
©Copyright 2021
Aravind Rajeswaran

Broad Generalization through Domain Transfer:
Abstractions and Algorithms

Aravind Rajeswaran

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2021

Reading Committee:

Sham Kakade, Chair

Emanuel Todorov, Chair

Sergey Levine

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Broad Generalization through Domain Transfer:
Abstractions and Algorithms

Aravind Rajeswaran

Co-Chairs of the Supervisory Committee:

Professor Sham Kakade
Computer Science & Engineering

Affiliate Professor Emanuel Todorov
Computer Science & Engineering

Deep learning and reinforcement learning have recently had a transformative impact on the
fields of computer vision, NLP, and robotics. However, most of the recent progress have been
in narrowly defined tasks where training and deployment happen under the same (or similar)
conditions. This has resulted in brittle models that catastrophically fail when presented with
conditions even moderately different from what they were trained on. Furthermore, current
approaches are known to be data hungry, and thus may require prohibitively large datasets
for many applications. How can we create intelligent agents that are data-efficient, robust,
capable of broad generalization, and fast adaptation?

In this thesis, we outline the importance of domain transfer as a key component to
achieve the aforementioned capabilities. Domain transfer refers to the ability of an AI agent
to draw upon experiences from related tasks and transfer inductive biases, enabling more
efficient and proficient learning in downstream tasks. This thesis presents abstractions and
algorithms to enable such domain transfer. In particular, we focus on domain transfer
that arises in the context of simulation to reality transfer in robotics, learning from static
offline datasets in reinforcement learning, and efficient adaptation to new tasks in the case
of meta-learning. The algorithms we present enjoy rigorous theoretical guarantees and also
demonstrate strong empirical results in a variety of benchmark tasks and real-world case
studies spanning perception, control, and robotics.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1
1.1 Thesis Contributions and Outline . 2

Chapter 2: Simulation to Reality Transfer . 5
2.1 Introduction . 5
2.2 Problem Formulation . 6
2.3 Learning protocol and EPOpt algorithm . 7
2.4 Experiments . 10
2.5 Relationship to Prior Work . 15
2.6 Hardware Case Study: Non-Prehensile Manipulation with EPOpt 16
2.7 Chapter Summary . 18

Chapter 3: Offline Reinforcement Learning . 19
3.1 Introduction . 19
3.2 Related Work . 21
3.3 Problem Formulation . 22
3.4 Algorithmic Framework . 23
3.5 Theoretical Results . 25
3.6 Practical Implementation Of MOReL . 27
3.7 Experiments . 28
3.8 Model-Based Offline RL from Vision . 33
3.9 Chapter Summary . 37

Chapter 4: A Game Theoretic Framework for Model-Based RL 38
4.1 Introduction . 38
4.2 Background and Notations . 39
4.3 Model Based RL as a Two Player Game . 41
4.4 Algorithms . 42

i

4.5 Experiments . 46
4.6 Related Work . 50
4.7 Summary and Conclusion . 51

Chapter 5: Meta Learning with Implicit Gradients 53
5.1 Introduction . 53
5.2 Problem Formulation . 54
5.3 The Implicit MAML Algorithm . 56
5.4 Experimental Results and Discussion . 61
5.5 Related Work . 64
5.6 Chapter Summary . 65

Chapter 6: Meta Learning Under Non-Stationarity 66
6.1 Introduction . 66
6.2 Foundations . 67
6.3 The Online Meta-Learning Problem . 70
6.4 Algorithm and Analysis . 71
6.5 Practical Online Meta-Learning Algorithm 73
6.6 Experimental Evaluation . 75
6.7 Connections to Related Work . 79
6.8 Discussions and Conclusion . 81

Chapter 7: Conclusion . 82

Appendix A: EPOpt: Additional Ablations and Experiments 108
A.1 Hyperparameter and model details . 108
A.2 Robustness results . 108
A.3 Different settings for ε . 110
A.4 Importance of the baseline for policy gradient 110

Appendix B: MOReL: Proofs and Additional Experiment Details 112
B.1 Theoretical Results: Proofs For Section 3.5 112
B.2 Additional Experimental Details And Results 116

ii

Appendix C: Game-MBRL: Proofs and Experiment Details 119
C.1 Theoretical Results . 119
C.2 Algorithm Implementation Details and Experiments 125

Appendix D: Implicit MAML: Proofs and Experiment Details 134
D.1 Relationship between iMAML and Prior Algorithms 134
D.2 Optimization Preliminaries . 135
D.3 Review: Time and Space Complexity of Hessian-Vector Products 136
D.4 Additional Discussion About Compute and Memory Complexity 136
D.5 Theoretical Results and Proofs . 137
D.6 Experiment Details . 141

Appendix E: Online Meta-Learning: Theoretical Results 143
E.1 Linear Regression Example . 143
E.2 Theoretical Analysis . 145
E.3 Additional Experimental Details . 150

iii

ACKNOWLEDGMENTS

This thesis is a culmination of an exciting and eventful academic journey over the past five
years. It would not have been possible without guidance and motivation from my advisers,
collaborators, and friends. I would like to express my sincere gratitude and appreciation for
everyone who has played a part in my PhD journey.

First and foremost, I would like to thank my advisors Sham Kakade and Emo Todorov.
The academic guidance, research freedom, and honest feedback I received from them have
played invaluable roles in my research trajectory. I greatly admire Sham’s ability to ask the
correct research questions ahead of their time, and I hope some of this has rubbed off on me.
I thank Emo for being a father figure away from home – someone who was approachable and
genuinely cared for my success. Thank you so much Sham and Emo – I have learned so much
from our interactions, both about research and the world more broadly.

I wish to thank Sergey Levine for being a wonderful mentor and teaching me the cutting
edge of deep RL research. Thank you so much Sergey for being approachable, and making me
feel welcomed and part of your research group. The interactions and discussions this enabled
have had a profound and lasting impact on my research vision. I also thank Byron Boots,
Eric Rombokas, and Sergey Levine for being on my PhD committee and sharing valuable
time and feedback, which have been very helpful in improving my research presentation skills.

I feel blessed to have had a large number of wonderful collaborators and mentors. I thank
Vikash Kumar for consistent mentorship throughout my PhD. I also thank Kendall Lowrey,
Igor Mordatch, Chelsea Finn, and Rahul Kidambi, for the recurring collaborations. Our
discussions have enriched my research vision and allowed me to give my best to research. I
also express my sincere thanks to all my collaborators involved in various projects: Sarvjeet,
Ravi, Abhishek, John Schulman, Dibya, Avi, Cathy, Rocky, Pieter, Svet, Jeremy, Divye,
Andrew, Shivam, Henry, Colin, Sidd, Praneeth, Thorsten, Rafael, Kevin Yu, Aviral, Misha,
Catherine, Kevin Lu, Lili, Aravind Srinivas, Kimin, Aditya.

During my PhD, I had the opportunity to intern at a number of great research labs. My
stints at OpenAI and Google Brain were instrumental in establishing multiple long term
collaborations. I thank John Schulman and OpenAI for inviting me to intern, even though
it was my first year in PhD. I thank Vincent Vanhoucke and Google Brain for inviting me
to continue as student researcher after my internship. These environments gave me the
opportunity to connect with an amazing intern cohort and some of the best senior deep
learning researchers.

iv

The academic and administrative ecosystem built by UW CSE contributed a lot towards
my gratifying PhD experience. I thank Elise Dorough and the CSE management for the
constant encouragement and help with various administrative tasks. I thank various professors
in CSE for stimulating research discussions: Dieter Fox, Sidd Srinivasa, Byron Boots, Kevin
Jamieson, Maryam Fazel, Zaid Harchaoui. I also thank all my office mates as well as members
of the Robotics and WAIL labs. Special thanks to Kendall, Aaron, Svet, Ben, Colin, Motoya,
Zoey, Mohit, Kay, Willie, Rahul, Ramya, John, Krishna, Jennifer, Sam, Aditya, and others
for the many fun coffee chats, explorations around the city, and brainstorm sessions.

Outside of CSE research, I thank my friends from Seattle who have made the past five
years memorable and enjoyable. In particular, it would have been extremely difficult to
survive the Covid-19 lockdowns without them. Thanks so much Guna, Srini, Rahul, Sachin,
Mandar, Gagan, Shiva, Bala, Arjun, Ankur. Will greatly miss the shopping runs, movie
nights, cocktail mixes, and Biriyani dashes.

I also thank my advisers from my undergraduate days: Balaraman Ravindran, Shankar
Narasimhan, Sridharakumar Narasimhan, and Sitabhra Sinha. My enthusiasm for research
and science was nurtured under their guidance. I also thank them for helping me get into a
PhD program from where I could broaden my horizons and pursue my research vision.

Last but certainly not least, I thank my parents, to whom this thesis is dedicated. Their
unbounded love and tireless support have played an instrumental part over the entirety of
my life. During the final phases of my PhD involving Covid regulations, their daily calls gave
me something to look forward to everyday and helped keep track of time. This thesis would
not have been possible without their support.

v

DEDICATION

To my parents, K. Rajeswaran and S. Banumathy.

Thank you for the eternal love and support.

vi

1

Chapter 1

INTRODUCTION

A core characteristic of an intelligent system is the ability to quickly learn new skills, as
well as adapting to unexpected situations. This requires the ability to organize and draw upon
prior experience from related tasks for broad generalization and adaptation. We can all relate
through our personal experiences, that humans are remarkably good at such generalization
and adaptation capabilities. As an example, we all have experiences of travelling to different
countries and staying in hotel rooms that have different appliances and fixtures than what we
may be used to. Nevertheless, we can very quickly adapt and manipulate objects in the new
scene. Similarly, we can generalize experiences from driving one type of vehicle to another,
say from bicycle to motorcycle, by drawing upon general and transferable notions such as
balance. We can also quickly adapt to driving in a different country even though visual
characteristics and traffic rules may be different, such as left-hand drive vs right-hand drive.
Can we create AI systems that are capable of similar characteristics of broad generalization
and rapid adaptation in new scenarios? In the future, such intelligent systems would be
essential to assist humans in a variety of tasks ranging from everyday chores, to personal
assistants, to elder care. To understand and make progress on this question, we must first
understand the capabilities and limitations of currently existing AI systems.

Deep learning [1] has emerged as the dominant paradigm in machine learning and AI. It has
demonstrated considerable success in various computer vision [2], speech recognition [3], and
natural language tasks [4, 5, 6]. In conjunction with reinforcement learning (deep RL), it has
demonstrated success in playing games [7, 8] and controlling robots [9, 10]. In these settings,
a large randomly initialized deep learning model is trained using examples or interactions
to become proficient at the desired task. Despite these impressive feats, deep learning and
deep RL approaches suffer from two major challenges. First, they have demonstrated success
primarily in narrowly defined tasks, where training and testing happens under the same
distribution. Failure on instances even mildly different from training conditions and the
existence of adversarial examples [11] point to a lack of broad generalization and distributional
robustness in current methods. Secondly, while deep learning models can be trained from
scratch with minimal human engineering and priors, the tabula rasa learning approach makes
them extremely data hungry. Thus, there is a significant gap between the quick learning,
robustness, and adaptation capabilities of humans and that of current AI systems.

The premise of this thesis is that to achieve broad generalization and fast adaptation,
it is essential for an AI agent to draw upon prior experience and transfer inductive biases

2

from related domains. In this thesis, we refer to this as Domain Transfer. By drawing
upon prior experience from related domains, we avoid the tabula rasa training, and thus can
be more data efficient. Furthermore, the breadth of prior experience may enable broader
generalizations as well. In this thesis, we develop new abstractions and algorithms to enable
such domain transfer, and ultimately lead to robust and broadly competent AI systems.

