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Abstract— This paper develops a hierarchical model pre-
dictive optimal control solution to the complex and interest-
ing problem of object manipulation. Controlling an object
through external manipulators is challenging, involving non-
linearities, redundancy, high dimensionality, contact breaking,
underactuation, and more. Manipulation can be framed as
essentially the same problem as locomotion (with slightly
different parameters). Significant progress has recently been
made on the locomotion problem. We develop a methodology
to address the challenges of manipulation, extending the most
current solutions to locomotion and solving the problem fast
enough to run in a realtime implementation. We accomplish
this by breaking up the single difficult problem into smaller
more tractable problems. Results are presented supporting this
method.

Index Terms— Optimal control, object manipulation, legged
locomotion, hierarchical control, optimization, adaptive control,
nonlinear systems

I. INTRODUCTION

Manipulating objects is a complicated problem (Fig. 1).
As you read this paper you are either controlling your mouse
or flipping through paper, performing control in the context
of uncertainty, contacts (changing dynamics), nonlinearities,
redundancy, and high dimensionality. Both manipulation and
locomotion are difficult, related problems which have not
yet been completely solved in the control sense. We present
extensions to current methods and demonstrate application
to simulated robots performing manipulation tasks. Addition-
ally, we address a methodology for making difficult problems
more parsimonious by breaking the problem into pieces.

Related work, and the connection between locomotion
and manipulation: Among the most relevant work that has
been done is the work in [8] who has assumed a grip is
given and contacts are static, and then determines the forces
to move an object in a prescribed manner. This is akin to
solving part of our problem. Though this is groundbreaking
work, it is limited for manipulation problems where the
object may need to be in continuous rotation. In that case, the
grip must be constantly changed, and how the grip is changed
is a dynamic problem coupled to the low level problem of
when, where, and how to move each individual manipulator.
Many studies have been performed about how humans grip
objects[13], but this assumes a somewhat quasi-static notion
of holding an object. In robotics, work has been done on de-
termining forces to constrain an object with a gripper[11] and
gripper reference positions[5], again in a static equilibrium
sense, and only with a particular number of manipulators
(usually a 1-degree-of-freedom gripper). Here we do not
limit ourselves to quasi-static situations, but rather determine
a solution approach which deals with static and dynamic
interactions, and even changing numbers of manipulators.
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Fig. 1. Overview of the two dimensional manipulation problem. How does
one apply forces to an object to (a) not allow it to drop, and (b) cause it to
follow a prescribed trajectory?

Significant work has been done in control toward improving
the dynamics of gripper mechanisms themselves, such as
[3], but this work does not solve the entire problem as one
dynamic system, including the object and gripper dynamics.
It assumes open loop trajectories to follow in order to achieve
a given grip, dealing only with what is the lowest level of
the present control scheme. Additionally, there is evidence
that biological systems intelligently use the passive dynamics
built-into their bodies to aid in control rather than cancel their
dynamics[16][9]. The present work attempts to draw on the
intelligent approaches used by biology.

Prior work has addressed the problem of locomotion, but
we can consider that manipulation of an object is essentially
functionally identical to locomotion with only relativistic
differences. In object manipulation, the manipulator is typ-
ically larger than the manipulated object (or on a similar
scale), and so the object is moved and controlled relative
to the manipulator origin. But in locomotion, the object
being manipulated is the ground, which is much larger than
the manipulator, so the origin of the manipulator moves
relative to the manipulated object. In both these cases there
is a relative movement between the object and manipulator
origin, and the goal is to control that movement.

If this assumption holds for the purposes of our model,
similar approaches to locomotion can be applied to manipu-
lation. Unfortunately, locomotion is still largely an unsolved
problem in the sense that most solutions require a great deal
of insight and manual ‘tweaking’ by the experimenter to
create a successful locomotion algorithm. In addition, most
locomotion approaches can perform only a very limited num-
ber of behaviors (walk only over smooth ground, run only,
etc.). However, the approach that is currently quite promising
is a hierarchical control approach[7][10], combined with
model predictive control. Indeed, the most successful exam-



ples can be found in computer graphics where people are
interested in creating interactive characters which function
based upon physics rather than motion capture or kinematic
data[18][12][2][6]. This approach has the potential to create
very adaptable interactive characters which have unscripted
and rich behaviors. Such work has not yet been implemented
in real physical robotic systems (see [1] for an overview), and
this is currently in process in our lab.

