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Abstract—Optimal control and estimation are dual in the
LQG setting, as Kalman discovered, however this duality has
proven difficult to extend beyond LQG. Here we obtain a more
natural form of LQG duality by replacing the Kalman-Bucy
filter with the information filter. We then generalize this result
to non-linear stochastic systems, discrete stochastic systems,
and deterministic systems. All forms of duality are established
by relating exponentiated costs to probabilities. Unlike the
LQG setting where control and estimation are in one-to-one
correspondence, in the general case control turns out to be a
larger problem class than estimation and only a sub-class of
control problems have estimation duals. These are problems
where the Bellman equation is intrinsically linear. Apart from
their theoretical significance, our results make it possible to
apply estimation algorithms to control problems and vice versa.

I. INTRODUCTION

The best-known example of estimation-control duality is
the duality between the Kalman filter and the linear-quadratic
regulator. This result was first described in the seminal paper
introducing the Kalman filter [6], however it has proven
difficult to generalize beyond the linear-quadratic-Gaussian
(LQG) setting. Here we develop several such generalizations.
The paper is organized as follows. In Section II we show
that Kalman’s duality is an artifact of the LQG setting, and
obtain a new duality which involves the information filter
rather than the Kalman filter. In Section III we generalize
our new duality to non-linear dynamics and measurements
and non-quadratic costs. In Section IV we give a further
generalization to discrete dynamics – which can be reduced
to the continuous case in section III by assuming Gaussian
noise and taking a certain limit. In Section V we develop
similar results for deterministic optimal control problems.
In Section VI we provide closing remarks and clarify the
relations to prior work.

A. Preview of results

Before delving into details we outline the main ideas. All
forms of duality we develop here are based on the following
relationship between probabilities and costs:

r (x, t) ∝ exp (−v (x, t)) (1)

v (x, t) is the optimal cost-to-go, i.e. the cost expected to
accumulate if we initialize the system in state x at time t and
control it optimally until a final time tf . For discrete systems
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the optimal cost-to-go satisfies the Bellman equation

v (x, t) = min
u

(
c (x, u, t) +

X
x0

p (x0|x, u) v (x0, t+ 1)
)
(2)

where c is the cost rate and p (x0|x, u) is the probability of
a transition from state x to state x0 under control u.
r (x, t) = p

¡
yt · · · ytf |xt = x

¢
is the backward filtering

density, i.e. the probability of the future measurements given
the current state. For a Markov system it satisfies

r (x, t) = p (yt|x)
X
x0

p (x0|x) r (x0, t+ 1) (3)

where p is the transition probability without controls (i.e. the
passive dynamics) and p (yt|x) is the emission probability.
The control problem is more general than the estimation

problem because of the presence of u in (2). Thus, in order
to establish duality, the control problem has to be restricted.
The necessary restriction will turn out to be

c (x, u, t) = − log p (yt|x) + KL (p (·|x, u) ||p (·|x)) (4)

The first term is a state cost encouraging the controller to
visit more likely states. The second term (Kullback-Liebler
divergence between the controlled and passive dynamics) is
a control cost encouraging the controller to let the system
evolve according to its passive dynamics. With c as in (4) and
some additional assumptions, the minimization over u in (2)
can be carried out in closed form and, after exponentiation,
(2) can be reduced to (3). This is developed in section IV.
The continuous-time results in sections II and III are in

some sense special cases, although they will be derived in
very different ways and the relation to the discrete case will
not become obvious until later. For both linear and non-linear
systems subject to Gaussian noise, the KL divergence in (4)
will turn out to be identical to a quadratic control cost.
The backward filtering density r in the continuous case

is somewhat complicated (see [9]) because a proper density
over the space of continuous-time observation sequences is
hard to define. Nevertheless r has an intuitive property identi-
cal to the discrete case. Let f (x, t) = p (xt = x|y1 · · · yt−1)
denote the forward filtering density. The product of the
forward and backward filtering densities is proportional to
the full posterior given all the measurements:

p
¡
xt = x|y1 · · · ytf

¢
∝ f (x, t) r (x, t) (5)

