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Abstract— Pneumatic actuators are mechanically simple and
robust, have good energetic properties due to air compressibil-
ity, and are relatively cheap. Despite these advantages they are
difficult to control — pressure dynamics have typical timescales
on the order of 100ms, and this delay can severely cripple
simplistic control approaches. The solution is to use a model-
based controller with a good model of the pressure dynamics.
Here we present a general parametric model of these dynamics
based on both a theoretical analysis and an empirical study
with a humanoid robot.

I. INTRODUCTION AND RELATED WORK

Pneumatic actuators are attractive for several reasons.
They are naturally back-drivable, have low friction, tunable
compliance and are very robust. They have a high strength-
to-weight ratio — for example a typical cylinder of 5 cm
diameter weighing ~100 grams, running at a standard 85 psi
(=590 KPa) above room pressure, produces 1160 Newtons or
260 pounds of force. Furthermore, the mechanical simplicity
of pneumatics makes them inexpensive.

The central disadvantage or complication, is that they
are much slower than electric motors or hydraulics, with
dynamic timescales on the order of ~100ms. In order to
properly control a pneumatic system, a good model of these
dynamics is required. Models of such systems can in general
be classified as physical or parametric models. Physical
models are constructed from first principles and attempt to
conform as closely as possible to the underlying physical
system. Parametric models are functions with unknown con-
stants which are found using a curve-fitting procedure. While
both types of models can have good predictive properties,
the design objectives are different. The physical model
attempts to accurately capture all the physical properties,
regardless of how important they are for prediction. The
design of a parametric model, while focusing on predictive
power, must also take into account secondary objectives, like
ensuring good convergence and eliminating local minima in
the parameter space.

Previous work has focused either on precise physical
models of pneumatic systems [1][2][3], or on linearized para-
metric models [4]. In this paper, we first develop a physical
model from first principles, and then use this model to guide
the design of a non-linear parametric model. The work most
closely related to ours is [5], where quadratic polynomials
are used as a basis for the non-linear parametrization. Rather
than general polynomials, we use specially crafted functions,
chosen to conform to the predictions of the initial physical
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model. This paper is a natural continuation of our earlier
work in [6].

II. PHYSICAL PNEUMATICS MODEL
A. Ports, Valves and Chambers

A pneumatic cylinder is a device with two chambers
separated by a sliding bore. The air pressure in each chamber
is controlled by valve which can connect the chamber to
one of two ports: the supply port connects the chamber to
a compressor and the exhaust port connects the chamber to
room pressure. In some setups a single valve with two output
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Fig. 1. Pneumatic cylinder. Schematics of a cylinder with two valves,
one for each chamber. Each valve has two ports, one connected to room
pressure P, and the other to the compressor Pe.

ports is connected to both chambers of a cylinder, allowing
high pressure in either chamber, but not both. We chose the
setup shown in Figure 1, where the chamber pressures can
be controlled independently — to allow for the stiffness that
results from high pressure on both sides. Another design
choice was to use proportional valves rather than binary
valves with a Pulse Width Modulation scheme. Proportional
valves offer fine-grained control of the port size, and are also
less noisy than a PWM setup. The details of our particular
setup are further discussed in Section V, but the theoretical
analysis should apply equally well to other configurations.
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Fig. 2. Thin-plate port.

1) Port model: The port model describes the movement of
fluid that occurs when connecting two chambers (upstream



and downstream) of different pressure via a small orifice
(Figure 2). Key assumptions are that the area of the port
is small, that the plate separating the chambers is thin, that
the fluid is a perfect gas, that the temperatures in the two
chambers are equal, and that the flow is isentropic. Under
these assumptions the mass flow i is the product of the
orifice area a and a function ¢(p,,pq) of the upstream and
downstream pressures:

m = a- ¢(pu,pa) (1)
@(-,-) is called the thin-plate flow function [7].
2(Pu,pa)  if pu > pa
¢(Pu,Pa) = (B, ) . ! (1b)
_Z(pdvpu) if pu, < pa
2 K+l
ape () = ()7 torpufpa <0
Z(pu7pd) =
Bpu for pu/pa > 0