On redundancy and underactuation: A parallel between
walking and manipulation is that in both cases the end
effector is underactuated - i.e. one does not have direct
control over the object in question (either the ground relative
to the agent or the small manipulated object relative to the
fingers). This is another reason that similar techniques should
be applied to both problem classes.

Contributions: This work contributes a new dynamic
hierarchical optimal control approach to the manipulation
problem, which can also be applied to the locomotion
problem. It also requires a minimum of manual tweaking,
can be tuned through a few intuitive parameters, and can
be expanded in terms of behavioral complexities easily. This
is also a realtime implementation of this solution, requiring
no offline computation to adapt or pre-learn trajectories.
These methods are also designed to be implemented on
real physical robots, beginning with those developed in our
lab specifically for manipulation and locomotion. Another
contribution is the concept of treating manipulation and loco-
motion as essentially the same problem with slightly different
parameters. Finally, the method of handling joint limits by a
useable workspace with a soft boundary that acts as a spring
when the manipulator is drawn past the workspace facilitates
numerical stability, and parallels biological systems in a way
not yet implemented to our knowledge.

Paper outline: The rest of the paper is organized as fol-
lows: Section II describes the system model and hierarchical
control approach to the problem, Section III describes the
experiments used to test the algorithm, Section IV describes
the results of the experiments and discusses the implications,
and finally Section V presents a number of conclusions to
the paper and discusses the next steps to be taken.

II. MODEL

Objects will be modeled in two dimensions (2D) in this
paper, though all techniques developed here extend to three
dimensions directly (and this is the topic of an upcoming
paper). An object is represented by a center of mass, mass,
inertia, and an external boundary. This allows for objects of
any 2D shape to be represented. Locations for contact points
on the object are defined by angles relative to the origin of
the object (a coordinate system located at its center of mass).
The boundary of the object is represented in the control
structure as a functional of the angle relative to the origin
(this is mathematically stored as a cubic spline representation
in order to facilitate the concept of the controller ‘learning’
about various objects it manipulates).

The system includes a given number (which may change
at any time) of 2D manipulators (See Fig. 2) which can move
in the plane of the object(s) and apply forces. These are 2D
representations of manipulators which are in development in
our laboratory and are currently in their prototype stages.

The manipulators are represented mathematically as a four
bar linkage where each bar has mass, inertia, and a center of
mass. The end effector extends from the second link in the
loop, and torques are applied at the first joint, with effects
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Fig. 2. Each prismatic manipulator has two degrees of freedom, and
measures position of each joint and output force.

upon the first link and the fourth link. The nature of the link
structure creates a bounded workspace, which is represented
as a function of the lengths of each link and the range of
motion of joint one and four.

As with the physical robot, the rotor inertia in the DC
motors (as coupled through the drive system) dominates the
inertia in the system, so in general the system behaves like a
point mass at the endpoint. By treating the complex trajectory
part of the control problem at this level (i.e. controlling a
point mass), optimal trajectories can be found quite rapidly,
and output forces can be generated at a lower level by
local feedback. This facilitates a realtime implementation.
Complex dynamics can also be addressed by the use of
parallel processing such as with GPU’s, and implementation
(at least partially) in C versus Matlab where loops are
performed.

A. n-finger 2-D manipulation problem
It can be shown that the sum of forces on the object with n

manipulators applying forces are given by the sum of forces
and moments as,∑

Fx,o =
∑
i

fxi
−moax,o (1)∑

Fy,o =
∑
i

fyi
−mog −moay,o∑

Mo =
∑
i

(
− fxdy(θ) + fydx(θ)

)
i
− Jθ̈o

with fi, d(θ), J , and θ representing, respectively, the force
applied by manipulator i, the surface location relative to the
object center as a function of angle, the object rotational
inertia, and the object angle relative to horizontal, with
()o representing ‘with respect to the manipulated object of
interest.’