The same relationship holds in continuous time.
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II. DUALITY FOR LINEAR SYSTEMS
A. Kalman’s duality
First we recall Kalman’s duality between optimal control

and estimation for continuous-time LQG systems. The sto-
chastic dynamics for the control problem are

dx = (Ax+Bu) dt+ Cdω (6)

The cost accumulates at rate

c (x,u) =
1

2
xTQx+

1

2
uTRu (7)

until final time tf . For simplicity we will assume throughout
the paper that there is no final cost, although a final cost can
be added and the results still hold. The optimal cost-to-go
v (x, t) for this problem is known to be quadratic. Its Hessian
V (t) satisfies the continuous-time Riccati equation

−V̇ = Q+ATV + V A− V BR−1BTV (8)

The stochastic dynamics for the dual estimation problem
are the same as (6) but with u = 0, namely

dx = Axdt+ Cdω (9)

The state is now hidden and we have measurement

dy = Hxdt+Ddν (10)

In discrete time we can write y (t) = Hx (t)+ "noise"
because the noise is finite, but here we have the problem
that ν̇ is infinite. Therefore the y (t) defined in (10) is the
time-integral of the instantaneous measurements.
Suppose the prior f (x, 0) over the initial state is Gaussian.

Then the forward filtering density f (x, t) remains Gaussian
for all t. Its covariance matrix Σ (t) satisfies the continuous-
time Riccati equation

Σ̇ = CCT +AΣ+ΣAT −ΣHT
¡
DDT

¢−1
HΣ (11)

Comparing the Riccati equations for the linear-quadratic
regulator (8) and the Kalman-Bucy filter (11), we obtain
Kalman’s duality in continuous time:

linear-quadratic
regulator

Kalman-Bucy
filter

V Σ
A AT

B HT

R DDT

Q CCT

t tf − t

(12)

B. Why Kalman’s duality does not generalize
Kalman’s duality has been known for half a century

and has attracted a lot of attention. If a straightforward
generalization to non-LQG settings was possible it would
have been discovered long ago. Indeed we will now show
that Kalman’s duality, although mathematically sound, is an
artifact of the LQG setting and needs to be revised before
generalizations become possible.

The most obvious problem are the matrix transposes AT
and HT in (12). To see the problem consider replacing the
linear drift Ax in the controlled dynamics (6) with a general
non-linear function a (x). What is the corresponding change
in the estimation dynamics (9)? More precisely, what is the
"dual" function a∗ (x) such that a (x) and a∗ (x) are related
in the same way that Ax and ATx are related? This question
does not appear to have a sensible answer. Generalizing the
relationship between B and HT is equally problematic.
The less obvious but perhaps deeper problem is the

correspondence between V and Σ. This correspondence may
seem related to the exponential transformation (1) between
costs and densities, however it is the wrong relationship. If
(1) were to hold, the Hessian of − log f should coincide
with V . For Gaussian f the Hessian of − log f is Σ−1.
Thus the general exponential transformation (1) implies a
correspondence between V and Σ−1, while in (12) we see a
correspondence between V and Σ.
This analysis not only reveals why Kalman’s duality does

not generalize but also suggests how it should be revised.
We need an estimator which propagates Σ−1 rather than Σ,
i.e. we need an information filter.