A straightforward attempt at such domain transfer is pretraining – where the model is
trained on the source domain and either directly tested in the target domain, or is tested
after finetuning using limited experience in the target domain. While this is simple and
appealing, it can often fail due to the systematic discripancies (or domain gap) that exist
between the source and target domains. Since the agent is not aware of the transfer it must
eventually do, it may not learn the correct inductive biases that are amenable to transfer
or adaptation. For example, an agent trained for the task of image classification might
imbibe translation invariance from the data, since the network has to output the same object
category regardless of the location of the object in the image. Such a model might perform
very poorly for downstream robotic grasping, where the models must be very sensitive to
location of objects for an accurate grasp. Similarly, a robot that is trained to walk only from
upright configurations may learn an extremely fast walking gait, but such a gait may not
be resistant to perturbations, thereby performing very poorly in real-world conditions [12].
This all points to the observation that training AI systems on narrowly defined tasks may
lead to solutions that do not generalize broadly and might be detrimental for transfer to
new situations. In this thesis, we outline different algorithmic paradigms for learning models
with inductive biases that either directly transfer to the target domain or can be adapted
efficiently with minimal data.

1.1 Thesis Contributions and Outline

In Chapter 2, we study simulation to reality transfer for safe and sample-efficient deep
RL. Current state of the art deep RL algorithms require a prohibitively large number of
potentially dangerous samples (interactions) for physical robotic systems. To reduce the
training time and promote safety, we study transferring controllers from a physics simulator.
Data collection from a physics simulator is cheap and easy since it can be run much faster
than real-time and avoids safety concerns. However, such simulators only represent a crude
approximation of the real world, and thus solutions learned in simulation may not directly
transfer. We develop the EPOpt algorithm [13] to address this issue and promote the learning
of robust and transferable control policies. This work was published at the International
Conference on Learning Representations (ICLR) 2017 [13]. In Chapter 2.6, we present a case
study that extends this approach to show positive results on a real physical robot. This work
was published at IEEE SIMPAR 2018 [14].

In Chapter 3, we study offline RL where the goal is to learn a competent control policy
based solely on a dataset of historical interactions with the environment. Due to use of

3

real-world data, this avoids the systematic discrepancies that plague simulators. Since the
data has already been collected, or can be collected using some safe policies, this paradigm is
suitable for safety critical applications like healthcare, robotics, and industrial automation.
Large historical datasets are also readily available in domains like autonomous driving and
recommendation systems, where offline RL may be used to improve upon currently deployed
policies. However, offline RL is particularly challenging due to a domain shift between the
training data distribution and the induced distribution of the trained policy. Since the goal
in offline RL is to consume offline data and produce a policy that is better than the data
collection policy, the domain shift between training and deployment will necessarily occur.
To mitigate the effect of this domain shift, we introduce MOReL [15], a new algorithmic
framework that effectively leverages model-based approaches for offline RL. This work was
published in Neural Information Processing Systems (NeurIPS) 2020 [15]. MOReL achieves
state of the art results in offline RL benchmark tasks while also enjoying strong theoretical
guarantees, including a minimax optimality guarantee.

In Chapter 4, we extend model-based RL ideas from above setting to the more well
studied case of interactive RL, where the agent can interact with the environment for
additional feedback. Surprisingly, even in this well-studied setting, we observe the effects of
domain shift due to interleaving policy learning with dynamics model learning. We draw
upon insights from game theory to design stable algorithms that mitigate against domain
shift [16]. Through this endeavor, our work established that model-based RL algorithms can:
(a) be highly sample efficient; (b) match the asymptotic performance of model-free policy
gradient; (c) scale gracefully to high dimensional tasks like dexterous manipulation; and (d)
handle extended rollout horizons of several hundred timesteps. This work was published at
the International Conference on Machine Learning (ICML) 2020 [16].

In Chapter 5, we study meta-learning, where an agent learns a learning algorithm that
is capable of quickly learning in a new domain. While the previous chapters primarily focus
on transfering from a single source domain to a target domain, in meta-learning we consider
a collection of source domains and aim to learn adaptable representations for accelerating the
learning of new tasks. In this chapter, we show how to formalize meta-learning as a bi-level
optimization problem. In the outer level, we learn shared meta-parameters, while in the
inner-level, we learn task-specific deep models. Meta parameters modulate the behavior of a
task learning algorithm, and correspond to variables like weight initialization and learning
rate. After meta-learning, the meta parameters capture inductive properties and priors for
efficiently learning new tasks. A key challenge in scaling optimization based meta learning is
back-propagation through the inner level learning process. The computation and memory
costs for computing the meta gradient scale linearly with the length of the optimization
path. For example, if the learning algorithm uses 100 steps of gradient descent, the computa-
tion graph for meta parameters is 100 times the size of the deep model. Back-propagating
through such large graphs is infeasible due to memory constraints and numerical instabilities.

4

To address these limitations, we developed the implicit MAML algorithm [17]. Using the
concept of implicit differentiation, we prove that the meta gradient depends only on the
solution to the inner-level learning problem, and not the specific path taken by the algorithm.
Leveraging this, our implicit MAML algorithm uses only constant memory, independent of
length of optimization path. As a result, our algorithm is provably efficient in computation
and memory, provably convergent, and demonstrates strong empirical gains in benchmark
tasks. This work was published at Neural Information Processing Systems (NeurIPS) 2019 [17].

Finally, in Chapter 6, we extend the meta-learning framework from Chapter 5 to contin-
ual non-stationary task distributions. A limitation of the standard meta-learning paradigm is
that the agent’s ability to refine the learning algorithm stops after the initial meta-training
phase, and does not continue to improve over time as it encounters more tasks. Furthermore,
the quality of meta-learned algorithm is intimately tied to the task distribution, which may
drift over time. In our work on online meta-learning [18], we develop a new formulation that
presents a more realistic embodiment of the continuous learning process. In this setting,
the agent faces tasks sequentially one after the other, potentially from a non-stationary
distribution. Learning in the initial tasks may be slow, similar to learning from scratch.
As the agent experiences more tasks, the learning progressively becomes more efficient and
proficient. To achieve this, we develop the follow the meta leader (FTML) algorithm, and
prove that it has a no-regret property when competing against a very powerful comparator
class that can perform task-specific adaptation. We validated this algorithm on few-shot
vision domains, and showed that FTML can enable CNNs to recognize and predict pose of
new objects more efficiently than conventional online learning approaches. In essence, this
enables meta-learning to continuously accelerate the learning of new tasks. This work was
published in the International Conference on Machine Learning (ICML) 2019 [18].

Overall, through this thesis, we hope to establish domain transfer as an important
component of broad generalization in learning and control. We also provide abstractions and
templates to design scalable and practically efficient algorithms for domain transfer that also
enjoy strong theoretical guarantees.

5

Chapter 2

SIMULATION TO REALITY TRANSFER

2.1 Introduction

In the past half decade, deep reinforcement learning has demonstrated remarkable success in
a wide range of tasks including games [19, 20, 21], simulated control problems [22, 23, 24],
and animation [25]. However, high sample complexity remains a major challenge for direct
use of such algorithms on complex physical robots. Model-free algorithms like Q-learning,
actor-critic, and policy gradients are known to suffer from long learning times [26], which
is compounded when used in conjunction with expressive function approximators like deep
neural networks (DNNs). The challenge of gathering samples from the real world is further
exacerbated by issues of safety for the agent and environment, since sampling with partially
learned policies could be unstable [27]. Thus, model-free deep RL methods often require a
prohibitively large numbers of potentially dangerous samples for physical control tasks.

Simulation to reality (Sim2Real) transfer, where the real-world target domain is approx-
imated with a simulated source domain, has the potential to circumvent above challenges
by learning policies using cheap simulated data. Sim2Real can in principle be viewed as
a model-based RL approach, where the model class is dictated by the physical effects sup-
ported by the simulator. The principal challenge with simulated training is the systematic
discrepancy between source and target domains. We show in our experiments that such deep
RL algorithms learn policies that are highly optimized for the specific models used in the
simulator, but are brittle under model mismatch. This is unsurprising, since deep networks
are remarkably proficient at exploiting any systematic regularities in the simulator.

Thus, methods that compensate for systematic discrepancies (modeling errors) are needed
to transfer results from simulations to real world using RL. We show that the impact of such
discrepancies can be mitigated through two key ideas: (1) training on an ensemble of models
in an adversarial fashion to learn policies that are robust to parametric model errors, as well
as to unmodeled effects; and (2) adaptation of the source domain ensemble using data from
the target domain to progressively make it a better approximation. This can be viewed either
as an instance of model-based Bayesian RL [28]; or as transfer learning from a collection of
simulated source domains to a real-world target domain [29].

This chapter outlines the Ensemble Policy Optimization (EPOpt−ε) algorithm for finding
policies that are robust to model mismatch. In line with model-based Bayesian RL, we learn
a policy for the target domain by alternating between two phases:

6

1. Given a source distribution (i.e. ensemble of models), find a robust policy that is
competent for the whole distribution.

2. Gather target domain data using the robust policy, and adapt the source distribution.

EPOpt uses an ensemble of models sampled from the source distribution, and a form of
adversarial training to learn robust policies that generalize to a broad range of models. By
robust, we mean insensitivity to parametric model errors and broadly competent performance
for direct-transfer (also referred to as jumpstart like in Taylor and Stone [29]). Direct-transfer
performance refers to the average initial performance (return) in the target domain, without
any fine-tuning on the target domain. By adversarial training, we mean that model instances
on which the policy performs poorly in the source distribution are sampled more often in order
to encourage learning of policies that perform well for a wide range of model instances. This
is in contrast to methods which learn highly optimized policies for specific model instances,
but brittle under model perturbations.

In our experiments, we did not observe significant loss in performance by requiring the
policy to work on multiple models, for example through adopting a more conservative strategy.
Further, we show that policies learned using EPOpt are robust even to effects not modeled
in the source domain. Such unmodeled effects are a major issue when transferring from
simulation to the real world. For the model adaptation step (ii), we present a simple method
using approximate Bayesian updates, which progressively makes the source distribution a
better approximation of the target domain. We evaluate the proposed methods on OpenAI
gym tasks simulated with MuJoCo [30]. Our experimental results suggest that adversarial
training on model ensembles produces robust policies which generalize better than policies
trained on a single, maximum-likelihood model alone.

2.2 Problem Formulation

We consider parametrized Markov Decision Processes (MDPs), which are tuples of the form:
M(p) ≡< S,A, Tp,Rp, γ, S0,p > where S, A are (continuous) states and actions respectively;
Tp Rp, and S0,p are the state transition, reward function, and initial state distribution
respectively, all parametrized by p; and γ is the discount factor. Thus, we consider a set of
MDPs with the same state and action spaces, but each MDP in this set can have different
dynamics and reward functions. We use transition functions of the form St+1 ≡ Tp(st, at)
where Tp is a random process and St+1 is a random variable.

We distinguish between source and target MDPs usingM and W respectively. We also
refer toM and W as source and target domains respectively, as is common in the transfer
learning literature. Our objective is to learn the optimal policy for W; and to do so, we
have access toM(p). We assume that we have a distribution (D) over the source domains
(MDPs) generated by a distribution over the parameters P ≡ P(p) that capture our subjective

7

belief about the parameters of W . Let this distribution P be parametrized by ψ (e.g. mean,
standard deviation). For example,M could be a hopping task with reward proportional to
hopping velocity and falling down corresponds to a terminal state. For this task, p could
correspond to parameters like torso mass, ground friction, and damping in joints, all of which
affect the dynamics. Ideally, we would like the target domain to be in the model class, i.e.
{∃p | M(p) = W}. However, in practice, there are likely to be unmodeled effects, and we
analyze this setting in our experiments. We wish to learn a policy π∗θ(s) that performs well
for allM∼ D. Note that this robust policy does not have an explicit dependence on p, and
we require it to perform well without knowledge of p. Our intuition is that if we can find a
highly rewarding policy while being oblivious to p, then such a policy is likely to also achieve
high rewards in the target domain.