An important constraint in contact is the following (unless
slip occurs or the objects are moving apart, which is dealt
with in the contact algorithm), with a representing acceler-
ation of either the object ao or point mass i, ai, and θ̈o the
angular acceleration of the object:

ax,i = ax,o + θ̈odx(θi) (2)

ay,i = ay,o + θ̈ody(θi)

This states that the point masses must move in such a
way when in contact that they do not slip. The velocities



must also match during contact, and thus a discontinuous
change (unless a soft contact algorithm is implemented) in
velocity is experienced by the point masses and object. This
can be modeled as an impulsive force which exactly brings
about this change in velocity. The point masses are assumed
to be insignificantly small compared to the object mass,
though this assumption (could be dropped with some minor
adjustments to the equations).

When not in contact, the accelerations of the point masses
are given by, with external forces due to the robot actuators
bi:

ax,i =
1

mi
bx,i (3)

ay,i =
1

mi
by,i − g

The object dynamics are given from Equation (1) after
rearranging by (note in the absence of contact the object
is only affected by gravity): ∑

i

fx,i −moax,o = 0 (4)∑
i

fy,i −moay,o = mog

−
∑
i

fx,idy(θi,p) +
∑
i

fy,idx(θi,p)− Jθ̈o = 0

The end effector dynamics when in contact with the object
are given similarly by, after substituting in Equation (2):

fx,i +miax,o +miθ̈odx(θi) = bx,i (5)

fy,i +miay,o +miθ̈ody(θi) = by,i +mig

Which can be rearranged more succinctly by combining
the force, mass/inertial, and external force variables and
constants as,

f −ma = b (6)

or in matrix form, where bold face denotes appropriately
sized sub-matrices, and I represents the identity matrix,

A =


1 0 −mo 0 0
0 1 0 −mo 0
−dy,i dx,i 0 0 −J
I 0 mi 0 miθ̈odx(θi)

0 I 0 mi miθ̈ody(θi)

 (7)

w =
[
fx,i fy,i ax,o ay,o θ̈o

]T
(8)

b = [ 0 g 0 bx,i by,i +mig ]
T (9)

Aw = b (10)
w = A+b (11)

where (x+) representing the pseudoinverse of x. The result,
w, contains the forces the point masses apply on the ob-
ject (and corresponding opposing forces by Newton’s law
of equal and opposite reactions), as well as the resulting
acceleration of the main object. The size of the A matrix
changes ‘on the fly’ as point masses come in contact and out
of contact. In this way one can solve for the set of contact

forces and acceleration. If there are multiple solutions, this
determines a local minimum.

We now have our problem: when in contact - compute
the individual forces and locations which optimally track the
reference position or force, when not in contact, compute
the required individual force trajectories to move the fingers
along a trajectory. The two states of contact or non-contact
trajectories form an object manipulation ‘gait.’

In order to maintain contact with the surface, an orthogo-
nal (to the surface) friction force must be maintained, unless
the forces on the object are in static equilibrium. Let us
consider the friction case. Essentially, one must maintain a
friction force which balances the forces orthogonal to the
contact point. Whatever the desired forces computed by the
above equations from the reference trajectories of the object,
the friction force required poses a constraint on the individual
manipulator controls. In this paper, we assume the simplest
form of friction, which is that of complete ‘stickiness’ of the
object. In other words, any force into the object normal to
the object surface causes the manipulator not to slip in the
orthogonal direction to the surface at the point of contact.
This does not avoid the issue of dropping the object, and
so the intention is to simplify the system dynamics without
sacrificing addressing the important aspects of this problem.

The problem also becomes more interesting when one
considers redundant manipulation1. In this case, a minimal
intervention principle[16] can be used to generate appropriate
control signals. This works by one of two approaches,
depending on how one is interested in solving the problem.
If we don’t want the (already in contact) manipulators to
adjust their ‘grip’ positions on the object to be optimal, then
the problem is ‘given a particular distribution of contact
points, what is the set of minimal forces to apply which
will produce the desired acceleration and maintain constraint
satisfaction.’ The second way to approach the problem is to
consider the previous problem but add the following, ‘addi-
tionally, what is the optimal configuration of manipulators
to produce the minimal set of forces required to move the
object with a desired acceleration.’ With redundancy, this
may be a problem that has multiple solutions, so the best
solution will be considered to be the one which is the lowest
dimensional. The trajectory to move an object becomes part
of the optimization problem.

