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 Abstract—The search for motor primitives has captured the 
attention of researches in both biological and computational 
motor control. Yet a theory of how to construct such primitives 
from first principles is lacking. Here we propose to do that by 
building a compact forward model of the sensory-motor 
periphery via unsupervised learning. We also propose a 
method for probabilistic inversion of the forward model, which 
yields low-level feedback loops that can simplify control. The 
idea is applied to simulated biomechanical systems of varying 
levels of detail.  
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I.  INTRODUCTION 
 
Investigators of motor behavior have long been looking 

for motor primitives, or building blocks of movement. 
Candidates for such primitives include muscle synergies, 
spinal force fields, basis functions for representing internal 
models, small pieces of endpoint trajectories. So far the 
search has been predominantly data-driven: experimenters 
collect data (muscle activity, finger position, hand posture), 
apply some variant of principal components analysis, and 
declare anything that comes out to be a “motor primitive”. 
Unfortunately little independent evidence exists that the 
principal components correspond to anything real. Even if 
movements were generated by combining some low-level 
primitives, this bottom-up approach will not necessarily 
identify them unless they were sampled independently 
during the data collection period. But independent sampling 
is very unlikely: since the high-level control system is trying 
to achieve an overall behavioral goal, the primitives are 
most likely being recruited in a coordinated manner. Thus, 
decomposition algorithms in the absence of any prior 
knowledge are likely to confuse two sources of structure: 
one originating form the primitives themselves, and the 
other originating from the controller that coordinates them. 

From a computational perspective building blocks of 
movement may seem less important, since in principle an 
optimal controller can be found using reinforcement 
learning, without any prior knowledge or control structure. 
In practice however such controllers cannot be found for 
high-dimensional continuous-state systems. Therefore a 
number of investigators have focused on building various 
low-level control structures before applying reinforcement 
learning. The problem is how to build such a structure in the 
first place. It cannot come from considerations of optimal 
control, since it has to exist before optimal control can even 
be attempted in a high-dimensional state space. Presently it 

comes from intuition about the specific problem. But what 
we really need is a way to automate that intuition and make 
it a part of the learning algorithm. 

So in both biological and computational motor control, 
a theory is needed that explains how good motor primitives 
can be constructed from first principles. The presumed 
function of motor primitives is to simplify a complex control 
problem, by reducing the dimensionality of the space where 
control solutions are sought. This is only useful if we ensure 
that the reduction does not accidentally eliminate all the 
solutions to the control problem of interest.  But how can 
such accidents be avoided, if the primitives are chosen 
before the control problem itself has been solved?  In other 
words, what simplifying assumptions are safe to make for 
all tasks that may need to be performed in the future? The 
only thing that is perfectly safe to assume is that all tasks 
will be performed using the same musculo-skeletal system. 
Therefore we propose that the low-level primitives must 
reflect the regularities of that system. 

We present an unsupervised learning algorithm 
designed to extract such regularities from sensory-motor 
interactions, and automatically transform them into higher-
level control knobs. The unsupervised learning objective is 
to find a compact context-dependent representation of the 
correlations among motor commands and sensory feedback. 
We find that the resulting representations capture the 
agonist-antagonist organization of muscles and 
corresponding sensors, the distinction between muscle 
groups spanning separate joints, temporal filtering at 
appropriate time scales, etc. Once the primitives have been 
constructed, we apply reinforcement learning to obtain a 
high-level feedback controller. For the control problems 
investigated here, this form of learning is indeed faster than 
learning a feedback controller which does not utilize 
primitives. 
 