2.3 Learning protocol and EPOpt algorithm

We follow the round-based learning protocol of Bayesian model-based RL. We use the term
rounds when interacting with the target domain, and episode when performing rollouts with
the simulator. In each round, we interact with the target domain after computing the robust
policy on the current (i.e. posterior) simulated source distribution. Following this, we update
the source distribution using data from the target domain collected by executing the robust
policy. Thus, in round i, we update two sets of parameters: θi, the parameters of the robust
policy (neural network); and ψi, the parameters of the source distribution. The two key
steps in this procedure are finding a robust policy given a source distribution; and updating
the source distribution using data from the target domain. In this section, we present our
approach for both of these steps.

2.3.1 Robust policy search

We introduce the EPOpt algorithm for finding a robust policy using the source distribution.
EPOpt is a policy gradient based meta-algorithm which can use any policy optimization
algorithm as a subroutine [31, 32, 33, 12, 34]. In particular, we consider on-policy optimization
algorithms which collect a batch of trajectories by rolling out the current policy, and use these
trajectories to make a policy update. The basic structure of EPOpt is to sample a collection
of models from the source distribution, sample trajectories from each of these models, and
make a gradient update based on a subset of sampled trajectories. To describe this formally,
we first define the performance of a policy in an MDP:

ηM(θ, p) = Eτ̃

[
T−1∑
t=0

γtrt(st, at)

∣∣∣∣ p
]
. (2.1)

Here, ηM(θ, p) is the evaluation of πθ on the modelM(p), with τ̃ being trajectories generated
by M(p) and πθ: τ̃ = {st, at, rt}Tt=0 where st+1 ∼ Tp(st, at), s0 ∼ S0,p, rt ∼ Rp(st, at), and

8

at ∼ πθ(st). We can analogously also define the average performance over the source domain
distribution as:

ηD(θ) = Ep∼P [ηM(θ, p)] = Ep∼P

[
Eτ̂

[
T−1∑
t=0

γtrt(st, at)

∣∣∣∣ p
]]

= Eτ

[
T−1∑
t=0

γtrt(st, at)

]
. (2.2)

Here, ηD(θ) is the evaluation of πθ over the source domain distribution. The correspond-
ing expectation is over trajectories τ generated by D and πθ: τ = {st, at, rt}Tt=0, where
st+1 ∼ Tpt(st, at), pt+1 = pt, s0 ∼ S0,p0 , rt ∼ Rpt(st, at), at ∼ πθ(st), and p0 ∼ P. With this
modified notation of trajectories, policy optimization can be invoked for policy search.

Optimizing ηD allows us to learn a policy that performs best in expectation over models
in the source domain distribution. However, this does not necessarily lead to a robust policy,
since there could be high variability in performance for different models in the distribution.
To explicitly seek a robust policy, we use a softer version of max-min objective suggested in
robust control, and optimize for the conditional value at risk (CVaR) [35]:

max
θ,y

∫
F(θ)

ηM(θ, p)P(p)dp s.t. P (ηM(θ, P) ≤ y) = ε, (2.3)

where F(θ) = {p | ηM(θ, p) ≤ y} is the set of parameters corresponding to models that
produce the worst ε percentile of returns, and provides the limit for the integral; ηM(θ, P) is
the random variable of returns, which is induced by the distribution over model parameters;
and ε is a hyperparameter which governs the level of relaxation from max-min objective. The
interpretation is that (2) maximizes the expected return for the worst ε-percentile of MDPs
in the source domain distribution. We adapt the previous policy gradient formulation to
approximately optimize the objective in (2). The resulting algorithm, which we call EPOpt-ε,
generalizes learning a policy using an ensemble of source MDPs which are sampled from a
source domain distribution.

Algorithm 1 EPOpt–ε for Robust Policy Search
1: Input: ψ, θ0, niter, N , ε
2: for iteration i = 0, 1, 2, . . . niter do
3: for k = 1, 2, . . . N do
4: sample model parameters pk ∼ Pψ
5: sample a trajectory τk = {st, at, rt, st+1}T−1

t=0 fromM(pk) using policy π(θi)

6: end for
7: compute Qε = ε percentile of {R(τk)}Nk=1

8: select sub-set T = {τk : R(τk) ≤ Qε}
9: Update policy: θi+1 = PolicyUpdate(θi,T)

10: end for

9

In Algorithm 1, R(τk) ≡
∑T−1

t=0 γ
trt,k denotes the discounted return obtained in trajectory

sample τk. In line 7, we compute the ε−percentile value of returns from the N trajectories.
In line 8, we find the subset of sampled trajectories which have returns lower than Qε. Line 9

calls one step of an underlying policy optimization subroutine on the subset of trajectories
from line 8. For the CVaR objective, it is important to use a good baseline for the value
function. [35] show that without a baseline, the resulting policy gradient is biased and not
consistent. We use a linear function as the baseline with a time varying feature vector to
approximate the value function, similar to [36]. The parameters of the baseline are estimated
using only the subset of trajectories with return less than Qε. We found that this approach
led to empirically good results.

For small values of ε, we observed that using the sub-sampling step from the beginning
led to unstable learning. Policy gradient methods adjust parameters of policy to increase
probability of trajectories with high returns and reduce probability of poor trajectories.
EPOpt−ε due to the sub-sampling step emphasizes penalizing poor trajectories more. This
might constrain the initial exploration needed to find good trajectories. Thus, we initially use a
setting of ε = 1 for few iterations before setting epsilon to the desired value. This corresponds
to exploring initially to find promising trajectories and rapidly reducing probability of
trajectories that do not generalize.

2.3.2 Adapting the source domain distribution

In line with model-based Bayesian RL, we can adapt the ensemble distribution after observing
trajectory data from the target domain. The Bayesian update can be written as:

P(P |τk) =
1

Z
× P(τk|P)× P(P) =

1

Z
×

T−1∏
t=0

P(St+1 = s
(k)
t+1|s

(k)
t , a

(k)
t , p)× P(P = p), (2.4)

where 1
Z
is the partition function (normalization) required to make the probabilities sum to

1, St+1 is the random variable representing the next state, and
(
s

(k)
t , a

(k)
t , s

(k)
t+1

)T
t=0

are data
observed along trajectory τk. We try to explain the target trajectory using the stochasticity
in the state-transition function, which also models sensor errors. This provides the following
expression for the likelihood:

P(St+1|st, at, p) ≡ Tp(st, at). (2.5)

We follow a sampling based approach to calculate the posterior, by sampling a set of model
parameters: pi = [p1, p2, . . . , pM] from a sampling distribution, PS(pi). Consequently, using
Bayes rule and importance sampling, we have:

P(pi|τk) ∝ L(τk|pi)×
PP (pi)

PS(pi)
, (2.6)

10

where PP (pi) is the probability of drawing pi from the prior distribution; and L(τk|pi) is the
likelihood of generating the observed trajectory with model parameters pi. The weighted
samples from the posterior can be used to estimate a parametric model, as we do in this
paper. Alternatively, one could approximate the continuous probability distribution using
discrete weighted samples like in case of particle filters. In cases where the prior has very
low probability density in certain parts of the parameter space, it might be advantageous
to choose a sampling distribution different from the prior. The likelihood can be factored
using the Markov property as: L(τk|pi) =

∏
t P(St+1 = s

(k)
t+1|s

(k)
t , a

(k)
t , pi). This simple model

adaptation rule allows us to illustrate the utility of EPOpt for robust policy search, as well
as its integration with model adaptation to learn policies in cases where the target model
could be very different from the initially assumed distribution.

2.4 Experiments

We evaluated the proposed EPOpt-ε algorithm on the 2D hopper [37] and half-cheetah [38]
benchmarks using the MuJoCo physics simulator [30].1 Both tasks involve complex second
order dynamics and direct torque control. Underactuation, high dimensionality, and contact
discontinuities make these tasks challenging reinforcement learning benchmarks. These
challenges when coupled with systematic parameter discrepancies can quickly degrade the
performance of policies and make them unstable, as we show in the experiments. The policy
optimization sub-routine is implemented using TRPO. We parametrize the stochastic policy
using the scheme presented in [33]. The policy is represented with a Gaussian distribution,
the mean of which is parametrized using a neural network with two hidden layers. Each
hidden layer has 64 units, with a tanh non-linearity, and the final output layer is made of
linear units. Normally distributed independent random variables are added to the output
of this neural network, and we also learn the standard deviation of their distributions. Our
experiments are aimed at answering the following questions:

1. How does the performance of standard policy search methods (like TRPO) degrade in
the presence of systematic physical differences between the training and test domains, as
might be the case when training in simulation and testing in the real world?

2. Does training on a distribution of models with EPOpt improve the performance of the
policy when tested under various model discrepancies, and how much does ensemble
training degrade overall performance (e.g. due to acquiring a more conservative strategy)?

3. How does the robustness of the policy to physical parameter discrepancies change when
using the robust EPOpt-ε variant of our method?

1Supplementary video: https://youtu.be/w1YJ9vwaoto

11

4. Can EPOpt learn policies that are robust to unmodeled effects – that is, discrepancies in
physical parameters between source and target domains that do not vary in the source
domain ensemble?

5. When the initial model ensemble differs substantially from the target domain, can the
ensemble be adapted efficiently, and how much data from the target domain is required
for this?

In all the comparisons, performance refers to the average undiscounted return per trajectory
or episode (we consider finite horizon episodic problems). In addition to the previously defined
performance, we also use the 10th percentile of the return distribution as a proxy for the
worst-case return.

2.4.1 Comparison to Standard Policy Search

In Figure 2.1, we evaluate the performance of standard TRPO and EPOpt(ε = 0.1) on the
hopper task, in the presence of a simple parametric discrepancy in the physics of the system
between the training (source) and test (target) domains. The plots show the performance
of various policies on test domains with different torso mass. The first three plots show
policies that are each trained on a single torso mass in the source domain, while the last plot

3 4 5 6 7 8 9
Torso Mass

0

500

1000

1500

2000

2500

3000

3500

4000

P
e
rf

o
rm

a
n
ce

m = 3

3 4 5 6 7 8 9
Torso Mass

m = 6

3 4 5 6 7 8 9
Torso Mass

m = 9

3 4 5 6 7 8 9
Torso Mass

Ensemble

Figure 2.1: Performance of hopper policies when testing on target domains with different
torso masses. The first three plots (blue, green, and red) show the performance of policies
trained with TRPO on source domains with torso mass 3, 6, and 9, respectively (denoted by
m = in the legend). The rightmost plot shows the performance of EPOpt(ε = 0.1) trained
on a Gaussian source distribution with mean mass µ = 6 and standard deviation σ = 1.5.
The shaded regions show the 10th and 90th percentile of the return distribution. Policies
trained using traditional approaches on a single mass value are unstable for even slightly
different masses, making the hopper fall over when trying to move forward. In contrast, the
EPOpt policy is stable and achieves a high level of performance on the entire range of masses
considered. Further, the EPOpt policy does not suffer from degradation in performance as a
consequence of adopting a more robust policy.

12

illustrates the performance of EPOpt, which is trained on a Gaussian mass distribution. The
results show that no single torso mass value produces a policy that is successful in all target
domains. However, the EPOpt policy succeeds almost uniformly for all tested mass values.
Furthermore, the results show that there is almost no degradation in the performance of
EPOpt for any mass setting, suggesting that the EPOpt policy does not suffer substantially
from adopting a more robust strategy.

2.4.2 Analysis of Robustness

Next, we analyze the robustness of policies trained using EPOpt on the hopper domain.
For this analysis, we construct a source distribution which varies four different physical
parameters: torso mass, ground friction, foot joint damping, and joint inertia (armature).
This distribution is presented in Table 2.1. Using this source distribution, we compare
between three different methods: (1) standard policy search (TRPO) trained on a single
model corresponding to the mean parameters in Table 2.1; (2) EPOpt(ε = 1) trained on
the source distribution; (3) EPOpt(ε = 0.1) – i.e. the adversarially trained policy, again
trained on the previously described source distribution. The aim of the comparison is to study
direct-transfer performance, similar to the robustness evaluations common in robust controller
design [39]. Hence, we learn a policy using each of the methods, and then test policies on
different model instances (i.e. different combinations of physical parameters) without any
adaptation. The results of this comparison are summarized in Figure 2.2, where we present
the performance of the policy for testing conditions corresponding to different torso mass and
friction values, which we found to have the most pronounced impact on performance. The

Figure 2.2: On the left, is an illustration of the simulated 2D hopper task studied in this paper.
On right, we depict the performance of policies for various model instances of the hopper task.
The performance is depicted as a heat map for various model configurations, parameters of
which are given in the x and y axis. The adversarially trained policy, EPOpt(ε = 0.1), is
observed to generalize to a wider range of models and is more robust. Table 2.1.