This can all be formulated within the optimal control
framework[15], and solved either with a globally optimal
method (approximate the value function or control surface
over the region of interest) or with a locally optimal control
method, such as iLQG2. Additionally, iLQG can be initial-
ized by an approximation to the globally optimal solution.

The actual robots to which these algorithms will be applied
(which are called ModBots, developed in our lab by the first
author) have more than enough dynamic capability to be
controlled as point masses or ideal force applicators (with a
carefully developed local controller, a well-identified system,
and inertia dominated by the rotors of the motors), so the end
effectors are modeled as point masses. This simplifies the
optimization problem which we will discuss below, and helps
with making the algorithm applicable to realtime systems.

1In other words, more degrees of freedom in the system (inputs) than
in the object being manipulated (outputs), or end effector. An example in
biological systems is the human arm, which has seven degrees of freedom,
while the output end effector, the hand, can be oriented in a six-axis space
(position and orientation). Therefore more than one solution exists for many
tasks.

2iLQG refers to the “Iterative Linear Quadratic Gaussian” method.



Fig. 3. Hierarchical control scheme block diagram.

B. Overall hierarchical control methodology
Though the entire problem can be framed within a single

level stochastic optimal control, this is a high dimensional
nonlinear problem, and to solve this in realtime, even
approximately, is difficult. Additionally, there is evidence
that the human brain solves this problem in a hierarchical
fashion, even though the hierarchies are highly integrated[4],
therefore why not use nature as a model? Instead of one high
dimensional, difficult problem, we can reduce this problem
to several smaller simpler ones which address each level of
controlling an object in stages, and sum up to a solution to the
more difficult problem. Solving the problem hierarchically,
with multiple independent terms at the various stages allows
for different strategies to be inserted at various points in the
hierarchy without having to reformulate the entire problem.
For example, one could decide that distributing manipulators
evenly is key, and thus this stage would have different terms
in the cost function, and in fact could be broken down into
two sub-problems to solve for positions and forces.

There are essentially three components to this algorithm
(Fig. 3). The top level computes, given a reference position
and orientation (this can also be operated with force control),
an ideal force and torque to be applied at the center of mass
of the object. This can be done with a model predictive
controller (using iLQG to allow for nonlinearities in the
cost function and/or system), or a simple feedback controller
(such as a proportional derivative controller). The middle
level computes, depending on the actual position of each
end effector, the target locations for each point mass and
forces that should be applied to the point masses either to
get them into position or to apply the force to the object.
The low level maps those endpoint coordinate commands
into feasible joint torques, and performs feedback if needed
to make that happen. The problem can be succinctly stated
as follows:

1) Determine overall force to apply on object (via optimal
MPC, PD feedback, splines, etc)

2) Decide, given the number of manipulators (max.)
where to place them according to an optimal criterion

3) Decide, given placements (and this is coupled to 2),
what force output vector each finger will perform once
in contact/in place

4) Move them there and apply the forces, avoiding any
collisions

It may come to pass that individual end effectors must be
shifted in terms of contact position. This does not need to be
described as an independent step, as there are two strategies
that can be employed to resolve this which work seamlessly
as part of step three. The first and quickest to implement
in a tuning sense is to use a force field which affects
finger placement based on various system states, essentially

an output map of the second strategy. The second strategy
is to use an appropriately set-up optimal control problem
with terms in the cost function for staying within bounds.
The optimal approach will produce the correct movement
and contact breaking behaviors, as this will simply be the
optimal thing to do. This paper explores the force field
methodology, and future work will exploit the knowledge
gained to formulate the low level problem as an optimal
control problem, solved with iLQG.

C. High level
For an in depth explanation of the iLQG technique,

see [17]. Essentially what this method does is iteratively
approximate a linear quadratic gaussian solution to the
actual nonlinear cost function and nonlinear system about
the current state. This method has a number of advantages
discussed in the reference, but perhaps the most significant
is its ability to construct a general solution approach to the
varied problem structure which arises in manipulation. We
applied this in the model predictive setting, running a time
horizon of ten time-steps into the future.