(10
The physical constants x, «, 8 and 6 are described in the
Appendix. Figure 3 shows the air-flow 71 as a function of the
pressure in one of the chambers while the other chamber is
at room pressure, for several orifice diameters. The function
is continuously differentiable. When the upstream pressure
is larger than 0 times the downstream pressure, the flow
becomes linear in the upstream pressure and independent
of the downstream pressure.
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Fig. 3. Thin Plate Flow Function. We plot Eq. (1): the air flow mh
as a function of the ratio p, /p4. The downstream pressure pg is kept at
room pressure P, &~ 100k pq, and p,, is varied from O to the compressor
pressure Pe &~ 620k pq = 90p5;. The 4 curves show the flow rate for 4
orifice diameters. The linear regime is outside the dotted vertical lines.

2) Two-port Chamber: The total flow of fluid mass into
a chamber with 2 ports is the difference of the flows:

Th(p, Qc, ar) = ac¢(Pc>p) - ar¢(p7 Pr) 2

where a.,a, are the orifice areas connecting the chamber
to the compressor and room respectively, and P,, P, are the
respective constant pressures. Figure 4 shows this function
to be monotonically decreasing, which corresponds to stable
dynamics which converge to a steady-state pressure pss given

by ac¢<Pc7pss) = ar¢<pSSaPr)~
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Fig. 4. Flow in a chamber with 2 ports. We plot Eq. (2): the mass
flow 1 (p, ac, ar) for orifices of 1, radius: ac = ar = 7,,,,2. The red
circle shows the steady-state pressure which the dynamics converge to.

3) Valve model: A valve is a mechanism for control-
ling the orifice areas of the ports. Figure 5 illustrates a
proportional valve. For an input voltage u, a moving part
called the spool assumes a position which is linear in wu,
and partially or fully obstructs the ports. As the spool moves
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Fig. 5. Schematics of a proportional valve. A movable part called the
spool (black) moves to block or unblock the ports. Left: exhaust port open,
supply port closed. Center: exhaust and supply partially open. Right: exhaust
closed, supply open.

over the port the effective area of the port will smoothly
transition from a constant (very small) area when blocked,
to a linearly increasing area when unblocked. The precise
form of the transition depends on the relative shape of
the port and the spool. We chose to model it with the
function smax(xz) = (va2 + 1 + z)/2, which is a smooth
approximation to max(x, 0).

ac(u) = L. + smax((u — U.)B — L)
ar(u) = Ly + smax((U, —u)B — L,)

(3a)
(3b)

here L., L, are the respective minimal areas of the compres-
sor and room port orifices, corresponding to leakage when
the ports are sealed. U,, U, are the voltage values at which
the respective ports are sealed and B is the coefficient which
translates from voltage to area. Different relative sizes of the
spool and the ports will lead to different partial obstructions
at mid-voltage, as shown in Figure 6.
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Fig. 6. Valve model. We plot Eq. (3): Areas of the compressor port ac

and the room port a, as a function of the voltage u applied to the valve.
The different line-styles correspond to different choices of the parameters.
The axes are scaled to the valves we use, see Section V.

4) Chamber Model: We can now write the pressure
dynamics of a single chamber:

. . RT . v
p(p,u,v,¥V) = k—1 — K—p
v A%

m(p, U) - ac(u)¢(PCap) - a/T(u)¢(p7 PT)

where v is the volume of the chamber, v is the rate of change
of that volume and k, R and T are physical constants (see
Appendix). The first term in the pressure dynamics equation
(4a) is due to the flow from the valve, while the second one
is due to compression from the piston.

5) Independence from the Mechanics: Given the volume
v and its derivative v, the pressure dynamics are independent
from the mechanical dynamics. Similarly, given the pressure
difference between the two chambers, the force is known,
and the mechanical system is independent of the pressure
dynamics. Because the cylinders are rigidly attached to the
limbs, v is a deterministic function of the joint angles q.
Since barometers for measuring p are cheap and accurate, as
are potentiometers for measuring q, we assume that both are
indeed measured, and safely ignore the mechanics.