13

results indicate that EPOpt(ε = 0.1) produces highly robust policies. A similar analysis for
the 10th percentile of the return distribution (softer version of worst-case performance), the
half-cheetah task, and different ε settings are presented in the appendix.

2.4.3 Robustness to Unmodeled Effects

To analyze the robustness to unmodeled effects, our next experiment considers the setting
where the source domain distribution is obtained by varying friction, damping, and armature
as in Table 2.1, but does not consider a distribution over torso mass. Specifically, all models
in the source domain distribution have the same torso mass (value of 6), but we will evaluate
the policy trained on this distribution on target domains where the torso mass is different.
Figure 2.3 indicates that the EPOpt(ε = 0.1) policy is robust to a broad range of torso masses
even when its variation is not considered. However, as expected, this policy is not as robust
as the case when mass is also modeled as part of the source domain distribution.

Table 2.1: Initial source domain distribution

Hopper µ σ low high

mass 6.0 1.5 3.0 9.0
ground friction 2.0 0.25 1.5 2.5
joint damping 2.5 1.0 1.0 4.0
armature 1.0 0.25 0.5 1.5

Half-Cheetah µ σ low high

mass 6.0 1.5 3.0 9.0
ground friction 0.5 0.1 0.3 0.7
joint damping 1.5 0.5 0.5 2.5
armature 0.125 0.04 0.05 0.2

3 4 5 6 7 8 9
Torso Mass

0

500

1000

1500

2000

2500

3000

3500

4000

P
e
rf

o
rm

a
n
ce

Ensemble (unmodeled)

Maximum-Likelihood

Figure 2.3: Comparison between policies
trained on a fixed maximum-likelihood model
with mass (6), and an ensemble where all
models have the same mass (6) and other pa-
rameters varying as described in Table 2.1.

2.4.4 Model Adaptation

The preceding experiments show that EPOpt can find robust policies, but the source distri-
bution in these experiments was chosen to be broad enough such that the target domain is
not too far from high-density regions of the distribution. However, for real-world problems,
we might not have the domain knowledge to identify a good source distribution in advance.
In such settings, model (source) adaptation allows us to change the parameters of the source
distribution using data gathered from the target domain. Additionally, model adaptation

14

is helpful when the parameters of the target domain could change over time, for example
due to wear and tear in a physical system. To illustrate model adaptation, we performed
an experiment where the target domain was very far from the high density regions of the
initial source distribution, as depicted in Figure 2.4(a). In this experiment, the source
distribution varies the torso mass and ground friction. We observe that progressively, the
source distribution becomes a better approximation of the target domain and consequently
the performance improves. In this case, since we followed a sampling based approach, we
used a uniform sampling distribution, and weighted each sample with the importance weight
as described in Section 3.2. Eventually, after 10 iterations, the source domain distribution is
able to accurately match the target domain. Figure 2.4(b) depicts the learning curve, and
we see that a robust policy with return more than 2500, which roughly corresponds to a
situation where the hopper is able to move forward without falling down for the duration of
the episode, can be discovered with just 5 trajectories from the target domain. Subsequently,
the policy improves near monotonically, and EPOpt finds a good policy with just 11 episodes
worth of data from the target domain. In contrast, to achieve the same level of performance
on the target domain, completely model-free methods like TRPO would require more than
2× 104 trajectories when the neural network parameters are initialized randomly.

1.0

1.5

2.0

2.5

3.0 Iteration 0 Iteration 1

0 5 10 15 20
1.0

1.5

2.0

2.5

3.0 Iteration 2

0 5 10 15 20

Iteration 7

Fr
ic

ti
o
n

Torso Mass

(a)

0 2 4 6 8 10
Iterations

0

500

1000

1500

2000

2500

3000

3500

P
e
rf

o
rm

a
n
ce

(b)

Figure 2.4: (a) Visualizes the source distribution during model adaptation on the hopper
task, where mass and friction coefficient are varied in the source domain. The red cross
indicates the unknown parameters of the target domain. The contours in the plot indicate
the distribution over models (we assume a Gaussian distribution). Lighter colors and more
concentrated contour lines indicate regions of higher density. Each iteration corresponds
to one round (episode) of interaction with the target domain. The high-density regions
gradually move toward the true model, while maintaining probability mass over a range of
parameters which can explain the behavior of target domain. Figure 2.4(b) presents the
corresponding learning curve, where the shaded region describes the 10th and 90th percentiles
of the performance distribution, and the solid line is the average performance.

15

2.5 Relationship to Prior Work

Robust control is a branch of control theory which formally studies development of robust
policies [39, 40, 41]. However, typically no distribution over source or target tasks is assumed,
and a worst case analysis is performed. Most results from this field have been concentrated
around linear systems or finite MDPs, which often cannot adequately model complexities of
real-world tasks. The set-up of model-based Bayesian RL maintains a belief over models for
decision making under uncertainty [42, 28]. In Bayesian RL, through interaction with the
target domain, the uncertainty is reduced to find the correct or closest model. Application
of this idea in its full general form is difficult, and requires either restrictive assumptions
like finite MDPs [43], gaussian dynamics [44], or task specific innovations. Previous methods
have also suggested treating uncertain model parameters as unobserved state variables in
a continuous POMDP framework, and solving the POMDP to get optimal exploration-
exploitation trade-off [45, 46]. While this approach is general, and allows automatic learning
of epistemic actions, extending such methods to large continuous control tasks like those
considered in this paper is difficult.

Risk sensitive RL methods [47, 35] have been proposed to act as a bridge between robust
control and Bayesian RL. These approaches allow for using subjective model belief priors,
prevent overly conservative policies, and enjoy some strong guarantees typically associated
with robust control. However, their application in high dimensional continuous control tasks
have not been sufficiently explored. We refer readers to García and Fernández [27] for a
survey of related risk sensitive RL methods in the context of robustness and safety.

Standard model-based control methods typically operate by finding a maximum-likelihood
estimate of the target model [48, 49, 50], followed by policy optimization. Use of model
ensembles to produce robust controllers was explored recently in robotics. Mordatch et al. [51]
use a trajectory optimization approach and an ensemble with small finite set of models; whereas
we follow a sampling based direct policy search approach over a continuous distribution of
uncertain parameters, and also show domain adaptation. Sampling based approaches can
be applied to complex models and discrete MDPs which cannot be planned through easily.
Similarly, Wang et al. [52] use an ensemble of models, but their goal is to optimize for average
case performance as opposed to transferring to a target MDP. Wang et al. [52] use a hand
engineered policy class whose parameters are optimized with CMA-ES. EPOpt on the other
hand can optimize expressive neural network policies directly. In addition, we show model
adaptation, effectiveness of the sub-sampling step (ε < 1 case), and robustness to unmodeled
effects, all of which are important for transfering to a target MDP.

Learning of parametrized skills [53] is also concerned with finding policies for a distribution
of parametrized tasks. However, this is primarily geared towards situations where task
parameters are revealed during test time. Our work is motivated by situations where target
task parameters (e.g. friction) are unknown. A number of methods have also been suggested
to reduce sample complexity when provided with either a baseline policy [54, 55], expert

16

demonstration [56, 57], or approximate simulator [58, 59]. These are complimentary to our
work, in the sense that our policy, which has good direct-transfer performance, can be used
to sample from the target domain and other off-policy methods could be explored for policy
improvement.

2.6 Hardware Case Study: Non-Prehensile Manipulation with EPOpt

In a follow up project [14], we employed simulation to reality transfer with EPOPt on
a manipulation task involving a physical robot. In particular, we studied non-prehensile
object manipulation, which refers to the setting where the object to be manipulated is not
under grasp or force closure. Due to the lack of a stable grasp, non-prehensile manipulation
remains a challenging control problem in robotics. In this work, we focus on a particularly
challenging system using three Phantom robots as fingers. These are haptic robots that are
torque-controlled and have higher bandwidth than the fingers of existing robotic hands. In
terms of speed and compliance (but not strength), they are close to the capabilities of the
human hand. This makes them harder to control, especially in nonprehensile manipulation
tasks where the specifics of each contact event and the balance of contact forces exerted on
the object are very important and need to be considered by the controller in some form.

Figure 2.5 presents an illustration of the task we consider. We use the MuJoCo [30]
simulator to model the dynamics of the environment and use a physically consistent system

Figure 2.5: (Left) Illustration of the physical phantom robot and the simulated counterpart.
We use PhaseSpace markers for tracking the robot and object. The location of the markers
along with kinematic information can be used to infer the robot pose. (Right) Illustration
of the task setup where three phantom robots must operate together to manipulate the
cylindrical object. The task involves moving the object along a desired trajectory.

17

identification process [60] for parameter estimation to obtain a nominal dynamics model. As
the manipulator is non-prehensile, we do not use any demonstrations or guide the policy
search. To facilitate transfer to hardware, we also avoid the use of an estimator (i.e. the
use of a model to predict state like a Kalman filter) by learning a function that directly
converts from sensor values to motor torques. The policy is then transfered to the hardware
for evaluation. We show that even for incorrect models used during training, good transfer is
achieved by using an ensemble of models. A summary of results in presented in Figure 2.6,
and additional details about this project can be found in the publication of Lowrey et al. [14].

Figure 2.6: 10 rollouts are performed where the target position of the object is the path that
spirals from the center outward (in black) and then performs a full circular sweep (the plots
represent a top-down view). We compare three differently trained policies: one where the
mass of the object cylinder is 0.34kg, one where the mass is increased by 20 percent (to 0.4kg),
and finally, we train a policy with the incorrect mass, but add model noise (at standard
deviation 0.03) during training to create an ensemble. We evaluate these policies on the
correct (0.34kg) mass in both simulation and on hardware. In both, the policy trained with
the incorrect mass does not track the goal path, sometimes even losing the object. We also
calculate the per time-step error from the goal path, averaged from all 10 rollouts (right-most
plots); there is usually a non-zero error between the object and the reference due to the
feedback policy having to ’catch up’ to the reference.

18

2.7 Chapter Summary

In this chapter, we discussed our work in simulation to reality transfer with emphasis on our
EPOpt algorithm. EPOpt enables training of robust policies, and supports an adversarial
training regime designed to provide good direct-transfer performance. We also describe
how our approach can be combined with Bayesian model adaptation to adapt the source
domain ensemble to a target domain using a small amount of target domain experience. Our
experimental results demonstrate that the ensemble approach provides for highly robust
and generalizable policies in fairly complex simulated robotic tasks. Our experiments also
demonstrate that Bayesian model adaptation can produce distributions over models that lead
to better policies on the target domain than more standard maximum likelihood estimation,
particularly in presence of unmodeled effects.

Although our method exhibits good generalization performance, the adaptation algorithm
we use currently relies on sampling the parameter space, which is computationally intensive as
the number of variable physical parameters increase. We observed that (adaptive) sampling
from the prior leads to fast and reliable adaptation if the true model does not have very
low probability in the prior. However, when this assumption breaks, we require a different
sampling distribution which could produce samples from all regions of the parameter space.
This is a general drawback of Bayesian adaptation methods. In future work, we plan to explore
alternative sampling and parameterization schemes, including non-parametric distributions.
An eventual end-goal would be to replace the physics simulator entirely with learned Bayesian
neural network models, which could be adapted with limited data from the physical system.
These models could be pre-trained using physics based simulators like MuJoCo to get a
practical initialization of neural network parameters. Such representations are likely useful
when dealing with high dimensional inputs like simulated vision from rendered images or tasks
with complex dynamics like deformable bodies, which are needed to train highly generalizable
policies that can successfully transfer to physical robots acting in the real world.