Another simple high level controller which is not model
predictive is a proportional-derivative (PD) controller, given
as (in discrete form),

ek = rk − yk (12)

uPD
k = Kp(ek) +

Kd

∆T
(ek − ek−1)

where ∆T is the time increment, k is the current time-
step, Kd and Kp the differential and proportional gains,
respectively, e is the error, y is the output state feedback,
and r is the reference. One can implement any of the
variations on classical control approaches (i.e. including an
integral term), depending on the goal. Generally, removing
the integral term creates more compliant manipulation, and
biological systems do tend to have some error tolerance
during normal behavior[16].

D. Mid-level
Now given the required force/torque to apply to the object,

we need to determine where the best place is to apply the
individual forces, given a certain number of manipulators
such that they combine into the overall forces we want. We
also need to determine what those individual forces should
be.

In order to address this problem, we must consider the
whole behavior and system. Recall that the goal is to
track the high level reference, which may move through a
particular manipulator’s workspace and beyond, or may not
enter a particular manipulator’s workspace at all. So it must
be determined what a manipulator should do if the object to
manipulate goes outside of its workspace.

We build a method by considering behavior in humans.
Hold an object in the air and rotate it (if it is breakable hold
it over a pillow or other safety net please), using only your
fingers. As each finger nears the boundary of its workspace, if
you pay attention to your experience, you feel an increasing
need, a desire to change the location of that finger to a
more ‘comfortable’ one. It seems to take conscious effort to
override this natural instinct. Essentially what we can distill
from this in our case is that, as one nears a boundary, a
way of conceptualizing this is that the human feels a type
of virtual force, drawing their finger away from its current
location. Then a trajectory evolves to a more central to the
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Fig. 4. A force field that facilitates contact breaking can be constructed
which is dependent on several factors - center of workspace, center of object,
and finger position. The field changes (as shown in (b), (c), and (d)) as
the object enters the region of usable workspace. Here the workspace and
object are circular for clarity, but any shape can be represented. The field is
scalable and movable. The arrows depict the force vector at a particular point
in space. The concept is that as the finger is manipulating an object, and
moves too close to a workspace boundary, the field (which blends a position
feedback controller with a number of other features) generates a force that
causes a contact break and subsequent reposition of the finger more in the
center of the workspace. Essentially this is an explicit representation of a
cost function, though employed at the control policy level. The shaded circle
in (b), (c), and (d) represents the object being manipulated, and the centered
circle is the workspace definition. Outside the workspace a simple feedback
pushes the finger back into the workspace, for stability purposes.

workspace point of contact. We call this a virtual force
because it is used in a weighted comparison with the contact
force at each iteration, and the one with the larger normal
force component ‘wins,’ and is then used as the force applied
to the end effector.

Workspace virtual force field : A method for distributing
high level commands is the concept of a virtual force field
(As depicted in Fig. 4(a)-4(d)) which is dependent on the
shape of the workspace for each finger, the location of the
end effector, and the location (or estimated location) of the
object. This strategy is helpful for constructing terms which
will ultimately be employed for a model predictive low
level component. It is actually a parallel concept except that
the model predictive approach will compute control policies
which may achieve lower mean squared error for tracking
desired object trajectories than a feedback-only scheme.
However it is important to eventually compare a high level
model predictive control (MPC) approach to a low level one,
and finally to a scheme with all MPC methods.

This force is built by a number of terms in a function
which we will call a ‘Force-Cost’ function (FC function),
since the terms are applicable to either the optimal control
setting or our force field setting. When referring to the
computed output of the FC function, for simplicity, we will

hereafter refer to the output as a ‘cost’ in either setting3. This
function must include a variety of terms in order to address
the required behaviors, the latter of which are:

1) Getting to target given some state of the system
2) Applying some force to object
3) Distribution of contact points
4) Desire to change contact points (break contact) when

appropriate
5) Handle limited workspace
6) What to do if an object moves outside of the

workspace, or the end effector moves outside the
workspace

Many of these behaviors can be combined into single equa-
tions. When in contact, the contact forces are computed
with a quadratic (and thus very fast) constrained (to only
apply forces toward the object surface, or the force is zero)
optimization that minimizes the error between the sum of
forces (due to any number of manipulators in contact) and
reference force. d(θ) is the shape of the object (parametric
curve or surface - note in the case of a surface the parameter
will be a 2D parameter), where θ is a parameter of the curve,
and fr represents the reference force and torque to apply at
the next time-step,

fti,k =

[
fxi fyidx(θi)− fxidy(θi)

fyi
dx(θi)− fxi

dy(θi) fyi

]

J(fi)k =
[[
fr,k −

∑
i

fti,k
]2

+
∑

(x,y),i

f2i,k

]
Where the

∑
(x,y),i is defined as ‘over x, y, and all i.’ A

second term to minimize maximum forces can be added,
similar to a control cost. At each time-step the optimization
is initialized with the previous result, which tends to produce
more smooth outputs. Thus the optimization problem is,(

fopti = argmin
fi

[
J(fi)k

]
, s.t.