C. New duality based on the information filter
The information filter is usually derived in discrete time

and its relationship to the linear-quadratic regulator is not
obvious. However it can also be derived in continuous time,
revealing a new form of estimation-control duality. We use
the fact that, if Σ (t) is a symmetric positive definite matrix,
the time-derivative of its inverse is

d

dt

³
Σ (t)−1

´
= −Σ (t)−1 Σ̇ (t)Σ (t)−1 (13)

Define the inverse covariance matrix S (t) = Σ (t)−1 and
apply (13) to obtain

Ṡ (t) = −S (t) Σ̇ (t)S (t) (14)

Next express Σ̇ in terms of S by replacing Σ with S−1 in
the Riccati equation (11). The result is

Σ̇ = CCT +AS−1 + S−1AT − S−1HT
¡
DDT

¢−1
HS−1

(15)
Substituting (15) into (14), carrying out the multiplications
by S and noting that a number of S and S−1 terms cancel,
we obtain a continuous-time Riccati equation for S:

Ṡ = HT
¡
DDT

¢−1
H −ATS − SA− SCCTS (16)

Comparison of (8) and (16) yields our new duality for
continuous-time LQG problems:

linear-quadratic
regulator

information
filter

V Σ−1

A −A
BR−1BT CCT

Q HT
¡
DDT

¢−1
H

t tf − t

(17)
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As expected we now have a correspondence between V and
Σ−1, which is a special case of the exponential transforma-
tion (1). The problematic matrix transpose AT from (12) has
been replaced with −A which implies a time reversal. This
cancels the second time reversal resulting from the different
signs of the left hand sides of (16) and (8). Another notable
difference is the rearrangement of terms which leads to a very
different correspondence between estimation and control.
In Kalman’s duality the control (B,R) corresponds to the
measurement (H,D) while the state cost (Q) corresponds
to the dynamics noise (C). Here the control corresponds to
the dynamics noise while the state cost corresponds to the
measurement, in agreement with (4).
Before proceeding with generalizations we pause to make

our new duality more precise. So far all we did was match
terms in Riccati equations. However we can now do better:
we can identify control and estimation problems whose
optimal cost-to-go v (x, t) and backward filtering density
r (x, t) are related according to (1). The result is as follows:

Theorem 1. Let v (x, t) denote the optimal cost-to-go
for control problem (6, 7). Let r (x, t) denote the backward
filtering density for estimation problem (9, 10). If all mea-
surements are 0 and

BR−1BT = CCT (18)
Q = HT

¡
DDT

¢−1
H

then there exists a positive scalar c (t) such that

r (x, t) = c (t) exp (−v (x, t)) (19)

Key to this result is the relationship V (t) = Σ (t)−1,
which follows from the equivalence of the Riccati equations
(16) and (8) under (17), and in turn implies (19). Theorem 1
is a special case of Theorem 2 which we prove below. The
case of non-zero measurements will also be handled later.

III. DUALITY FOR NON-LINEAR SYSTEMS
A. Generalizing the linear results
We now analyze our new duality and infer the form of

the non-linear estimation and control problems which are
likely to be dual to each other. The correspondence between
A and −A implies a time reversal. The last row of (17) is
another time reversal, so we can expect the two to cancel.
Therefore both the estimation and control problems could
have non-linear drift a (x) instead of Ax. The termBR−1BT

suggests that the matrices B and R should be preserved in
the generalized problem, that is, we should still have control-
affine dynamics and control-quadratic cost. The only possible
generalization here is to make B,R,C dependent on x:

B (x)R (x)−1B (x)T = C (x)C (x)T (20)

Next consider the correspondence between Q and HTH.
For simplicity we assume that D is the identity matrix
although the general case can also be handled. The above cor-
respondence implies correspondence between the quadratic
forms xTQx and xTHTHx. The former equals twice the
state-dependent cost, which can be replaced with a general

non-quadratic function q (x). The latter involves the linear
observation Hx, which can be replaced with a general non-
linear function h (x). Then (17) implies

q (x) =
1

2
kh (x)k2 (21)

In summary, our analysis suggests controlled dynamics

dx = (a (x) +B (x)u) dt+ C (x) dω (22)

and cost rate

c (x,u) = q (x) +
1

2
uTR (x)u (23)