Finally, on a historical note, our work was among the first to introduce the idea of using
multiple (ensembles) simulated models to gain policy robustness and enable transfer to robotic
hardware. Since the publication of our work, this broad research theme has gained major
prominence in robot learning under the name or domain randomization [61]. In addition
to considering multiple models that capture our uncertainty about physics parameters, the
rendering characteristics of the simulator can also be randomized encouraging the learning of
visuo-motor policies that are robust to various visual distractor effects. Such policies can be
more robust to variations in colors, textures, and lighting conditions. Such a combination
of model ensembles that encourages robustness to both variations in physical conditions as
well as visual characteristics have been successful in learning RL policies for grasping [62],
whole-arm manipulation [63, 64], locomotion [65, 66], and dexterous manipulation [67].

19

Chapter 3

OFFLINE REINFORCEMENT LEARNING

3.1 Introduction

In the previous chapter, we discussed approaches that can benefit from large scale simulated
data collection, and enable transfer to a desired target domain, typically the real world.
Nevertheless, due to lack of real-world data collection, this approach is fundamentally limited
by the capabilities of the simulator. To mitigate against the systematic discrepancies between
the simulator and target domain, and to enable the learning of better policies, in this chapter
we study the possibility of reusing large scale offline datasets for RL.

The fields of computer vision and NLP have seen tremendous advances by utilizing large-
scale offline datasets [68, 69, 70] for training and deploying deep learning models [2, 3, 4, 5].
In contrast, reinforcement learning (RL) [71] is typically viewed as an online learning process.
The RL agent iteratively collects data through interactions with the environment while
learning the policy. Unfortunately, a direct embodiment of this trial and error learning is
often inefficient and feasible only with a simulator [10, 72, 21]. Similar to progress in other
fields of AI, the ability to learn from offline datasets may hold the key to unlocking the sample
efficiency and widespread use of RL agents.

Offline RL, also known as batch RL [73], involves learning a highly rewarding policy using
only a static offline dataset collected by one or more data logging (behavior) policies. Since the
data has already been collected, offline RL abstracts away data collection or exploration, and
allows prime focus on data-driven learning of policies. This abstraction is suitable for safety
sensitive applications like healthcare and industrial automation where careful oversight by a
domain expert is necessary for taking exploratory actions or deploying new policies [74, 75].
Additionally, large historical datasets are readily available in domains like autonomous driving
and recommendation systems, where offline RL may be used to improve upon currently
deployed policies.

Due to use of static dataset, offline RL faces unique challenges. Over the course of learning,
the agent has to evaluate and reason about various candidate policy updates. This offline
policy evaluation is particularly challenging due to deviation between the state visitation
distribution of the candidate policy and the logging policy. Furthermore, this difficulty is
exacerbated over the course of learning as the candidate policies increasingly deviate from
the logging policy. This change in distribution, as a result of policy updates, is typically
called distribution shift and constitutes a major challenge in offline RL. Recent studies show
that directly using off-policy RL algorithms with an offline dataset yields poor results due

20

Output policy
𝜋!"#

Dataset

Offline Reinforcement Learning

𝐻𝐴𝐿𝑇

(a) (c)(b)

{ } = data support

= unknown
= known

Dataset

Learn MDP
𝑀& P-MDP 𝑀&!

Policy
Optimizer

Output policy
𝜋"#$

Figure 3.1: (a) Illustration of the offline RL paradigm. (b) Illustration of our framework, MOReL,
which learns a pessimistic MDP (P-MDP) from the dataset and uses it for policy search.
(c) Illustration of the P-MDP, which partitions the state-action space into known (green)
and unknown (orange) regions, and also forces a transition to a low reward absorbing state
(HALT) from unknown regions. Blue dots denote the support in the dataset. Function
approximation and generalization allows us to learn about states not numerically identical to
data support. See algorithm 2 for more details.

to distribution shift and function approximation errors [76, 77, 78]. To overcome this, prior
works have proposed modifications like Q-network ensembles [76, 79] and regularization
towards the data logging policy [80, 77, 79]. Most notably, prior work in offline RL has been
confined almost exclusively to model-free methods [81, 76, 77, 80, 78, 79, 82].

Model-based RL (MBRL) presents an alternate set of approaches involving the learning
of approximate dynamics models which can subsequently be used for policy search. MBRL
enables the use of generic priors like smoothness and physics [83] for model learning, and a
wide variety of planning algorithms [84, 85, 86, 87, 34]. As a result, MBRL algorithms have
been highly sample efficient for online RL [16, 88]. However, direct use of MBRL algorithms
with offline datasets can prove challenging, again due to the distribution shift issue. In
particular, since the dataset may not span the entire state-action space, the learned model
is unlikely to be globally accurate. As a result, planning using a learned model without
any safeguards against model inaccuracy can result in “model exploitation” [89, 90, 88, 16],
yielding poor results [50]. In this context, we study the pertinent question of how to effectively
regularize and adapt model-based methods for offline RL.

Our Contributions: The principal contribution of our work is the development of MOReL:
Model-based Offline Reinforcement Learning, a novel model-based framework for offline
RL (see figure 3.1 for an overview). MOReL enjoys rigorous theoretical guarantees, enables
transparent algorithm design, and offers state of the art (SOTA) results on widely studied
offline RL benchmarks.

21

• MOReL consists of two modular steps: (a) learning a pessimistic MDP (P-MDP) using the
offline dataset; and (b) learning a near-optimal policy for the P-MDP. For any policy,
the performance in the true MDP (environment) is approximately lower bounded by the
performance in the P-MDP, making it a suitable surrogate for purposes of policy evaluation
and learning. This also guards against model exploitation, which often plagues MBRL.

• The P-MDP partitions the state space into “known” and “unknown” regions, and uses a
large negative reward for unknown regions. This provides a regularizing effect during policy
learning by heavily penalizing policies that visit unknown states. Such a regularization
in the space of state visitations, afforded by a model-based approach, is particularly well
suited for offline RL. In contrast, model-free algorithms [77, 79] are forced to regularize the
policies directly towards the data logging policy, which can be overly conservative.

• Theoretically, we establish upper bounds for the sub-optimality of a policy learned
with MOReL, and a lower-bound for the sub-optimality of a policy learnable by any offline
RL algorithm. We find that these bounds match upto log factors, suggesting that MOReL is
nearly minimax optimal.

• We evaluate MOReL on standard benchmark tasks used for offline RL. MOReL obtains SOTA
results in 12 out of 20 environment-dataset configurations, and performs competitively in
the rest. In contrast, the best prior algorithm [79] obtains SOTA results in only 5 (out of
20) configurations.

3.2 Related Work

Offline RL dates to at least the work of Lange et al. [73], and has applications in healthcare [91,
92, 93], recommendation systems [94, 95, 96, 97], dialogue systems [98, 80, 99], and autonomous
driving [100]. Algorithms for offline RL typically fall under three categories. The first approach
utilizes importance sampling and is popular in contextual bandits [101, 94, 95]. For full
offline RL, Liu et al. [102] perform planning with learned importance weights [103, 104, 105]
while using a notion of pessimism for regularization. However, Liu et al. [102] don’t explicitly
consider generalization and their guarantees become degenerate if the logging policy does not
span the support of the optimal policy. In contrast, our approach accounts for generalization,
leads to stronger theoretical guarantees, and obtains SOTA results on challenging offline RL
benchmarks. The second, and perhaps most popular approach is based on approximate
dynamic programming (ADP). Recent works have proposed modification to standard
ADP algorithms [106, 19, 22, 107] towards stabilizing Bellman targets with ensembles [78,
76, 80] and regularizing the learned policy towards the data logging policy [76, 77, 79]. ADP-
based offline RL has also be studied theoretically [87, 108]. However, these works again don’t
study the impact of support mismatch between logging policy and optimal policy. Finally,
model-based RL has been explored only sparsely for offline RL in literature [50, 109]

22

(see appendix for details). The work of Ross and Bagnell [50] considered a straightforward
approach of learning a model from offline data, followed by planning. They showed that this
can have arbitrarily large sub-optimality. In contrast, our work develops a new framework
utilizing the notion of pessimism, and shows both theoretically and experimentally that
MBRL can be highly effective for offline RL. Concurrent to our work, Yu et al. [110] also
study a model-based approach to offline RL.

A cornerstone of MOReL is the P-MDP which partitions the state space into known and
unknown regions. Such a hard partitioning was considered in early works like E3 [111],
R-MAX [112], and metric-E3 [113], but was not used to encourage pessimism. Similar ideas
have been explored in related settings like online RL [114, 115] and imitation learning [116].
Our work differs in its focus on offline RL, where we show the P-MDP construction plays
a crucial role. Moreover, direct practical instantiations of E3 and metric-E3 with function
approximation have remained elusive.

3.3 Problem Formulation

A Markov Decision Process (MDP) is represented byM = {S,A, r, P, ρ0, γ}, where, S
is the state-space, A is the action-space, r : S × A→ [−Rmax, Rmax] is the reward function,
P : S × A× S → R+ is the transition kernel, ρ0 is the initial state distribution, and γ the
discount factor. A policy defines a mapping from states to a probability distribution over
actions, π : S×A→ R+. The goal is to obtain a policy that maximizes expected performance
with states sampled according to ρ0, i.e.:

max
π

Jρ0(π,M) := Es∼ρ0 [V π(s,M)] , where, V π(s,M) = E

[
∞∑
t=0

γtr(st, at)|s0 = s

]
.

(3.1)
To avoid notation clutter, we suppress the dependence on ρ0 when understood from context,
i.e. J(π,M) ≡ Jρ0(π,M). We denote the optimal policy using π∗ := arg maxπ Jρ0(π,M).
Typically, a class of parameterized policies πθ ∈ Π(Θ) are considered, and the parameters θ
are optimized.

In offline RL, we are provided with a static dataset of interactions with the environment
consisting of D = {(si, ai, ri, s′i)}Ni=1. The data can be collected using one or more logging
(or behavioral) policies denoted by πb. We do not assume logging policies are known in our
formulation. Given D, the goal in offline RL is to output a πout with minimal sub-optimality,
i.e. J(π∗,M)− J(πout,M). In general, it may not be possible to learn the optimal policy
with a static dataset (see section 3.5). Thus, we aim to design algorithms that would result
in as low sub-optimality as possible.

Model-Based RL (MBRL) involves learning an MDP M̂ = {S,A, r, P̂ , ρ̂0, γ} which
uses the learned transitions P̂ instead of the true transition dynamics P . In this paper, we
assume the reward function is known and use it in M̂ . If r(·) is unknown, it can also be

23

learned from data. The initial state distribution ρ̂0 can either be learned from the data or
ρ0 can be used if known. Analogous toM, we use Jρ̂0(π,M̂) or simply J(π,M̂) to denote
performance of π in M̂ .

3.4 Algorithmic Framework

For ease of exposition and clarity, we first begin by presenting an idealized version of MOReL,
for which we also establish theoretical guarantees. Subsequently, we describe a practical
version of MOReL that we use in our experiments. Algorithm 2 presents the broad framework
of MOReL. We now study each component of MOReL in greater detail.

Algorithm 2 MOReL: Model Based Offline Reinforcement Learning
1: Require Dataset D
2: Learn approximate dynamics model P̂ : S × A→ S using D.
3: Construct α-USAD, Uα : S × A→ {TRUE,FALSE} using D (see Definition 1).
4: Construct the pessimistic MDP M̂p = {S ∪ HALT, A, rp, P̂p, ρ̂0, γ} (see Definition 2).
5: (OPTIONAL) Use a behavior cloning approach to estimate the behavior policy π̂b.
6: πout ← PLANNER(M̂p, πinit = π̂b)

7: Return πout.