 

II.  FEEDBACK TRANSFORMATIONS 
 
 The pioneering works of Sherrington and Bernstein 
have emphasized that biological control hierarchies are 
composed of parallel feedback loops, whose processing 
delays increase with their level of sophistication. The low-
level loops (e.g. the spinal cord) do not passively map high-
level commands into control signals. Instead they receive 
sensory feedback and actively generate control signals even 
before the higher levels have had time to respond. 
  This can be formalized with the notion of a feedback 
transformation. Consider a dynamical system with state x, 
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control u, dynamics ∆x = f(u,x), sensory observation s(u,x), 
and state estimator x(u...,s...). Define a state transformation 
h=T(x) and a control transformation u=G(v, x). This 
produces a new dynamical system with (observable) state h 
and control v, coupled to the original system via the 
functions T and G. Rather than learning a direct control 
policy u=P(x;w) parameterized by w, we could instead try to 
learn a high-level policy v=Q(h;w) for the transformed 
system. 
 The best known example of this approach is the 
technique of feedback linearization: assuming for simplicity 
that f(u,x) is invertible w.r.t. u, the transformation h=x, u = 
f–1(v, x) produces a linear system with equivalent dynamics. 
Other successful application can be found in robotics where 
the feedback transformation is handcrafted using insight into 
the controlled system. 
 The question is, how can appropriate functions T and G 
be constructed by a learning algorithm instead of a human 
engineer. Before we address that we need to clarify the 
criterion for appropriateness of the feedback transformation. 
Generally speaking, it should make learning simpler. 
Simplicity however is not an objective property of the 
system to be controlled, but depends on what is "simple" 
from the learner's point of view. If for example we intend 
to build the high-level controller as an LQG regulator, the 
transformation should attempt to make the system linear and 
the cost quadratic. If instead we intend to apply 
reinforcement learning, sensible criteria include 
dimensionality reduction, state descriptions that predict the 
future (particularly the rewards in the future), and 
prepackaged control sequences providing temporal 
abstraction. The method proposed below appears to satisfy 
these criteria. 
 
A.  Unsupervised sensory-motor learning 
 
 Building a feedback transformation is an instance of the 
more general problem of building internal representations, 
which is naturally addressed via unsupervised learning. The 
idea is best illustrated by comparison with the perceptual 
system, where the importance of unsupervised learning has 
been appreciated for a long time. The perceptual analog to a 
motor primitive is a receptive field: a basic element used to 
decompose and represent the sensory input. As in the motor 
system, the receptive fields needed for perception cannot be 
easily derived from considerations of how an optimal 
perceptual system works. Instead receptive fields can be 
modeled by collecting sensory data and fitting a "generative 
model". The generative model as such is rather useless, 
since the job of the perceptual system is to perform exactly 
the opposite operation. It therefore needs to be "inverted" by 
a recognition model, mapping sensory input to internal 
states (Fig 1 Left). 
 We propose that motor primitives can be learned using 
the same principle – building an internal mirror image of the 
physical world (Fig 1 Right). The difference from perceptual  

 
Fig. 1.  Schematic illustration of  forward and inverse models 
 
learning is that we now have an input-output forward model, 
where the inputs (motor output) are under the control of the 
nervous system, and time cannot be neglected. The goal of 
learning is to find an internal state representation that 
explains the observed data (sensory input). As in perception, 
the forward model is exactly the opposite to what the motor 
system needs, but "inverting" it provides the feedback 
transformation we are looking for. 
 
B.  Constructing  primitives 
 

Suppose a sequence of control signals u… is somehow 
generated, the plant dynamics is observed or simulated, and 
the corresponding sequence of sensory signals s… obtained. 
Define the vectors pastt = [ut-p, st-p, … ut-1, st-1], controlt = ut 
and futuret = [st,ut+1, st+1, … ut+f, st+f] where the past and 
future time horizons p and f can be inferred from temporal 
correlations in the data. The key step is fitting (see below) a 
conditional probability density model of the form: 

 
 p(future, control | past) = 

∑h p(future, control | h) p(h | past). 
 

The “hidden” variable h is an internal state variable created 
by the unsupervised learning algorithm, and is used to 
communicate between the high and low level controllers. In 
particular, the low level controller computes at each time 
step the conditional expectation hpast = E(h | past), using the 
conditional distribution p(h | past). Then hpast is sent to the 
high level controller, which applies a (task-specific) 
feedback law Q and returns v = Q(hpast). The high level 
control signal v is treated as a desired change in h. The 
actual control signal u is computed as the conditional 
expectation u = E(control | hpast + v), using the conditional 
distribution p(future, control | h) and marginalizing over 
future. The resulting low level controllers can be expected 
to have several appealing properties: 
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• The internal state variable h captures the information 
about the past that is most useful in predicting the 
future. This reduces the control space accessible to the 
high level controller to the space of signals that have 
predictable consequences. 