For the estimation problem we have dynamics

dx = a (x) dt+ C (x) dω (24)

and measurements

dy = h (x) dt+ dν (25)

The generalized duality can now be stated as follows:

Theorem 2. Let v (x, t) denote the optimal cost-to-go for
control problem (22, 23). Let r (x, t) denote the backward
filtering density for estimation problem (24, 25). If all
measurements are 0 and conditions (20, 21) hold, then there
exists a positive scalar c (t) such that

r (x, t) = c (t) exp (−v (x, t)) (26)

To prove this theorem we will derive 2nd-order linear
PDEs for r and exp (−v) and show that they are identical.
Each PDE is derived in a separate subsection below.

B. Linear Hamilton-Jacobi-Bellman equation
The optimal cost-to-go is known to satisfy the Hamilton-

Jacobi-Bellman (HJB) equation. For optimal control prob-
lems of the form (22, 23) the HJB equation is

−vt = min
u

½
q +

1

2
uTRu+ (a+Bu)T vx (27)

+
1

2
tr
¡
CCTvxx

¢¾
The dependence on (x, t) is suppressed for clarity and
subscripts are used to denote partial derivatives. The min-
imization over u can be performed in closed form to yield
the optimal feedback control law

π (x, t) = −R (x)−1B (x)T vx (x, t) (28)

Substituting in (27) and dropping the min operator, we obtain
the minimized HJB equation

−vt = q+aTvx+
1

2
tr
¡
CCTvxx

¢
− 1
2
vTxBR

−1BTvx (29)

Recall that we seek a PDE for exp (−v) rather than v.
To this end we define the exponentially-transformed optimal
cost-to-go function

z (x, t) = exp (−v (x, t)) (30)
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The derivatives of v can be expressed in terms of the
derivatives of z:

vt = −
zt
z
, vx = −

zx
z
, vxx = −

zxx
z
+

zxz
T
x

z2
(31)

Substituting in (29), multiplying by −z, and using the
properties of the trace operator yields

−zt = −qz + aTzx +
1

2
tr
¡
CCTzxx

¢
(32)

+
1

2z
zTxCC

Tzx −
1

2z
zTxBR

−1BTzx

The last two terms which are quadratic in zx cancel because
of (20). Thus z (x, t) satisfies the PDE

−zt = −qz + aTzx +
1

2
tr
¡
CCTzxx

¢
(33)

This is a 2nd-order linear PDE. Note that condition (20),
which came from our analysis of duality, was key to can-
celling the nonlinear terms and making (33) linear.

C. Backward Zakai equation
The backward filtering density for estimation problems in

the form (24, 25) is known to satisfy the backward Zakai
equation. More precisely, there exists a positive function
n (x, t) proportional to r (x, t) which satisfies

−dn =
µ
aTnx +

1

2
tr
¡
CCTnxx

¢¶
dt+ nhTdy (34)

The first term on the right corresponds to the backward
Kolmogorov equation – which describes how probability
densities evolve over time in the absence of measurements.
The second term takes into account the measurements.
Equation (34) is a stochastic PDE. In order to transform it

into a regular PDE (i.e. put it in a so-called robust form) we
follow the approach of [9]. That paper allows the function
h (x, t) to depend on time and defines

� (x, t) = exp

µZ t

0

h (x, s)
T
dy (s) (35)

−1
2

Z t

0

kh (x, s)k2 ds
¶

It is then shown [9] that

−∂ (n�)
∂t

=

µ
aTnx +

1

2
tr
¡
CCTnxx

¢¶
� (36)

In our case h does not depend on time so � simplifies to

� (x, t) = exp

µ
h (x)T (y (t)− y (0))− t

2
kh (x)k2

¶
(37)

Now suppose the measurements are y (t) = 0 for all t. This
results in further simplification:

� (x, t) = exp

µ
− t

2
kh (x)k2

¶
(38)