(4a)
(4b)

III. PARAMETRIC MODEL DESIGN

The general parametric form of the pressure dynamics is

p=rf(pu,v,¥;c), &)

where c is a vector of parameters to be fit to data measured
from a real pneumatic system. In principle, equations (1,3,4),
constitute exactly such a model, but this model cannot be
applied to a real system in its current form, for two reasons.

First, it contains parameters which are very difficult to
measure or fit, e.g. the constants B,U., L., U,, L, in the
valve equation (3). These constants depend on the precise
internal geometric alignment of the spool and the ports. The
three line-styles in Figure 6 correspond to “educated guesses”
of these constants.

Second, though air dynamics are notorious for their slow-
ness, they can also be extremely fast. Consider the vertical
scale of Figures (3.,4); it is ~ 104 cm3/s. The chamber
of a fully retracted cylinder can easily have a volume of
~0.1 ¢m3, leading to a pressure change on a timescale of 10

microseconds. In practice the lower bound on the timescale
is determined by the valve dynamics, but these are usually
quite fast, on the order of ~10 ms for proportional valves
and much faster for switching valves. This means that in
order to integrate (W.R.T time), we would need either a
very small timestep or a variable-timestep integrator. This
could be computationally expensive and would complicate
differentiation (W.R.T state), which is often required for
model-based control.

The model we want is cheap to compute and to differ-
entiate, easy to integrate, and has parameters that can be
fit reliably, using a simple procedure. The parametric form
which satisfies all of these design requirements is

p = (S(U,V,V; C) - p) ! T(U,V,V; C)' (6)

The function s() has units of pressure and describes the
steady-state pressure of the system; the function r() > 0
has units of inverse time and describes the total change rate
in the system. The central advantage of (6) over (5) is its
linearity with respect to p. Assuming fixed values for s and
r over a small time-step h, we can integrate (6) analytically:

p(t+h)=s+ (p(t)—s)e ™" (7)

This integration scheme is stable for any time-step, and is
easily differentiable if s() and r() are differentiable.

Although we do not use the physical model (1,3,4) directly
in our final identification scheme, we will use it to instruct
our design of the parametric model (6) and its constituent
functions s(), ().

A. Steady-State Pressure

The steady-state pressure function s() can be directly pre-
dicted from the physical model. Assuming a constant volume
v, we eliminate the second term of (4a) and numerically solve
for the steady-state solution 7(p) = 0. Figure 7 shows the
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Fig. 7. Predicted steady-state pressure. pss(u): implicit solutions of
= 0. The three line-styles correspond to the three choices of valve model
constants used in Figure 6. See Figure 10 for the same curves measured on
the real system.

numerical roots of (4a) for different values of u. The effective

function pss(u) shown in the figure serves two purposes:
First, it shows us the required shape of the function

s(u, -, ;). It is a sigmoid with a flat kink at the origin.



This flat region corresponds to the spool fully obstructing
both ports. In this case the only flow is the leakage modeled
by L., L, in (3), which is independent of the precise position
of the spool. We used the quadratic sigmoid

g(x) = z/Va? +1, (8)

and enabled the flat kink by adding a cubic term to the
argument of the sigmoid (see below).

Second, it represents a theoretical prediction for the fol-
lowing simple experiment. By locking the cylinders in place
we can fix the volume v; changing the command voltage u
very slowly, so that the pressure is effectively at equilibrium,
7h vanishes and the measured pressure at the chamber should
correspond to the plot in the figure.