Learning the dynamics model: The first step involves using the offline dataset to learn
an approximate dynamics model P̂ (·|s, a). This can be achived through maximum likelihood
estimation or other techniques from generative and dynamics modeling [117, 118, 119]. Since
the offline dataset may not span the entire state space, the learned model may not be globally
accurate. So, a naïve MBRL approach that directly plans with the learned model may
over-estimate rewards in unfamiliar parts of the state space, resulting in a highly sub-optimal
policy [50]. We overcome this with the next step.

Unknown state-action detector (USAD): We partition the state-action space into
known and unknown regions based on the accuracy of learned model as follows.

Definition 1. (α-USAD) Given a state-action pair (s, a), define an unknown state action
detector as:

Uα(s, a) =

{
FALSE (i.e. Known) if DTV

(
P̂ (·|s, a), P (·|s, a)

)
≤ α can be guaranteed

TRUE (i.e. Unknown) otherwise
(3.2)

24

Here DTV

(
P̂ (·|s, a), P (·|s, a)

)
denotes the total variation distance between P̂ (·|s, a) and

P (·|s, a). Intuitively, USAD provides confidence about where the learned model is accurate.
It flags state-actions for which the model is guarenteed to be accurate as “known”, while
flagging state-actions where such a guarantee cannot be ascertained as “unknown”. Note that
USAD is based on the ability to guarantee the accuracy, and is not an inherent property of
the model. In other words, there could be states where the model is actually accurate, but
flagged as unknown due to the agent’s inability to guarantee accuracy. Two factors contribute
to USAD’s effectiveness: (a) data availability: having sufficient data points “close” to the
query; (b) quality of representations: certain representations, like those based on physics, can
lead to better generalization guarantees. This suggests that larger datasets and research in
representation learning can potentially enable stronger offline RL results.

Pessimistic MDP construction: We now construct a pessimistic MDP (P-MDP) using
the learned model and USAD, which penalizes policies that venture into unknown parts of
state-action space.

Definition 2. The (α, κ)-pessimistic MDP is described by M̂p := {S∪HALT, A, rp, P̂p, ρ̂0, γ}.
Here, S and A are states and actions in the MDP M. HALT is an additional absorbing
state we introduce into the state space of M̂p. ρ̂0 is the initial state distribution learned from
the dataset D. γ is the discount factor (same as M). The modified reward and transition
dynamics are given by:

P̂p(s
′|s, a) =

δ(s
′ = HALT)

if Uα(s, a) = TRUE

or s = HALT

P̂ (s′|s, a) otherwise

rp(s, a) =

{
−κ if s = HALT

r(s, a) otherwise

δ(s′ = HALT) is the Dirac delta function, which forces the MDP to transition to the
absorbing state HALT. For unknown state-action pairs, we use a reward of −κ, while all
known state-actions receive the same reward as in the environment. The P-MDP heavily
punishes policies that visit unknown states, thereby providing a safeguard against distribution
shift and model exploitation.

Planning: The final step in MOReL is to perform planning in the P-MDP defined above. For
simplicity, we assume a planning oracle that returns an επ-sub-optimal policy in the P-MDP.
A number of algorithms based on MPC [84, 120], search-based planning [121, 86], dynamic
programming [19, 87], or policy optimization [34, 107, 12, 122] can be used to approximately
realize this.

25

3.5 Theoretical Results

In order to state our results, we begin by defining the notion of hitting time.

Definition 3. (Hitting time) Given an MDPM, starting state distribution ρ0, state-action
pair (s, a) and a policy π, the hitting time T π(s,a) is defined as the random variable denoting
the first time action a is taken at state s by π onM, and is equal to ∞ if a is never taken by
π from state s. For a set of state-action pairs S ⊆ S × A, we define T πS

def
= min(s,a)∈S T

π
(s,a).

We are now ready to present our main result with the proofs deferred to the appendix.

Theorem 1. (Policy value with pessimism) The value of any policy π on the original MDP
M and its (α,Rmax)-pessimistic MDP M̂p satisfies:

Jρ̂0(π,M̂p) ≥ Jρ0(π,M)− 2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U
]
, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,M) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α,

where T πU denotes the hitting time of unknown states U def
= {(s, a) : Uα(s, a) = TRUE} by

policy π in MDPM.

Theorem 1 can be used to bound the suboptimality of output policy πout of Algorithm 2.

Corollary 1. Suppose PLANNER in Algorithm 2 returns an επ sub-optimal policy. Then,
we have

Jρ0(π
∗,M)− Jρ0(πout,M) ≤ επ +

4Rmax

1− γ
·DTV (ρ0, ρ̂0) +

4γRmax

(1− γ)2
· α +

2Rmax

1− γ
· E
[
γT

π∗
U

]
.

Theorem 1 indicates that the difference in any policy π’s value in the (α,Rmax) pes-
simistic MDP M̂p and the original MDP M depends on: i) the total variation distance
between the true and learned starting state distribution DTV (ρ0, ρ̂0), ii) the maximum total
variation distance α between the learned model P̂ (·|s, a) and the true model P (·|s, a) over
all known states i.e., {(s, a)|Uα(s, a) = FALSE} and, iii) the hitting time T π∗U of unknown
states U on the original MDPM under the optimal policy π∗. As the dataset size increases,
DTV (ρ0, ρ̂0) and α approach zero, indicating E

[
γT

π∗
U

]
determines the sub-optimality in the

limit. For comparison to prior work, Lemma 4 in Appendix B.1 bounds this quantity in
terms of state-action visitation distribution, which for a policy π on M is expressed as
dπ,M(s, a)

def
= (1− γ)

∑∞
t=0 γ

tP (st = s, at = a|s0 ∼ ρ0, π,M). Furthermore, we can also show
that MOReL learns a policy that improves over the behavioral policy with high probability.
The following lemma presents both of these results:

26

Lemma 1. (Upper bound; MOReL improves over the behavioral policy) Suppose ρ0,min >

0, pmin > 0 and dπbmin > 0 are the smallest non-zero elements of initial distribution ρ0,
state transition probabilities P (·|s, a), and discounted state probability distribution dπb,M(s, a)

respectively. If the dataset D consists of n ≥ C

(dπbmin)
2 · log 1

δd
πb
min

independent trajectories sampled

according to a behavior policy πb with initial distribution ρ0, then the output πout of Algorithm 2
satisfies:

Jρ0(πb,M)− Jρ0(πout,M) ≤ επ + εn, and

Jρ0(π
∗,M)− Jρ0(πout,M) ≤ επ +

2Rmax

1− γ
· E
[
γT

π∗
U

]
+ εn ≤ επ +

2Rmax

(1− γ)2
· dπ∗,M(U) + εn,

with probability at least 1− Cδ, where C is a large enough constant and

εn
def
=

4CRmax

(1− γ)ρ0,min
·

√
log 1

δρ0,min

n
+

4CγRmax

(1− γ)2pmin
·

√
log 1

δpmind
πb
min

dπbmin · n

is an error term related to finite samples that goes to zero as n→∞.

The bound consists of three terms: (i) a sampling error term εn which decreases with
larger dataset sizes that is typical of offline RL; (ii) an optimization error term επ that can
be made small with additional compute to find the optimal policy in the learned model; and
(iii) a distribution shift term that depends on the coverage of the offline dataset and overlap
with the optimal policy.

Prior results [76, 102] assume that dπ∗,M(UD) = 0, where UD
def
= {(s, a)|(s, a, r, s′) /∈ D} ⊇

U is the set of state action pairs that don’t occur in the offline dataset, and guarantee finding
an optimal policy under this assumption. Our result significantly improves upon these in
three ways: i) UD is replaced by a smaller set U , leveraging the generalization ability of
learned dynamics model, ii) the sub-optimality bound is extended to the setting where full
support coverage is not satisfied i.e., dπ∗,M(U) > 0, and iii) the sub-optimality bound on πout

is stated in terms of unknown state hitting time T π∗U , which can be significantly better than
a bound that depends only on dπ∗,M(U). To further strengthen our results, the following
proposition shows that Lemma 1 is tight up to log factors.

Proposition 1. (Lower bound) For any discount factor γ ∈ [0.95, 1), support mismatch ε ∈(
0, 1−γ

log 1
1−γ

]
and reward range [−Rmax, Rmax], there is an MDPM, starting state distribution

ρ0, optimal policy π∗ and a dataset collection policy πb such that i) dπ∗,M(UD) ≤ ε, and ii)
any policy π̂ that is learned solely using the dataset collected with πb satisfies:

Jρ0(π
∗,M)− Jρ0(π̂,M) ≥ Rmax

4(1− γ)2
· ε

log 1
1−γ

,

where UD
def
= {(s, a) : (s, a, r, s′) /∈ D for any r, s′} denotes state-actions not in the dataset D.

27

We see that for ε < (1− γ)/(log 1
1−γ), the lower bound obtained by Proposition 1 on the

suboptimality of any offline RL algorithm matches the asymptotic (as n→∞) upper bound
of Lemma 1 up to an additional log factor. For ε > (1 − γ)/(log 1

1−γ), Proposition 1 also
implies (by choosing ε′ = (1− γ)/(log 1

1−γ) < ε) that any offline algorithm must suffer at least
constant factor suboptimality in the worst case. Finally, we note that as the size of dataset
D increases to ∞, Theorem 1 and the optimality of PLANNER (i.e., επ = 0) together imply
that Jρ0(πout,M) ≥ Jρ0(πb,M).

3.6 Practical Implementation Of MOReL

We now present a practical instantiation of MOReL (algorithm 2) utilizing a recent model-
based NPG approach [16]. The principal difference is the specialization to offline RL and
construction of the P-MDP using an ensemble of learned dynamics models.

Dynamics model learning: We consider Gaussian dynamics models [16] of the form
P̂ (·|s, a) ≡ N (fφ(s, a),Σ), with mean fφ(s, a) = s + σ∆ MLPφ ((s− µs)/σs, (a− µa)/σa),
where µs, σs, µa, σa are the mean and standard deviations of states/actions in D; σ∆ is the
standard deviation of state differences, i.e. ∆ = s′ − s, (s, s′) ∈ D; this parameterization
ensures local continuity since the MLP learns only the state differences. The MLP parameters
are optimized using maximum likelihood estimation with mini-batch stochastic optimization
using Adam [123].

Unknown state-action detector (USAD): In order to partition the state-action space
into known and unknown regions, we use uncertainty quantification [124, 125, 126, 127]. In
particular, we consider approaches that track uncertainty using the predictions of ensembles of
models [124, 127]. We learn multiple models {fφ1 , fφ2 , . . .} where each model uses a different
weight initialization and are optimized with different mini-batch sequences. Subsequently,
we compute the ensemble discrepancy as disc(s, a) = maxi,j

∥∥fφi(s, a)− fφj(s, a)
∥∥

2
, where

fφi and fφj are members of the ensemble. With this, we implement USAD as below, with
threshold being a tunable hyperparameter.

Upractical(s, a) =

{
FALSE (i.e. Known) if disc(s, a) ≤ threshold

TRUE (i.e. Unknown) if disc(s, a) > threshold
. (3.3)

28

3.7 Experiments

Through our experimental evaluation, we aim to answer the following questions:

1. Comparison to prior work: How does MOReL compare to prior SOTA offline RL
algorithms [76, 77, 79] in commonly studied benchmark tasks?

2. Quality of logging policy: How does the quality (value) of the data logging (behavior)
policy, and by extension the dataset, impact the quality of the policy learned by MOReL?

3. Importance of pessimistic MDP: How does MOReL compare against a naïve model-
based RL approach that directly plans in a learned model without any safeguards?

4. Transfer from pessimistic MDP to environment: Does learning progress in the
P-MDP, which we use for policy learning, effectively translate or transfer to learning
progress in the environment?