∂�

∂t
= −1

2
kh (x)k2 �

Combining (36) and (38) and dividing by � yields

−nt = −
1

2
kh (x)k2 n+ aTnx +

1

2
tr
¡
CCTnxx

¢
(39)

Using the relation (21) between q (x) and h (x) we obtain

−nt = −qn+ aTnx +
1

2
tr
¡
CCTnxx

¢
(40)

The latter PDE is identical to (33). This completes the proof
of Theorem 2.
We mentioned earlier that our results can be generalized to

non-zero measurements. Indeed, if y (t) is any differentiable
function of t, repeating the above derivation yields the
following generalization to (21):

q (x, t) =
1

2
kh (x)k2 − h (x)T ẏ (t) (41)

Thus q in general depends on the measurements. This is to be
expected: to establish duality as outlined in the introduction
we need a cost q penalizing unlikely states, and the likelihood
of the states depends on the measurements.

IV. DUALITY FOR DISCRETE SYSTEMS
This section develops an estimation-control duality for

a new class of Markov decision problems (MDPs) which
we recently introduced [13]. Below we first summarize the
relevant properties of these MDPs, and then establish a
duality to hidden Markov models (HMMs). We also show
how the continuous control problems in the previous section
can be obtained from these MDPs by taking a certain limit.

A. Linearly-solvable MDPs
Consider a standard MDP setting where p (x0|x, u) is the

probability of a transition from state x to state x0 under
control u, and c (x, u) the cost for being in state x and
choosing control u. As stated in the introduction (using
slightly different notation), the optimal cost-to-go satisfies
the Bellman equation

v (x, t) = min
u

©
c (x, u) + Ex0∼p(·|x,u) [v (x

0, t+ 1)]
ª
(42)

For standard MDPs the Bellman equation requires exhaus-
tive search over the set of admissible controls for each x.
In order to avoid this inefficiency, we recently introduced a
new class of MDPs where the search is replaced with an
analytical solution [13]. The controls in these new MDPs
directly specify the transition probabilities:

p (x0|x, u (·)) = u (x0) (43)

Each control u (·) is a collection of non-negative real num-
bers which sum to 1. We constrain the controls by introduc-
ing the notion of passive/uncontrolled dynamics p (x0|x) and
requiring the controls to be compatible with p as follows:

if p (x0|x) = 0 then we require u (x0) = 0 (44)

We also constrain the cost function c (x, u) to the form

c (x, u (·)) = q (x) + KL (u (·) || p (·|x)) (45)

= q (x) + Ex0∼u(·)

∙
log

u (x0)

p (x0|x)

¸
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q (x) ≥ 0 can be any scalar function encoding how
(un)desirable different states are. The KL divergence plays
the role of a control cost and penalizes the difference between
the controlled and passive dynamics.
For the above class of MDPs the Bellman equation is

v (x, t) = min
u(·)

{q (x) + KL (u (·) || p (·|x)) (46)

+Ex0∼u(·) [v (x
0, t+ 1)]

ª
= q (x)− log (normalizer)

+min
u(·)

KL

µ
u (·)

°°°° p (·|x) exp (−v (·, t+ 1))normalizer

¶
= q (x)− log Ex0∼p(·|x) [exp (−v (x0, t+ 1))]

The transformation from the 1st to the 2nd line is straight-
forward [13]. The minimum of the KL divergence is 0 and is
achieved when the two distributions are equal – which yields
the 3d line above as well as the optimal control law:

u∗x,t (·) ∝ p (·|x) exp (−v (·, t+ 1)) (47)

As before we seek an equation for the exponentially-
transformed optimal cost-to-go function

z (x, t) = exp (−v (x, t)) (48)

Exponentiating (46) and expressing it in terms of z yields

z (x, t) = exp (−q (x)) Ex0∼p(·|x) [z (x0, t+ 1)] (49)

Note that we have not only replaced the exhaustive search
over controls with an analytical solution but also transformed
the Bellman equation into a linear equation.