B. Rate

The dependence of the rate function on the voltage
r(u, -, -; ¢) roughly corresponds to the total port area a.(u)+
a,(u), because 7i is linear in both a. and a,. We therefore
use the function vz2 + 1 = smax(z) + smax(—x)

k(z;a,b,¢) = Va2 +a®> —a+b+c-x, 9)

The parameters a, b, ¢ correspond to the size of the smooth
area near the origin, a vertical shift of the whole function, and
a tilt of the entire function around the origin, respectively.
a is related to the sealed regime of the valve, see below. The
bias b is required to model the leakage terms L., L,. The
tilt ¢ models asymmetries between the two ports.

C. Volume Dependence

Comparing (6) and (4a), we see that the volume v enters
linearly in the denominator, and can therefore be confined to
the denominator of (). The volume velocity v multiplies p
and linearly “drives” the ratio r/s, so it cannot be confined
to one, but must appear in both r() and s().

IV. THE PROPOSED MODEL

Unlike the physical model where every term carries ex-
plicit units, the parametric model includes the necessary
scaling and bias terms, which are found automatically by
the fitting procedure. This means that sensors do not need
to be calibrated independently. For example if the volume
v is measured with a linear potentiometer on the piston
(whose extension is linear with the volume), there is no need
to explicitly convert to units of cm?. Similarly, the output
voltage of the pressure sensor need not be calibrated into
physical units and can remain in sensor units.

Putting the pieces together, our model has 9 free parame-
ters ¢ = (c1, o, ...Co) per valve-chamber system which must
be determined. Additionally ¢, and cs are the bias and the
gain of the steady-state pressure sigmoid and are computed
explicitly as ¢, = (P, + P,)/2 and ¢s = (P. — P,)/2. One
parameter (c,) is chosen heuristically (see below). Written

in sequential form, the model is given by (8),(9),(10):

U=u-—-c (10a)
g = glcaii + c30®) (10b)
§=cp+csg+cqv (10c¢)
k = k(d,c.y,co,cs) (10d)

crk + c5v
r= T ey (10e)
p(p,u,v,v;c) = (s —p) xr (10f)

More compactly, for & = u — c; it is

. + CQ’ZAL + Cgﬁs
P=|C T C
*V(Cali+ c303)% + 1

C7<\/’&2 +c2—cyt+cgtos- 11) + c5v
1 + CegV )
Some of these parameters have physical interpretations
that can lead to explicit constraints in the parameter space,
see Table I. For example the “kink factor” c3 must be larger
than -1 to maintain the monotonicity of s(u).

—|—C4\'/—p>><

l parameter [ interpretation [ comments ‘
c1 valve-voltage origin, (Ue + U;)/2 2<c1 <8
co valve-voltage scale, B
c3 kink factor —1<ecs
c4 0s/0v
cs or/ov
c6 volume-sensor scale
cr B of Eq. (3)
cg rate asymmetry —1<eg<1
co leakage, (Lc + Lr)/2 0<cy
cp pressure-sensor bias =(P.+Pr)/2
Cs pressure-sensor scale =(P.—Pr)/2
Cy voltage range of leaky regime see below

TABLE 1

INTERPRETATION OF MODEL PARAMETERS

The parameter ¢, gives the range of voltage around u =
c1 for which the ports are “almost” sealed, i.e. when the
leakage flow is not small relative to the total flow. In terms
of Eq. (3) this corresponds to U, < u < U,. Because ¢, =
0 creates a non-differentiable point, it is important that it
remain positive, yet at ¢, = 0 the derivative 9k/dc, also
vanishes, which leads to a bad local minimum for the fitting
procedure. For these reasons we set it globally to ¢, = 0.1y.

The constant 1 in the denominator of (10e) is required to
collapse the multiplicative invariance of (cs,cg,c7), while
still allowing all 3 degrees of freedom. It can also be
understood as the bias of the volume sensor, in units of
volume sensor bias.

V. EXPERIMENT

We identified the humanoid robot shown in Figure 8, made
by Kokoro in Japan. It has 44 pneumatically-actuated dofs;
6 of them are in the hands which were removed for the



purposes of this paper, so here we are controlling only 38
dofs. Our long-term goal is to be able to make this humanoid
perform various life-like movements using model based
control. Before attempting such a challenging task, however,
we need to identify the pneumatic system. Initial test were
performed and reported in [6], where we experimented with
a 2-dof arm made by the same manufacturer using the same
components.