[
f • n < 0,

])
(13)

where n is the normal vector to the surface of the object,
and (•) denotes the dot product, and fi includes both x and
y dimensions implicitly here.

The force field consists of the following terms, the first of
which is, with gain Ke,

Fe = Ke
(x− xc)

1 + ||x− xw||2
(14)

which generates a force as the end effector location is further
from the estimated or actual center of the target object to pull
it toward the object surface, but this force decreases as the
end effector moves further from the center of its workspace,
until the next term dominates. The one prevents a vanishing
denominator. This term works in concert with the second
term to determine where contact will occur (Fig. 5(a)-5(d)).
It is heavily affected by the location of the object relative
to the workspace. The second term, (with gain Ks, surface
normal n, and parameter a),

Fs = Ksn||x− xw||e−a(x−xc)
2

(15)

3We state ‘may’ since the force field yields a predictive component,
similar to an infinite horizon setting, since the resulting policy will act such
that force over the entire behavior is minimized (recall we are considering
force and cost parallel in our FC function), and so it is unclear wether one
is superior, or wether they are functionally equivalent when provided with
equivalent parameters



generates a force which tends to pull the end effector away
from the surface of the object. This force is larger the further
the end effector moves from the center of the workspace,
but drops to zero as a gaussian function of distance from the
center of the object. This is what is responsible for contact
breaking. The forces are summed,

Ft = Fe + Fs (16)

Which yields the field displayed in Fig. 4(b)-4(d). Note
how the field adapts as the various system states change.
Fig. 4(a) shows a simple force field concept - the further
a point is from the center, the larger the force pulling
toward the center of the field. More complex fields are
possible. It is not difficult to determine empirical force
fields from behavioral data, similar to inverse optimal control
or using system identification methods to fit a function to
reproduce biological data. Thus this method is extendable to
many coordinated movement patterns, and parameters can be
optimized for different styles of movement, or they can be
learned in an active learning setting (such as[14]).

This is both a predictive and adaptive approach. It is
predictive in that the endpoint is not computed, but the next
point is a portion of an entire trajectory which will emerge
if all the other states were to remain constant during the
trajectory. Essentially the MPC is recomputing all possible
trajectories at each time-step as the functions are continuous
functions of the states, so the trajectory adapts as all states
change.

In order to deal with workspace boundaries, a saturation
effect is produced by switching the field to, where Kk is a
gain,

Ft = Kk(x− xw) (17)

which tends to push the manipulator back into the workspace
if it exits it. In other words this is similar to biological
systems where a boundary is reached by the combination of
tendons with the physiological structure creates a nonlinear
spring effect (move your finger up as high as it can go by
itself, that is the boundary of the workspace where you can
control it. Using your other hand, you can move your finger
quite a bit higher, but the effect is that of a spring - the
finger pulls against your hand back toward the center of its
workspace).

E. Low Level
The low level is responsible for mapping the commands

for forces to apply at the endpoints into joint torques. There
are several advantages to working in endpoint coordinates
then mapping them into joint angles and torques. These
include structural variability in the actuators used (solve
the problem then reverse the joints and no change in the
overall solution occurs, but the system still works just as
well), simpler kinematic equations (one removes several
trigonometric relationships, which are nonlinear relations
from the optimizations), and more intuitive FC function
terms.

The algorithm implements a bounded Newton’s method
optimization, initialized at the current state, to compute the
nearest torques to apply which are within capabilities of the
virtual actuators at the joints which map most closely to the
desired end effector forces. This turns out to, in practice
work well and execute with only a few iterations on average
until convergence, even when a large change occurs, such as
transitioning between contact and no contact.