B. Duality between HMMs and our MDPs
The transformed Bellman equation (49) has the same from

as equation (3) which governs the backward filtering density
for HMMs. This suggests a duality between our MDPs and
HMMs, as follows. On the control side we have dynamics

xt+1 ∼ u (·|xt) (50)

and cost function

c (x, u) = q (x) + KL (u (·|x) || p (·|x)) (51)

On the estimation side we have dynamics

xt+1 ∼ p (·|xt) (52)

and binary measurements with emission probability

p (yt = 0|xt = x) = g (x) (53)

The duality can now be stated as follows:

Theorem 3. Let v (x, t) denote the optimal cost-to-go for
control problem (50, 51). Let r (x, t) denote the backward
filtering density for estimation problem (52, 53). If all
measurements are 0 and

q (x) = − log (g (x)) (54)

then there exists a positive scalar c (t) such that

r (x, t) = c (t) exp (−v (x, t)) (55)

This theorem follows from the fact that the solutions to
the above control and estimation problems satisfy identical
equations: (49) and (3) respectively.

C. Relationship to our continuous problems
Here we relate the above MDPs to the continuous control

problems (22, 23) from the previous section. This is done
in two steps. First we make the state space Euclidean and
define a family of continuous-space discrete-time problems
indexed by the discrete time step h > 0. Then we take a
continuous-time limit limh↓0.
Let p(h) (x0|x) denote the passive dynamics, that is, the

probability of being in state x0 at time h given that the
system was initialized in state x at time 0. Denote the
exponentially-transformed optimal cost-to-go for this prob-
lem with z(h) (x, t) where t is an integer multiple of h.
Computing z(h) is identical to our derivation in the MDP
case except that all sums are now replaced with integrals.
The linear Bellman equation becomes

z(h) (x, t) = exp (−q (x)h) Ex0∼p(h)(·|x)
h
z(h) (x0, t+ h)

i
(56)

The state cost is now q (x)h because the cost accumulates
over time period h at rate q (x). Define z = limh↓0 z

(h).
In order to derive a PDE characterizing z, we multiply by
exp (qh), subtract z(h), divide by h and take the limit:

limh↓0
exp (q (x)h)− 1

h
z(h) (x, t) =

limh↓0
Ex0∼p(h)(·|x)

£
z(h) (x0, t+ h)− z(h) (x, t)

¤
h

(57)

The first limit evaluates to qz. The second limit coincides
with the notion of generalized derivative in the theory of
stochastic processes and evaluates to zt + L [z], where the
operator L is the infinitesimal generator [12] of the stochastic
process with transition probability p(h) (x0|x). Thus −zt =
−qz + L [z]. The generator L of course depends on the
passive dynamics. For a diffusion process of the form (24)
the generator is known to be

L [z] = aTzx +
1

2
tr
¡
CCTzxx

¢
(58)

Putting these results together we obtain the PDE

−zt = −qz + aTzx +
1

2
tr
¡
CCTzxx

¢
(59)

which is identical to (33) in the previous section. Thus our
new MDPs represent a generalization of problem (22, 23).
Recall that in our MDPs the control is a probability distri-

bution over reachable states. When the state space is made
continuous the control should become infinite dimensional
(i.e. a probability density). But if this is so, how did we
recover (22, 23) which involves finite-dimensional control?
The answer is that, although in principle the control can
be any probability density, the optimal control is a shifted
version of p and so we can parameterize it with the vector
u in (22, 23). This is because for small h the density
p(h) (·|x) is sharply peaked and approximately Gaussian, and
multiplication by a smooth exp (−v (·)) as in (47) can do
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nothing more than shift the mean of that Gaussian. The latter
statement holds only to first order in h, but in the continuous-
time limit first order in h is all that matters.
The relation we established between our MDPs and prob-

lems of the form (22, 23) suggests that KL divergences
and quadratic control costs are related. To see why, note
that for small h the transition probability densities for both
the controlled and the passive dynamics are approximately
Gaussian, with covariance hB (x)B (x)T and means which
differ by hB (x)u. Applying the standard formula for KL
divergence between Gaussians yields control cost h2 kuk

2 per
time h, and so the control cost rate is 1

2 kuk
2.