Each joint is driven by either a linear or a rotary pneumatic
cylinder. The drive is direct, without any gears, belts or
cables (except for a couple of joints in the humanoid). This
makes the system both more compliant and more robust
— indeed the robot has been hitting its joint limits at high
speeds during the identification tests, without any damage.
Each cylinder has two chambers fitted with solid-state pres-
sure sensors. Each chamber is connected to a proportional
valve, which can be open towards the compressor (at 90
psi) or towards the room (where the atmospheric pressure is
14.7 psi) or it can be sealed (up to small leakage). The joint
angles are measured by potentiometers. The humanoid has
114 sensors and 76 controls.

Fig. 8. Left: Pneumatic humanoid robot. Right: Valve and spool. In
the classic setup the compressor is connected to 1, the chambers of a single
piston are connected to 4 and 2, and 5 and 3 are respective exhaust ports.
We connect a single chamber to 4 with an exhaust at 5, and plug ports 2
and 3.

We use the MPYE proportional directional control valves
by FESTO. The valves take a command voltage 0 < u < 10
Volts, but we used 3 < uw < 7 Volts to avoid hitting the
limits inside the valve. These valves are of the so called
“5/3” type, which are usually connected to both chambers
of a cylinder, and can alternatingly conduct the compressor
pressure either to one chamber or to the other, but not to both.
We are interested in exploiting the stiffness control that is
made possible by pressurizing both chambers, so chose to
connect two valves to each cylinder, one to each chamber.
In order to apply our model to the standard setup, the control
voltage data for the single valve would simply be duplicated,
and each chamber identified separately.

We use National Instruments I/O boards. The valves have

100Hz bandwidth, thus the control loop runs at 100Hz.
The pressure sensors and potentiometers are analog devices
that can be sampled at arbitrary rates. We are sampling
all sensors at 20KHz and average every 200 samples, for
a 100Hz sensorimotor loop. Such averaging is beneficial
because the sensor noise is essentially white. The software
system consists of the NIDAQmx drivers and a C function
which reads the driver buffers, returns averaged sensor data,
and sets the desired valve voltages. Data analysis was done
in MATLAB.

A. Flow

We measured the steady-state flow rate as a function of
voltage for the two ports in the standard setup for a single
valve using a FESTO SFAB-200U flow sensor, see Figure 9.
Since these are proportional to port area it can be seen that
our valve model in (Figure 6) captures the principal features
of the area function.

Flow—meter reading (sensor units)

3 5 7
Voltage (volts)

Fig. 9. Measured valve flow. Compare to Figure 6.

B. Steady-State Pressure

We performed the experiment described in Section III-A,
and measured the chamber pressure for a locked cylinder,
while changing the command voltage u very slowly, to
measure the steady-state pressure function s(). We performed
this measurement for all 78 valve-chamber pairs (Figure 10),
and noted that the resulting curves compared favorably to the
solutions predicted by the physical model (Figure 7).

C. Identification

We fit the parameters c; g using standard nonlinear least-
squares on measured data. We recorded 100s (10° data
points) of controlled movement during which the robot was
flailing its limbs (see video attachment). These movements
were controlled by a simple PID controller W.R.T the po-
tentiometer reading, and were designed to explore the state-
space as violently as possible, without hitting any joint limits
so strongly that the robot would break. For each of the 76
valve-chamber systems, the data consisted of the voltage
ug, chamber pressure p;, and joint-potentiometer reading
vy (which are proportional to the volume). The latter were
finite-differenced to obtain joint velocities v;. Rather than fit
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Fig. 10. Measured steady-state pressure. Bottom left: overlay of steady-
state pressure measurement for all 76 valves. Above and to the right: Three
typical curves. Compare to Figure 7, which shows curves predicted by the
physical model.