(a) (b)

(c) (d)

Fig. 5. Why workspace maximization is an important consideration when
choosing where contact points occur. By choosing a point which puts each
manipulator closest to the center of its workspace, the object workspace
(how far in various directions the object can be moved without further
changing contacts) is maximized, either for rotation or translation. If a series
of commands into the future are predictable, this may skew where the best
place for these contacts will be.

Finally, a simple PD controller tracks the required joint
torques. We found that, in fact, this final component can be
disabled and the algorithm functions well, but in practice
it can improve robustness, and allow the higher levels to
be operated at a lower bandwidth than without low level
feedback.

When implemented on the physical robot, the low level
will run on the local digital signal controller, and so the
overall loop running at the high and middle levels will
execute in less than the current time-step.

III. EXPERIMENTS

Manipulate a known shape and mass/inertia with a specified
number of end effectors

Consider an object of arbitrary shape with some mass
m and inertia about the z-axis I . There are n manipu-
lators which can have a (specified) limited range of mo-
tion and maximum force (or even a forcing function over
the workspace, but for this experiment we consider a
constant force capability over the workspace). These ma-
nipulators have bases located at xb, and the workspace
has a center relative to that base at xw. All simula-
tions are integrated using Symplectic Euler integration
and a time-step of 5msec (Animations are available at
http://casimpkinsjr.radiantdolphinpress.com).

Grab object, reference track, not specifically attempting
contact breaking: This consists of grabbing the object with
the end effectors, which are initialized at some random non-
contact state away from the object. Then the object is, in the
first sub-case, brought back to the zero position and must
track a sinusoidal angular reference trajectory. In the second
sub-case, the object is moved through a sinusoidal pattern in
both position and orientation.

Grab and perform continuous rotation: Rotate the object
at a continuous velocity. This will force the fingers to change
grip, while maintaining appropriate forces to keep the object
center at a fixed point.
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Fig. 6. This shows the high accuracy and precision with which the
optimization breaks up the generalized force and torque into forces to apply
to the object through the finger endpoints. (a) shows one dimension of the
reference force, and the sum of the multiple endpoint forces with three
end effectors. (b) and (c) show the error between the two signals, with (c)
zoomed to see the fact that the force sum is accurate to approximately 10
mN. (d) shows the object being pushed through a circular trajectory by three
fingers initially not in contact (the circles denote the starting points). The
reference is tracked very well.

IV. RESULTS

A. Convergence and execution speed
As the optimization is convex, convergence was achieved

very rapidly. The iLQG algorithm, since it is solving a
simplified high level system which is lower dimensional,
converges in an average of two iterations. The entire loop,
though not fully optimized, took on average 1.1msec when
no contact occurred, and, with four manipulators 34.5msec
during contact (Fig. 7(c)). This is executed in Matlab R2007a
running on a macintosh computer with a 2.3GHz dual core
processor. This is fast enough to run in realtime, though it
can be further optimized.

B. Tracking the high level reference forces
The ability to reproduce the reference forces required

by the high level control is clear in Fig. 6(a)-6(d). The
error between desired force and combined forces is very
low at under 20mN when the forces are on a scale of
20N. The object can be made to track a fast-moving circle
reference, while keeping the object horizontal. The error is
quite Gaussian, which is to be expected. There is no evidence
of oscillation or instability. Indeed, the algorithm, during
impossible initializations (fingers too far apart, or object too
low to grip), behaved well, with no unpleasant accelerations
or oscillations. Instead a very biological-appearing behavior
of reaching after the falling object appears.

C. Trajectory tracking in object manipulation
Fig. 7(a)-7(c) shows that the object position and orienta-

tion can be controlled using this methodology. This control
works with various numbers of manipulators, as a result of
the high level making a plan and the low level executing
it. Thus the low level can change structure (number of
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Fig. 7. (a) The object position is shown in solid lines (x, y, θ), respectively,
with each corresponding reference trajectory as a dashed line. The contact
point happens at various intervals with the first finger contacting at t=0.081
sec. approximately, and the last approximately 50 msec. later (three finger
manipulation). After the first finger contact, the object begins a trajectory
toward the goal angle and position. This is desirable in object manipulation
where the number of fingers in contact is not as important as controlling
the trajectory of the object. (b) Same color plot representations, this
time demonstrating rapid tracking of all three axes. (c) Timing of the
computational loop in Matlab (even with realtime graphics plots this is
fairly fast).

manipulators, physical structure, etc) and the algorithm will
produce similar results. It is interesting to note that contact
timing for each end effector is slightly different, but the
algorithm’s method of recomputing optimal forces to apply
given current configurations consistently works, since it is
the same output, for example, with two fingers and one not
in contact, as if there were only two fingers in existence.
The contact locations would change, but as the movement
progresses through time the grip would change to be more
optimal for two fingers only.