V. DUALITY FOR DETERMINISTIC SYSTEMS

The duality results presented thus far were obtained by
defining pairs of optimal control and estimation problems,
deriving equations that characterize exp (−v) and r, and
showing that these equations are identical. This indirect
approach was needed because we were interested in filtering
densities which are not defined as the solution to an opti-
mization problem (but see [10]). However if we are only
interested in the peak of the density – as in maximum a
posteriori (MAP) estimation – then the estimation problem
is formulated in terms of optimization and can be directly
converted into an optimal control problem, without having
to characterize the solution to either problem. This is the
approach we take here. Another important difference here
is that (point) estimation will turn out to be dual to deter-
ministic optimal control. First we give results for general
non-linear systems and then specialize them to the linear
case. The states, controls and measurements in this section
are real-valued vectors while the time is discrete.

A. MAP smoothing and deterministic control
Consider a partially observable stochastic system with

transition probability function p and emission probability
function py defined as

p (x0|x) = exp (−k (x0,x)) (60)
py (y|x) = exp (−q (y,x))

k, q are known scalar functions. Suppose we are given a
sequence of observations (y1, · · ·yn−1) denoted y1:n−1. Our
objective is to find the most probable sequence of states
(x1, · · ·xn), that is, the sequence which maximizes the
posterior probability

p (x1:n|y1:n−1) =
p (y1:n−1|x1:n) p (x1:n)

p (y1:n−1)
(61)

The denominator does not affect the maximization so it can
be ignored. Assuming an uninformative prior over x1 and
using the Markov property of (60) we have

p (y1:n−1|x1:n) p (x1:n)

=
Qn−1

t=1 py (yt|xt) p (xt+1|xt)

= exp
³
−
Pn−1

t=1 q (yt,xt) + k (xt+1,xt)
´ (62)

Maximizing the above expression is equivalent to minimizing
its negative log, which we denote with J :

J (x1:n) =
Xn−1

t=1
q (yt,xt) + k (xt+1,xt) (63)

This is beginning to look like a total cost for an optimal
control problem with state cost q and control cost k. However
we are still missing an explicit control signal. To remedy that
we define the (deterministic) controlled dynamics as

xt+1 = a (xt) + ut (64)

where a (x) is the expected next state under p:

a (x) = Ex0∼p(·|x) [x
0] (65)

The results below actually hold regardless of how we define
a (x) , yet the present definition is the most intuitive. The
control u is a perturbation to the passive dynamics a (x).
The cost for the control problem will be defined as

c (x,u, t) = q (yt,x) + k (a (x) + u,x) (66)

The state cost q relates to the emission probability py in the
same way as it did in Theorem 3. The control cost k is no
longer a KL divergence; instead it is the log-likelihood of
the perturbation/control. It is now easy to verify that

J (x1:n) =
Xn−1

t=1
c (xt,xt+1 − a (xt) , t) (67)

=
Xn−1

t=1
c (xt,ut, t)

This yields the following result:

Theorem 4. For any observation sequence, the optimal
state trajectory for estimation problem (60) is identical to
the optimal state trajectory for control problem (64, 66).

We assumed an uninformative prior, however the same
result holds if an initial state x0 is given both in the
estimation and in the control problem. The only change is
the addition of k (x1,x0) to both sides of (67).

