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We often take for granted the ease with
which we move our bodies. Yet, how our
motor system performs even a simple task
such as picking up a coffee mug remains
a challenging problem scientifically. We
move with considerable trial-to-trial vari-
ability, yet we successfully perform such
tasks with speed and grace. In contrast,
robots possess greater precision and con-
sistency in their motions, but are nothing
short of clumsy and awkward when pick-
ing up objects. Why are body movements
that are so variable consistently success-
ful? In this issue, Todorov and Jordan1

provide a new theory for motor coordi-
nation based on optimal feedback control
that may be a major step forward in devel-
oping a single, cohesive framework for
interpreting motor function.

One important feature captured by
this theory is that motor commands are
corrupted by noise, and that this signal-
dependent noise increases with signal
size2,3. Harris and Wolpert4 recently
demonstrated the importance of consid-
ering noise in control of eye and limb
movements. They were able to predict the
bell-shaped velocity profiles and relative-
ly straight hand trajectories that are
observed experimentally5,6 by using a
model that minimizes noise.

A second key feature in the Todorov and
Jordan1 theory is the idea that the motor
system can be modeled based on the prin-
ciples of optimal feedback control (Fig. 1).
The most important feature of this
approach is that optimization techniques
are used to find the feedback control law
that minimizes errors in task performance.
This control law is specific for each motor
task, so that the CNS must select the appro-
priate control law for each task. If the goal

should depend on fluctuations in both sig-
nals. If both control signals equal 1.1
(assuming no noise in the sensory signals),
then the optimal strategy is that both con-
trol signals should be reduced toward 1. In
contrast, if one control signal is 1.1 and the
other is 0.9, then the optimal strategy is to
not intervene because the goal of the task,
that their sum equals 2, has been attained.
The byproduct of the optimal control
scheme is that the variability of the indi-
vidual control signals becomes greater than
the variability of their sum.

Reducing task variability at the expense
of variability elsewhere in the system is also
a key feature of human and animal motor
coordination. For example, there are many
different arm configurations that a given
subject can use to maintain a steady aim
at a target with a hand-held laser pistol. In
such tasks, variability among these task-
invariant arm configurations over time is
very large compared to variability in joint
configurations that interfere with point-
ing the laser7. That is, variability is toler-
ated as long as it does not interfere with
task performance. The key proposal of
Todorov and Jordan1 is that this differen-
tial management of variability during
motor behavior occurs because it is the
optimal solution for the task.

If the motor system puts such a premi-
um on managing the position of the hand
over the position of the joints during pos-
tural tasks like pistol shooting, it seems rea-
sonable to believe that in a task such as
reaching, the motor system will attempt to
control hand trajectory. Although many
hypotheses assume that the trajectory is
explicitly controlled5,8, such models fail to
capture another important feature of

is to maintain the hand at one location in
space, feedback signals on the state of the
system (joint position, velocity and force)
for motor corrections are optimized specif-
ically to maintain a constant hand position,
and these control laws reflect the physical
properties of the motor periphery. The
authors capture this feature of optimal feed-
back control by using what they call the
minimum intervention principle, which
postulates that deviations from an average
hand trajectory (or position) are only cor-
rected if they interfere with task perfor-
mance. By correcting only task-relevant
errors, the model minimizes the potential
effects of noise.

Todorov and Jordan1 illustrate the
notion of optimal feedback control with a
very simple example, a task whose goal is
that the sum of two control signals equals
two. The nominal strategy to minimize sig-
nal size is to set each signal to one. How-
ever, each of these signals can be corrupted
by noise. A crucial question is how should
the control law respond to such errors? The
optimal strategy is that its adjustments
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Fig. 1. Diagram for implementing optimal feedback control as proposed by Todorov and Jordan1.
The optimal feedback control law is selected by the CNS based on the specific task. An optimal
estimate of the state of the system (positions, velocities and forces) is based on sensory feedback
(which is delayed and noisy), efference copy of prior controls signals and forward internal models
of the limb12. Noise is introduced to both motor and sensory signals.
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reaching movements, the considerable
trial-to-trial variability in hand trajectory9.
Todorov and Jordan1 capture this hand
path variability for a throwing task using a
model based on optimal feedback control.
Such variability in hand trajectory is toler-
ated because it does not interfere with task
performance, but it is inconsistent with
explicit trajectory planning. Optimal feed-
back control does not plan the hand tra-
jectory, which instead simply emerges from
the optimal control law for the task. What
has often been interpreted as a sign of slop-
py control by the brain may actually reflect
the optimal strategy for controlling body
movements.

In effect, Todorov and Jordan argue that
the feedback control law is not fixed, but is
malleable and can be set based on the motor
task. If this is true, a major question
becomes how the motor system can learn
these optimal control laws for myriad motor
behaviors performed by an individual.

The new article1 provides a cohesive
framework for interpreting motor coordi-
nation and provides interesting examples
of how optimal feedback control can
explain many observations on coordinated
movement. However, use of stochastic opti-
mal feedback control as a model of motor
control comes with a large computational
price, requiring challenging mathematical

be entirely optimized for each individual
task. Instead, certain features of the cir-
cuit may be optimal only when the com-
plete motor repertoire of humans is
considered, much like the conclusion that
the distribution of muscle spindles may
be optimal only by considering the com-
plete behavioral repertoire of the animal11.
However, optimizing for such global cost
functions is likely to be quite a challenge.
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contortions to solve even the simplest of lin-
ear control problems. As a result, the mus-
culoskeletal system in some cases must be
modeled as point masses providing only
motion along a single direction. It seems a
bit ironic that a theory illustrating the
importance of considering the properties
of the musculoskeletal system for motor
control must use incredibly simplistic mod-
els of the motor periphery! This should not
be seen as a downside of the theory pro-
posed by Todorov and Jordan1. Rather, this
limitation simply reflects the lack of exist-
ing mathematical tools to apply optimal
feedback control to complex non-linear sys-
tems, like our motor system. However, the
intuitive value of the many examples pre-
sented in this paper cannot be ignored.

Although it may be comforting to
assume that emergent patterns of motor
behavior reflect the optimal strategy for a
given task, that conclusion may not apply
to all cases. The neural circuits to control
movement are very distributed and com-
plex, and they presumably are based in
part on evolutionary baggage. The Todor-
ov and Jordan optimal control theory
tends to ignore this inherent hierarchical
organization10. It seems reasonable to
believe that motor circuitry itself can
influence strategies for a given task, per-
haps because the motor circuitry cannot
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