D. Contact breaking and continuous motions
Fig. 8(a)-8(c) depicts the manipulators successfully ro-

tating an object (quite rapidly) to track a constant angular
velocity. The fingers move through a number of gait transi-
tions as necessary, similar to Fig. 8(c). It is worth noting
that the trajectory, contact point, and moment of contact
breaking are all implicit behaviors defined in the middle
level. As one can see in Fig. 8(b), it is possible that the
parameters of the system can be optimized further to more
closely track the reference, but object manipulation is not
about perfectly tracking a reference, as in fact it has been
shown that some error is completely ignored in the human
sensorimotor system. Manipulation and movement in general
is performed in order to achieve an overall goal, regardless
of small perturbations of the system or small errors.

V. CONCLUSION

Object manipulation using multiple manipulators is a
complex problem. Optimal control and model predictive
methods appear to yield very useful strategies for addressing
the multitude of behaviors which are required to create a
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Fig. 8. (a) Depicts xy-data of three manipulators rotating an object, and
changing grip a number of times. The object-finger grip position relationship
is interesting in that the ‘gait’ of the fingers varies depending on how
large of a correction is required as the finger needs to reposition itself.
(b) Depicts a portion of this data, where the objective is to rotate the
object continuously at a particular velocity while maintaining xy-center
position. (c) One manipulator during a contact break and return trajectory.
The manipulator, as it nears the edge of its workspace (depicted as the
shaded area), breaks contact, moves away from the object, and then follows
a trajectory to a central-to-the-workspace contact point on the object. Note
that collisions are only computed between end effectors and the object, and
end effectors and each other.

manipulation algorithm that deals with more than a single
simple behavior. However, attacking it as a single part
problem often is not feasible in realtime using even the most
modern techniques and hardware. Since creating solutions
which are adaptable and dynamic on-the-fly are important to
emulate the complex behavior patterns of biological systems,
a hierarchical control approach was proposed in this paper.
Is this the one and only way to solve the problem? Is the
brain doing exactly this? Though there is evidence that the
brain does address control in an online and hierarchical
fashion, more than half of the neurons in the brain are
devoted to movement, so any single approach will not capture
the richness of behavior patterns available to the biological
organism. In addition, we realize that the model is not the
reality, and so we do not claim this is precisely the process
the brain follows because that would be incorrect.

The method proposed here makes the process of generat-
ing new behaviors simply a matter of creating new terms in
the FC function. This is among the first algorithms to demon-
strate, without motion capture data, a method for object
manipulation which can not only control an arbitrary object
to track a reference trajectory, but also when necessary break
contacts and determine how to grip an object successfully.
This method allows minimal ’tweaking,’ and can potentially

have all parameters learned online. It also runs in realtime
with no pre-computing required to solve the problem. The
method of handling joint limits by a workspace with a
spring force boundary which pushes the system back into
the workspace is drawn from biological systems, and works
well, and avoids rigid nonlinearities which can contribute to
numerical instabilities.

Future work will compare these results to biological
systems in depth, apply the method to physical robots, apply
it to locomotion, and extend the equations into 3D and soft
contacts. While we have not reported quantitative results
regarding robustness to parameter perturbations, and this
is another item to present in the next paper, MPC with
feedback tends to be quite forgiving regarding these issues.
The difference becomes an error signal which is fed back
into the system, and then is compensated for automatically. In
fact, sometimes a simple model is purposefully used, with the
intent of pushing the system to behave closer to the model.
This can also be seen in biological systems, where the system
behaves well even in the face of a poor model.

Solving the problems of locomotion and manipulation will
not only contribute new mathematical techniques to science
and engineering, it will also contribute to the development
of new rehabilitation strategies, artificial limbs, assistive
technologies, and far more.
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