p directly, we used the integration formula (7) and fit the
pressure at the next timestep.

c* = argmin Z(pt+h — Prgn (Pe, wt, Ve, Vi5 €))?
¢ t

where p;i1 is the value predicted by (7). The values of ¢
were constrained by the limits in Table I. In our tests the
optimization always converged to the same minimum, from
different initial conditions. We have no formal guarantee of
convexity, but we had never encountered bad local minima
with this parametrization. It is worth noting that the particular
functional form we use here is the result of a long test
process, where many other functional forms were tried,
which often misconverged to bad minima. The empirically
good convergence properties of our model, though difficult
to quantify, are one of its strongest features.

Figure 11 shows an overlay of the predicted and mea-
sured change in pressure for a single valve-chamber system.
Clearly the main features of the pressure derivative function
are captured by the model, but a simple overlay does not
properly quantify the quality of the fit.

D. Multi-step Prediction

Our end goal is to use this model for model-based pre-
dictive control. Since we do not yet have a a full kinematic
and dynamic model of our robot, we can do the next-best
thing, which is to test how good the prediction is for a
multistep horizon. In this scenario we have a measurement
of the current pressure p;, and a planned sequence of
command voltages wu;. 7. Given a prediction of the joint
angles q:..7 (and therefore of future chamber volumes
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Fig. 11. Pressure change fit. Shown for a a typical valve-chamber system.
The light curve shows the measured pressure difference p;, —pt, the dark
curve shows the predicted change p;p — p¢. The bottom figure shows the
same data at higher temporal resolution.

and velocities vy, 7, V¢ ), We can recursively integrate the
pressure dynamics. Of course future joint angles depend on
the chamber pressures, so this prediction would be performed
simultaneously for p and q. Here however, we can simply
take the measured values of u, v, v, while integrating p using

Po = Po
Dith = Deh (Pt U, Ve, Vi3 C).

Thus, the predicted pressure p; is allowed to diverge from
the measured pressure p;. Figure 12 shows this divergence
for the same valve-chamber system of Figure 11. p, was
initialized with p, at the dotted grid lines and integrated
thereafter. Surprisingly, almost no drift was detected.

Figure 13 shows the results of the same test performed for
all 76 valve-chamber systems. Starting from 48 time points
in each dataset, we integrated the pressure prediction for 2
seconds. We plot the standard deviation of the prediction
error as a function of time for each valve separately, and
for all 3648 = 76 x 48 integration sequences. Note that the
vertical axis is scaled by (P.— P,)/10, so the expected drift
of the predicted pressure is less than %10 of the difference
between chamber and room pressure, and usually less than
%4. We attribute the surprising lack of drift both to the
quality of the fit and to the parametrization (5), which
correctly captures the dynamical convergence to a set-point
exhibited by the pressure.
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Fig. 12. Pressure prediction. The light curve shows the actual pressure

pt, the dark curve shows the integrated pressure, starting at the dotted grid
lines. The bottom figure shows the same data at higher temporal resolution.

APPENDIX

The physical constants in Eq. (1) are given by:

2M K
=N ZrTr 1 (n
k1
kM 2 w1
p=C ZRT(H—&-l) 12)
KA1\ FT
= 1

M,Z,R,T,k,C are defined in Table II.

Gas Molecular Mass M | 0.029 for air, Kg/mol
Temperature T K°
Universal Gas Constant | R | 8.31 (Pa-m?3)/(mol K°)
Discharge coefficient C 0.72, dimensionless
Compressibility Factor Z 0.99 for air, dimensionless
Specific Heat Ratio K 1.4 for air, dimensionless
Mass Flow m | Kg/s
Pressure p Pascals
Area a m?

TABLE II

PARAMETERS AND UNITS OF THE THIN-PLATE PORT MODEL.
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Fig. 13. Drift of pressure prediction. Expected deviation of the pressure
prediction from true pressure as a function of time from the last accurate
measurement. Note that the vertical scale is %10 of the pressure difference
P. — P;r.
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