• The transformation E(u | hpast + v) can be thought of as 
a set of control synergies, which are driven by the high 
level control signal v as well as past sensory-motor 
activity. These synergies form a compact representation 
of the statistics of measured sensory-motor interactions, 
i.e. they capture the “modes” of the system. 

• The control signals u… used to generate the training 
data can be random, or alternatively they can be 
collected while an existing control scheme is being 
applied. In the latter case, the low level controller learns 
to mimic the control scheme used in the training phase, 
i.e. if the high level output is v = 0 the resulting control 
signal will be E(u | past). This provides a natural model 
of motor automation. 

 
C.  Fitting the model 
 
 While the general probabilistic model described above 
could be fit with a variety of methods, for the time being we 
have focused on the simplest method – which is a 
generalization of factor analysis to include inputs i as well 
as outputs o.  Define  i = past,  o = [future, control], and 
the hidden variable is h as before. The generative model is 
 

h = B i + w;    o = C h + v 
 

where w and v are zero-mean Gaussian noise vectors with 
covariance Q and R respectively. The matrices B and C 
correspond to the (unknown) mappings from inputs to 
hidden states, and from hidden states to outputs. As in 
ordinary factor analysis, R is assumed to be diagonal. It is 
not difficult to derive an expectation-maximization (EM) 
algorithm for learning B, C, Q and R. 
    E-step: Define K = Q CT (R + C Q CT)–1. Then the mean 
of h conditional on i and o is h = B i + K (o – C B i). The 
covariance of h is  S = Q – K C Q. 
    M-step: The model parameters are updated according to 
C = < o hT > S–1 and  B = < h iT  > < i iT >–1. The < > notation 
denotes an average over the training data. Similar updates 
can be obtained for Q and R. 
 
D.  Dynamical models 
 
     We applied this approach to simulated systems that 
capture many properties of musculo-skeletal dynamics (an 
example is shown in Fig 2 A). The physical simulator was 
built with the MathEngine Toolkit. The bodies of our 
creatures are made of cylinders with spherical ends, 
connected with hinge joints. For now they are restricted to a 
2D plane. The physical simulation is actually in 3D, and we 
are producing extra forces to avoid deviations from the 

plane. The 2D constraint is used for easier visualization, and 
also because we have not yet incorporated a detailed model 
of 3D muscle wrapping. 
 Some of the spheres can be fixed in the world. The 
world can include gravity, ground, and external objects, i.e. 
spheres attached to spring-dampers whose other end is fixed. 
At the beginning of each (10 msec) time step the joint 
torques resulting from muscle activation are computed. All 
colliding pairs of objects are found, and the corresponding 
forces added. We used soft collisions (allowing some 
penetration) and friction in the directions orthogonal to the 
normal. The simulation is evolved using a semi-implicit 
integrator. An agonist-antagonist pair of muscles was 
present around each joint. The muscle model included a 
second-order linear filter (τ1=τ2=50 msec), constant 
moment arms, constant stiffness, and damping present only 
for shortening. Each simulated muscle was equipped with 
one static spindle (measuring length), one dynamic spindle 
(measuring velocity), one Golgi tendon organ (measuring 
force). The spindle sensitivity was adjusted by a (gamma) 
motor unit. Each joint had 2 limit sensors. Each sphere and 
cylinder (Fig 2) had one tactile sensor on each side, which 
responded whenever a contact occurred on the 
corresponding surface. Since contacts involved some 
penetration, the sensor had graded response. We simulated 
different systems driven by random control signals (2 per 
muscle), sampled at each time step from a uniform 
distribution. The low-pass filtering properties of muscles 
and the system impedance (inertia of the skeleton and 
muscle viscoelasticity) transformed the noise activation 
sequence into relatively smooth movements. The simulation 
continued for about 20000 simulated seconds. 
 