To answer the above questions, we consider commonly studied benchmark tasks from
OpenAI gym [128] simulated with MuJoCo [30]. Our experimental setup closely follows prior
work [76, 77, 79]. The tasks considered include Hopper-v2, HalfCheetah-v2, Ant-v2, and
Walker2d-v2, which are illustrated in Figure 3.2. We consider five different logged data-
sets for each environment, totalling 20 environment-dataset combinations. Datasets are
collected based on the work of Wu et al. [79], with each dataset containing the equivalent
of 1 million timesteps of environment interaction. We first partially train a policy (πp) to
obtain values around 1000, 4000, 1000, and 1000 respectively for the four environments.
The first exploration strategy, Pure, involves collecting the dataset solely using πp. The
four other datasets are collected using a combination of πp, a noisy variant of πp, and an
untrained random policy. The noisy variant of πp utilizes either epsilon-greedy or Gaussian
noise, resulting in configurations eps-1, eps-3, gauss-1, gauss-3 that signify various types
and magnitudes of noise added to πp. Please see appendix for additional experimental details.

Figure 3.2: Illustration of the suite of tasks considered in this work. These tasks require the
RL agent to learn locomotion gaits for the illustrated simulated characters.

29

Table 3.1: Results in various environment-exploration combinations. Baselines are reproduced
from Wu et al. [79]. Prior work does not provide error bars. For MOReL results, error bars
indicate the standard deviation across 5 different random seeds. We choose SOTA result
based on the average performance.

Environment: Ant-v2

Algorithm BCQ
[76]

BEAR
[77]

BRAC

[79]
Best
Baseline

MOReL
(Ours)

Pure 1921 2100 2839 2839 3663±247
Eps-1 1864 1897 2672 2672 3305±413
Eps-3 1504 2008 2602 2602 3008±231
Gauss-1 1731 2054 2667 2667 3329±270
Gauss-3 1887 2018 2640 2661 3693±33

Environment: Hopper-v2

Algorithm BCQ
[76]

BEAR
[77]

BRAC

[79]
Best
Baseline

MOReL
(Ours)

Pure 1543 0 2291 2774 3642±54
Eps-1 1652 1620 2282 2360 3724±46
Eps-3 1632 2213 1892 2892 3535±91
Gauss-1 1599 1825 2255 2255 3653±52
Gauss-3 1590 1720 1458 2097 3648±148

Environment: HalfCheetah-v2

Algorithm BCQ
[76]

BEAR
[77]

BRAC

[79]
Best
Baseline

MOReL
(Ours)

Pure 5064 5325 6207 6209 6028±192
Eps-1 5693 5435 6307 6307 5861±192
Eps-3 5588 5149 6263 6359 5869±139
Gauss-1 5614 5394 6323 6323 6026±74
Gauss-3 5837 5329 6400 6400 5892±128

Environment: Walker-v2

Algorithm BCQ
[76]

BEAR
[77]

BRAC

[79]
Best
Baseline

MOReL
(Ours)

Pure 2095 2646 2694 2907 3709±159
Eps-1 1921 2695 3241 3490 2899±588
Eps-3 1953 2608 3255 3255 3186±92
Gauss-1 2094 2539 2893 3193 4027±314
Gauss-3 1734 2194 3368 3368 2828±589

We parameterize the dynamics model using 2-layer ReLU-MLPs and use an ensemble of 4
dynamics models to implement USAD as described in Section 3.6. We parameterize the policy
using a 2-layer tanh-MLP, and train it using model-based NPG [16]. We evaluate the learned
policies using rollouts in the (real) environment, but these rollouts are not made available to
the algorithm in any way for purposes of learning. This is similar to evaluation protocols
followed in prior work [79, 76, 77]. We present all our results averaged over 5 different random
seeds. Note that we use the same hyperparameters for all random seeds. In contrast, the
prior works whose results we compare against tune hyper-parameters separately for each
random seed [79].

Comparison of MOReL’s performance with prior work We compare results of MOReLwith
prior SOTA algorithms like BCQ, BEAR, and all variants of BRAC. The results are summa-
rized in Table 3.1. For fairness of comparison, we reproduce results from prior work and do
not run the algorithms ourselves. We provide a more expansive table with additional baseline
algorithms in the appendix. Our algorithm, MOReL, achives SOTA results in 12 out of the 20

environment-dataset combinations, overlaps in error bars for 3 other combinations, and is
competitive in the remaining cases. In contrast, the next best approach (a variant of BRAC)
achieves SOTA results in only 5 out of 20 configurations.

30

Table 3.2: Results of various algorithms on the D4RL benchmark suite. Each number is
the normalized score computed as (score − random policy score) / (expert policy score −
random policy score). The raw score for MOReL was taken to be the average over the last
100 iterations of policy learning averaged over 3 random seeds. Results of MOPO [110] and
CQL [130] are reported from their respective papers. Remaining results are taken from the
D4RL benchmark suite white-paper [129].

Dataset Environment
MOReL
(Ours)

MOPO CQL SAC-Off BEAR BRAC-p BRAC-v

random halfcheetah 25.6 34.4 35.4 30.5 25.1 24.1 31.2
random hopper 53.6 11.7 10.8 11.3 11.4 11 12.2
random walker2d 37.3 13.6 7 4.1 7.3 -0.2 1.9

medium halfcheetah 42.1 42.3 44.4 -4.3 41.7 43.8 46.3
medium hopper 95.4 28.0 86.6 0.8 52.1 32.7 31.1
medium walker2d 77.8 17.8 74.5 0.9 59.1 77.5 81.1

medium-replay halfcheetah 40.2 53.1 46.2 -2.4 38.6 45.4 47.7
medium-replay hopper 93.6 67.5 48.6 3.5 33.7 0.6 0.6
medium-replay walker2d 49.8 39.0 32.6 1.9 19.2 -0.3 0.9

medium-expert halfcheetah 53.3 63.3 62.4 1.8 53.4 44.2 41.9
medium-expert hopper 108.7 23.7 111 1.6 96.3 1.9 0.8
medium-expert walker2d 95.6 44.6 98.7 -0.1 40.1 76.9 81.6

Average Average 64.42 36.58 54.85 4.13 39.83 29.80 31.44

Comparison of MOReL’s performance in the D4RL benchmark suite The D4RL
benchmark suite [129] for offline RL was introduced in concurrent work. We also study the
performance of MOReL in this benchmark suite. We find that MOReL achieves the highest
(normalized) score in 5 out of 12 domains studied, while the next best algorithm (CQL)
achieves the highest score in only 3 out of 12 domains. Furthermore, we observe that MOReL is
often very competitive with the best performing algorithm in any given domain even if it
doesn’t achieve the top score. However, in many domains, MOReL significantly improves over
the state of the art (e.g. hopper-medium-replay and hopper-random). To aggregate results
across multiple domains, we consider the average of the normalized scores as a proxy, and
observe that MOReL significantly outperforms prior algorithms.

Importance of Pessimistic MDP To highlight the importance of P-MDP, we again
consider the Pure-partial dataset outlined above. We compare MOReL with a naiv̈e MBRL
approach that first learns a dynamics model using the offline data, followed by running model-

31

0 250 500 750 1000
NPG iterations

2000

2500

3000

3500

Re
tu

rn
 (

Va
lu

e)

Hopper-v2

MOReL (Ours)
Naive MBRL

0 500 1000 1500 2000
NPG iterations

4500

5000

5500

6000

HalfCheetah-v2

0 250 500 750 1000
NPG iterations

1000

2000

3000

4000 Ant-v2

0 250 500 750 1000
NPG iterations

1000

2000

3000

4000

Walker-v2

Figure 3.3: MOReL and Naive MBRL learning curves. The x-axis plots the number of model-
based NPG iterations, while y axis plots the return (value) in the real environment. The
naive MBRL algorithm is highly unstable while MOReL leads to stable and near-monotonic
learning. Notice however that even naive MBRL learns a policy that performs often as well
as the best model-free offline RL algorithms.

based NPG without any safeguards against model inaccuracy. The results are summarized
in Figure 3.3. We observe that the naiv̈e MBRL approach already works well, achiev-
ing results comparable to prior algorithms like BCQ and BEAR. However, MOReL clearly
exhibits more stable and monotonic learning progress. This is particularly evident in
Hopper-v2, HalfCheetah-v2, and Walker2d-v2, where an uncoordinated set of actions
can result in the agent falling over. Furthermore, in the case of naiv̈e MBRL, we observe
that performance can quickly degrade after a few hundred steps of policy improvement, such
as in case of Hopper-v2, HalfCheetah-v2 and Walker2d-v2. This suggests that the learned
model is being over-exploited. In contrast, with MOReL, we observe that the learning curve is
stable and nearly monotonic even after many steps of policy improvement.

Quality of logging policy Section 3.5 indicates that it is not possible for any offline RL
algorithm to learn a near-optimal policy when faced with support mismatch between the
dataset and optimal policy. To verify this experimentally for MOReL, we consider two datasets

Table 3.3: Value of the policy learned by MOReL (5 random seeds) when working with a
dataset collected with a random (untrained) policy (Pure-random) and a partially trained
policy (Pure-partial).

Environment Pure-random Pure-partial

Hopper-v2 2354± 443 3642± 54

HalfCheetah-v2 2698± 230 6028± 192

Walker2d-v2 1290± 325 3709± 159

Ant-v2 1001± 3 3663± 247

32

(of the same size) collected using the Pure strategy. The first uses a partially trained policy
πp (called Pure-partial), which is the same as the Pure dataset studied in Table 3.1. The
second dataset is collected using an untrained random Gaussian policy (called Pure-random).
Table 3.3 compares the results of MOReL using these two datasets. We observe that the value
of policy learned with Pure-partial dataset far exceeds the value with the Pure-random
dataset. Thus, the value of policy used for data logging plays a crucial role in the performance
achievable with offline RL.

Transfer from P-MDP to environment Finally, we study how the learning progress
in P-MDP relates to the progress in the environment. Our theoretical results (Theorem 1)
suggest that the value of a policy in the P-MDP cannot substantially exceed the value in the
environment. This makes the value in the P-MDP an approximate lower bound on the true
performance, and a good surrogate for optimization. In Figure 3.4, we plot the value or return
of the policy in the P-MDP and environment over the course of learning. Note that the policy
is being learned in the P-MDP, and as a result we observe a clear monotonic learning curve
for value in the P-MDP, consistent with the monotonic improvement theory of policy gradient
methods [55, 33]. We observe that the value in the true environment closely correlates with
the value in P-MDP. In particular, the P-MDP value never substantially exceeds the true
performance, suggesting that the pessimism helps to avoid model exploitation.

0 250 500 750 1000
NPG iterations

2000

2500

3000

3500

Re
tu

rn
 (

Va
lu

e)

Hopper-v2

Env
P-MDP

0 500 1000 1500 2000
NPG iterations

4500

5000

5500

6000

HalfCheetah-v2

0 250 500 750 1000
NPG iterations

1000

2000

3000

4000 Ant-v2

0 250 500 750 1000
NPG iterations

1000

2000

3000

4000

Walker-v2

Figure 3.4: Learning curve using the Pure-partial dataset, see paper text for details. The
policy is learned using the pessimistic MDP (P-MDP), and we plot the performance in
both the P-MDP and the real environment over the course of learning. We observe that
the performance in the P-MDP closely tracks the true performance and never substantially
exceeds it, as predicted in section 3.5. This shows that the policy value in the P-MDP serves
as a good surrogate for the purposes of offline policy evaluation and learning.

33

3.8 Model-Based Offline RL from Vision

We also studied extending our model-based RL approach to offline RL from images. Due to
the high dimensionality of the observation space, learning predictive forward dynamics models
in the image space is not straightforward. To address the scalability challenge and also to learn
models that are amenable to policy learning, we develop a new algorithm – LOMPO – that
learns variational dynamics models with a compact latent state that serves as an information
bottleneck. Our key insight is that latent space variational models are particularly well suited
because: (a) they provide a rich auxiliary objective for representation learning which also
enables efficient policy learning; (b) the learned models can be simulated efficiently in the
latent space over long horizons without requiring any explicit image reconstruction; (c) the
model uncertainty can be estimated directly in the compact latent space, thereby imparting
the necessary conservatism needed for offline RL.

