angle between two lines). The other measure 
is something we developed. Project one dataset in its N-dim 
subspace, and denote the trace of the projected covariance 
by T1. Then project again in the other N-dim subspace, and 
similarly define T2. When the two subspaces are identical 
T1=T2, otherwise T1>T2 (because projection reduces 
variance). Thus, 1-T2/T1 is a sensible difference index. 
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Figure 3. Average difference between tasks (same subject), 

and between subjects (same task), for different N. 



 
 
 
 
In Fig 3, all differences decrease as N increases. This is not 
surprising: in the limit N=D both subspace become equal to 
the entire space, and there is no difference. The results show 
that the synergies differ substantially both between subjects 
and between tasks. However, the task dependence is 
significantly greater than the subject dependence. Fig 4 
illustrates that the first two synergies in each task. 
 

IV. CONCLUSION 

Here we studied the hand synergies underlying complex 
manipulation tasks. The number of such synergies was more 
than two times higher than the number observed in a simpler 
grasping task [3] (note that our �grasp� task was more 
complex, requiring more individuated movements). Further, 
the structure of the synergies depended substantially on the 
task � more than it depended on the subject. Overall, our 
results are more compatible with a task-optimal control 
origin of dimensionality reduction than a �simplification� 
origin. 
 To end on a reconciliatory note, we point out that these 
explanations may be compatible. Indeed, the best strategy in 
terms of development and learning may be to start with a 
large number of synergies adapted to the biomechanics, and 
gradually select/tune them in the context of each new task. 
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Figure 4.  Illustration of first 2 PCs in each task. Each plot is generated by taking the (task-specific) average posture, 
and adding and subtracting the unit vector describing each PC. Synergies can be thought of as shape deformations. 
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