B. The LQG case
Let us now specialize the above results to the LQG setting.

The general functions k, q take the specific form

k (x0,x) = 1
2 (x

0 −Ax)
T ¡

CCT
¢−1

(x0 −Ax) + k0 (68)

q (y,x) = 1
2 (y −Hx)T

¡
DDT

¢−1
(y −Hx) + q0

These functions correspond to a discrete-time estimation
problem with linear dynamics

xt+1 = Axt + Cwt (69)

and linear measurement

yt = Hxt +Dvt (70)

where wt,vt are standard normal random variables. For
simplicity we will again assume zero measurements.
The corresponding control problem has dynamics

xt+1 = Axt +But (71)
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and cost function

c (x,u) =
1

2
xTQx+

1

2
uTRu (72)

It is clear that, in order to make the above control problem
compatible with the general form (64, 66), the following
relations have to hold:

BR−1BT = CCT (73)
Q = HT

¡
DDT

¢−1
H

These are the same relations we discovered in Section II and
generalized in Sections III and IV.

VI. DISCUSSION
Here we obtained a new estimation-control duality in the

LQG setting and generalized it to non-linear stochastic sys-
tems, discrete stochastic systems and deterministic systems.
Some aspects of our work are related to prior developments.
The fact that the exponential transformation leads to linear
HJB equations is well known [5], [8], [3], [7]. Estimation-
control dualities exploiting this fact we studied in [3],
however they involved forward filtering instead of backward
filtering and as a result were less natural. More recently [10]
obtained a form of duality related to Theorem 2, although
using a different method. In the context of MAP smoothing
our work has similarities with the idea of minimum-energy
filters [11]. Researchers in machine learning [1], [14] have
used estimation methods to find optimal controls, however
these methods operate in the product space of states and
controls. In contrast, we perform estimation only in the state
space and then use the filtering density to compute optimal
controls. Kalman’s original duality has been exploited to
compute optimal controls for LQG systems with multiple
input delays [15]. It will be interesting to see if our general
duality can be used to extend these results beyond LQG.
All forms of duality we described here were based on

the exponential relationship (1) between probabilities and
costs. This fundamental relationship arises in a number of
other fields. In statistical physics, (1) is the Gibbs distribution
relating the energy v (x) of state x and the probability r (x)
of observing the system in state x at thermal equilibrium.
In machine learning, (1) relates the model-fitting error v (x)
and the likelihood r (x), where x are the model parameters.
Indeed most machine learning methods have both error-
minimization and likelihood-maximization forms.
While Kalman’s original duality suggested that optimal

estimation and optimal control are in one-to-one correspon-
dence, our results show that this is generally not the case.
The class of stochastic optimal control problems that have
estimation duals are those with control-affine dynamics,
control-quadratic costs, and dynamics noise satisfying the
relationship BR−1BT = CCT. We saw repeatedly that
this relationship was necessary in order to establish duality.
The dual estimation problems on the other hand were not
constrained – indeed (24, 25) is the general problem of non-
linear estimation usually studied in the literature. The fact
that a special family of stochastic optimal control problems

are dual to a general family of Bayesian estimation problems
leads to the conjecture that control problems outside this
class may lack estimation duals.
Our results make it possible to develop new algorithms

for optimal control by adapting corresponding estimation
algorithms. One very popular class of estimation algorithms
are particle filters – which represent probability distribu-
tions with samples rather than (possibly inaccurate) function
approximators. Particle filters do not yet have analogs in
the control domain. Our duality makes it possible to obtain
such analogs. One complication is that most existing particle
filters run forward in time while we need a filter that runs
backward in time. Some progress along these lines has
been made [4]. Other popular Bayesian inference algorithms
include variational approximations and loopy belief propaga-
tion in graphical models [2], although these algorithms are
usually applied to discrete state spaces.
Finally, our results make it possible to obtain a classic

maximum principle for stochastic optimal control problems
possessing estimation duals. In particular, we can start with
the stochastic control problems in sections III and IV, trans-
form them into dual estimation problems, and transform the
latter into deterministic control problems as in section V.
Pontryagin’s maximum principle can then be applied. These
ideas will be developed in future work.
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