 

III.  RESULTS 
 

A. Features of extracted primitives 
 

The unsupervised learning algorithm implicitly 
discovered some of the basic properties of the dynamical 
systems being simulated. Examples are shown in Fig 2 
where we have plotted the motor and sensory components of 
one primitive (by extracting the corresponding row and 
column of the B and C matrices, and reshaping them 
appropriately). The smooth progression of grayscale values 
in the vertical dimension corresponds to the fact that muscle 
forces change gradually (due to the low-pass filtering of 
muscles), and consequently the spindle inputs also change 
gradually. The fact that columns 1E and 2E are almost the 
opposites of columns 1F and 2F corresponds to the agonist-
antagonist organization of the muscles around the two joints. 
Note also that 1E-1F are treated differently from 2E-2F 
(especially on the motor side). This particular primitive is 
thus more interested in the muscles acting around joint 1, i.e. 
the algorithm implicitly discovers the concept of a “joint”. 
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Fig. 2.  Illustration of preliminary results.  A) One of the dynamical systems 
we studied, with 2 joints and 4 muscles (1E, 1F, 2E, 2F).  B) The learned 
motor weights (loadings) for one of the primitives.  C) The sensory weights 
for the same primitive.  D) Learning curves of different reinforcement 
learning algorithms (see text). 
 
 
B. Using  primitives to speed up learning 
 
We also tested the hypothesis that using primitives as low-
level controllers will speed up learning. This was done in 
100 partially observable Linear-Quadratic-Gaussian (LQG) 
systems, where the dynamics and cost matrices were 
generated randomly. The task encoded by the cost matrices 
did not vary over time, so that the appropriate feedback 
control law was time invariant (and therefore easier to 
parameterize and learn). The reason for using LQG systems 
is that we can compute the optimal control law exactly, and 
therefore the minimum cost that can be achieved is known. 
Log costs for each system/task were scaled (see Fig 2D) so 
that the minimum achievable cost is always 1. We applied a 
policy gradient reinforcement learning method, to 3 different 
parameterized control laws. Control laws “Direct 1” and 
“Direct 2” acted directly on the dynamical system. “Direct 
1” was driven by raw sensory inputs, while “Direct 2” was 
driven by the optimal estimate of the system state (and 
therefore it performed better than “Direct 1”). Note however 
that the “Assistive” controller, acting on the automatically 
extracted primitives, outperforms both of the direct methods. 
We should stress that the advantage of using primitives is 
likely to be much larger on a more difficult control problem. 
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Fig. 3.  Examples of rhythmic patterns of movement generated by a 
constant control signal to one primitive at a time.  The magnitude of the 
control signal changes at the 10 sec time marks. These examples are from a 
dynamical system with 3 joint angles. 
 
 
C. Autonomous pattern generation 
 
An interesting feature of our primitives is that they have 
both a sensory and a motor component. In other words they 
act as tunable feedback controllers, and therefore can give 
rise to rich time-varying movement patterns even when the 
descending control is kept constant. This phenomenon is 
illustrated in Fig 3, where we send a constant control signal 
to a single primitive at a time. Of course these emergent 
patterns will not in themselves accomplish any useful task. 
But hopefully they will allow a high-level task controller to 
rapidly explore a large portion of space, and not waste its 
time trying to generate patterns that are “incompatible” with 
the natural dynamics of the controlled system.  

 
 

IV.  FUTURE WORK 
 
 While we are still exploring the properties of the 
proposed method, the preliminary results are encouraging. 
One future direction is to better understand what exactly the 
method extracts, i.e. what are the basic movement patterns 
that emerge from activating the primitives one at a time. 
This should perhaps be done in simpler dynamical systems. 
Another direction is to explore more advanced nonlinear 
methods for fitting the general probabilistic model. The 
speed-up in reinforcement learning we observed should also 
be investigated further, in more realistic biomechanical 
models performing specific motor tasks.  The features of the 
extracted primitives should be compared to physiological 
responses in the spinal cord and other lower level motor 
areas. Finally, we hope that biomechanical models 
augmented with such automatically extracted primitives will 
prove more amenable to neuroprosthetic control. 