We model the setting as a partially observable Markov decision process (POMDP), which
can be described with the tuple: M = (S,A,X ,R, T,U , γ), where s ∈ S is the state space,
a ∈ A is the action space, x ∈ X is the observation space and r = R(s,a) is a reward
function. The state evolution is Markovian and governed by the dynamics as s′ ∼ T (·|s,a).
Finally, the observations are generated through the observation model x ∼ U(·|s). With such
a framework, the probability of a trajectory can be described by:

logP (x1:T |a1:T) = log

∫ T∏
t=1

U(xt|st)T (st|at−1, st−1)ds1:T (3.4)

We can introduce the belief distribution q(z1:T |x1:T ,a1:T−1) =
∏T

t=1 q(zt|xt, zt−1,at−1), which
uses zt as an approximation for a sufficient statistic for the history till time t. With this latent
belief distribution, we can construct the evidence lowerbound (ELBO) for the trajectory
likelihood as [131, 132]:

logP (x1:T |a1:T) ≥ Eq(z1:T |x1:T ,a1:T−1)

[
log

T∏
t=1

U(xt|zt)
T (zt|at−1, zt−1)

q(zt|xt, zt−1,at−1)

]
.

After simplification of right hand side on the above bound, we can optimize the following
quantity as a lower bound for the log likelihood:

max
θ

Eqθ
[T∑
t=1

logDθ(xt|zt)︸ ︷︷ ︸
reconstruction

−DKL(qθ(zt|xt, zt−1,at−1)||Tθ(zt|zt−1,at−1))︸ ︷︷ ︸
forward model

]
. (3.5)

The first term is a reconstruction term, which requires a decoder Dθ to be able to reconstruct
the image given the latent state. This encourages the latent state to have sufficient information
to be able to perform this reconstruction. The second forward model term encourages the

34

Figure 3.5: Images are passed through a convolutional encoder Eθ to form a compact
representation which are then used along with previous state to infer the current state st. We
have used the latent state of the POMDP and our state representation interchangeably for
simplicity. The model is trained by reconstructing the images from the latent states through
the decoder network Dθ. Latent rollouts are carried by choosing a random learned transition
model and rewards are penalized based on ensemble disagreement.

learned latent space model to be consistent with the encoding of the next observation. This
ensures that the learned forward model propagates information forward over time that is
consistent with the belief distribution. At the end of this exercise, we would obtain an
encoder, a forward dynamics model, and a decoder. We will perform offline policy learning
entirely in the latent space. Finally, this policy can be composed with the image encoder
to recover a visuo-motor control policy. We can also learn ensembles of models in the
latent space and use discripancy between the members of the ensemble as a proxy for model
uncertainty and error. A schematic description of the algorithm architecture is provided in
Figure 3.5. In our implementation, for simplicity, we use an additive uncertainty penalty
r̃(s, a) = r(s, a)− λu(s, a) where u(s, a) is the uncertainty detector. This is in contrast to
the threshold penalty used in MOReL, although both lead to similar effects for appropriate
choices of the uncertainty weight and the threshold hyperparameters.

3.8.1 Results

We experimentally evaluate our algorithm LOMPO along the following questions: (1) Can
offline RL reliably scale to realistic robot environments with complex dynamics and interac-
tions? (2) How does LOMPO compare to prior offline model-free RL algorithms and online

35

Figure 3.6: Test environments: DeepMind Control Walker task - the observations are raw
64× 64 images. Robel D’Claw Screw and Adroit Pen tasks observations are raw 128× 128

images and robot proprioception. Sawyer Door open environment - the observation space
is raw 128× 128 images. The observations for the real robot environment are raw 64× 64

images from the overhead camera.

model-based RL algorithms when learning vision-based control tasks from offline data? (3)
How does the quality and size of the dataset affect performance? (4) Can LOMPO be applied
to an offline RL task on a real robot with raw camera image observations? To answer those
three questions, we design a suite of four simulated image-based offline RL problems visualized
in Figure 3.6, as well as a real-world drawer opening task.
Comparisons. We compare our proposed method to both model-free and model-based
learning algorithms. Our first comparison is direct behavior cloning (BC) from raw image
observations, which has proved to be a strong baseline in the past ([133]). We also benchmark
to Conservative Q-Learning ([134]), which is a state of the art offline learning algorithm in
the low-dimensional case ([133]); however, we again train it from raw image observations.
We evaluate an MBPO based model ([88]), which also carries out policy rollouts in latent
space similar to LOMPO, but does not apply an uncertainty penalty. The performance of
this method is indicative of online model-based methods [135]. We also train the Stochastic
Latent Actor Critic (SLAC) model ([136]), a state of the art online learning algorithm from
images, however we train fully online. The goal of this benchmark is to evaluate the need for
representation learning in offline RL.
Results. Results are reported in Table 3.4. We see that LOMPO achieves high-scores across
most high-fidelity simulation environments, using raw observations. Moreover, our proposed
model outperforms other model-based learning algorithms across the board and is the only
model-based learning algorithm that achieves any success on several environments. Comparing
to model-free algorithms, LOMPO still outperforms CQL and behaviour cloning across most
environments, with the exception of learning on the expert dataset on the Door Open task.
This is a well-known phenomenon when learning dynamics models from narrow expert data.
On the other hand, given the thin data distribution and relatively simple dynamics of the
task, direct behavior cloning from images performs well on both the medium-expert and
expert dataset. We hypothesize that LMOPO performs well on the D’Claw and Adroit
expert datasets, as these environments are relatively stationary, as compared to a robot

36

Environment Dataset LOMPO (ours) LMBRL Offline SLAC CQL BC

Walker Walk medium-replay 74.9 44.7 -0.1 14.7 5.3
Walker Walk medium-expert 91.7 76.3 32.8 45.1 15.6
Walker Walk expert 75.8 24.5 11.3 40.3 11.8
D’Claw Screw medium-replay 71.8 72.4 65.9 26.3 11.7
D’Claw Screw medium-expert 100.4 96.2 76.3 30.3 27.6
D’Claw Screw expert 99.2 90.8 63.4 24.2 25.2
Adroit Pen medium-replay 82.8 5.2 5.4 25.8 46.7
Adroit Pen medium-expert 94.6 0.0 -1.7 43.5 41.8
Adroit Pen expert 96.1 0.2 -0.4 51.4 45.4
Door Open medium-expert 95.7 0.0 0.0 0.0 72.2
Door Open expert 0.0 0.0 0.0 0.0 97.4

Table 3.4: Results for the DeepMind Control Walker task, the Robel D’Claw Screw task, Adroit Pen task
and the Sawyer Door Open task. The scores are undiscounted average returns normalized to roughly lie
between 0 and 100, where a score of 0 corresponds to a random policy, and 100 corresponds to an expert.
LOMPO consistently outperforms LMBRL, offline SLAC, CQL, and behavioral cloning in almost all settings.

arm manipulation task, and even actions from a stochastic expert cover a wide range of the
environment dynamics.

3.8.2 Real Robot Experiments

To answer question (4), we deploy LOMPO on a real Franka Emika Panda robot arm.
Task. The environment consists of a Panda arm mounted in front of an Ikea desk cluttered
with random distractor objects. The robot arm is initialized randomly above the desk and
the drawer is initialized randomly in a open position. The goal of the robot is to navigate to
the handle, hook it, and close the drawer. Observations are raw RGB images from a single
overhead camera. The complete setup is shown in the rightmost picture in Figure 3.6.
Dataset. We use a pre-existing dataset of 1000 trajectories that was collected using a
semi-supervised batch exploration algorithm [137]. A small balanced dataset of 200 images
(0.2% of the full dataset) is manually labeled with whether the drawer is open or closed.
Following the set up by [137], we use this dataset to train a classifier to predict whether the
drawer is open or closed. We use the classifier probability as a reward for RL, which leads to
a sparse, noisy, and unstable reward signal, which is reflective of one challenge of real-world
RL. Since the dataset was collected and labeled in the context of a different paper [137], this
experiment evaluates the ability to reuse existing offline datasets, which further exemplifies
real-world problems.
Comparisons. We compare LOMPO, LMBRL, Offline SLAC, and visual foresight [138]
using an SV2P model [139] and a CEM planner. As CQL did not achieve competitive
performance on the simulated environments, we did not deploy it on the real robot. Moreover
the offline dataset has high variance and consists of mostly non-task centric exploration,
which is not suitable for imitation; hence we also did not evaluate behavioral cloning.

37

Table 3.5: Results for the
Franka desk drawer-closing task.

Method Success

LOMPO (ours) 76.0%
LMBRL 0.0%
Offline SLAC 0.0%
Visual Foresight 0.0%

Results. We carry out 25 evaluation rollouts on the real
robot and summarize results in Table 3.5. Overall, 24/25 of
the LOMPO agent rollouts successfully navigate to the drawer
handle, hook it, and push the drawer in; however the agent fully
closes the drawer in only 19 of the rollouts for a final success
rate of 76%. We hypothesize that the agent does not always
close the door as the classifier reward incorrectly predicts the
drawer as closed when the drawer is slightly open. In contrast,
the LMBRL, Offline SLAC, and visual foresight agents are
unable to successfully navigate to the correct handle location, hence achieving a success rate
of 0%. These experiments suggest that LOMPO’s uncertainty estimation and pessimism
are critical for good offline RL performance. Finally, we note that [137] evaluate visual
foresight in the same environment but on an easier version of this task, where the robot arm
is initialized near the drawer handle. In this shorter-horizon problem, visual foresight achieves
a success rate of 65% (Figure 8 of [137]), which is still lower than LOMPO’s success rate in
the more difficult setting. Hence, this suggests that LOMPO is better at solving problems
with longer time horizons by incorporating pessimism and a learned value function.

3.9 Chapter Summary

We introduced MOReL, a new model-based framework for offline RL. MOReL incorporates
both generalization and pessimism (or conservatism). This enables MOReL to perform policy
improvement in known states that may not directly occur in the static offline dataset, but
can nevertheless be predicted using the dataset by leveraging the power of generalization. At
the same time, due to the use of pessimism, MOReL ensures that the agent does not drift to
unknown states where the agent cannot predict accurately using the static dataset. We also
presented LOMPO, an extension of MOReL to image spaces through the use of varaitional
dynamics models that support a compact latent state representation.

Theoretically, we obtain bounds on the suboptimality of MOReL which improve over those
in prior work. We further showed that this suboptimality bound cannot be improved upon
by any offline RL algorithm in the worst case. Experimentally, we evaluated MOReL in the
standard continuous control benchmarks in OpenAI gym and showed that it achieves state of
the art results. The modular structure of MOReL comprising of model learning, uncertainty
estimation, and model-based planning allows the use of a variety of approaches such as multi-
step prediction for model learning, abstention for uncertainty estimation, or model-predictive
control for action selection. In future work, we hope to explore these directions.

38

Chapter 4

A GAME THEORETIC FRAMEWORK FOR MODEL-BASED RL

4.1 Introduction

In the previous chapters, we introduced broader notions of generalization and associated
abstractions applicable for simulation to reality transfer and offline RL. In this chapter, we
study the traditional paradigm of online or interactive RL, where the agent can repeatedly
interact with the environment and use this feedback for improving the policy. In particular,
we study RL through the lens of model-based RL (MBRL) methods. Surprisingly, we find
that broader notions of generalization and abstractions to deal with non-stationarity are
required even in this classical paradigm. This is due to the inherent non-stationary nature of
RL, where the induced distributions of the policy change as the agent is learning. Despite
the recent surge of interest in MBRL, a clear algorithmic framework to understand MBRL
and unify insights from recent works has been lacking. To bridge this gap, and to facilitate
the design of stable and efficient algorithms, in this chapter, we develop a new framework
that casts MBRL as a two-player game.

Classical frameworks for MBRL, adaptive control [140], and dynamic programming [141],
are often confined to simple linear models or tabular representations. They also rely on
building global models through ideas like persistent excitation [142] or tabular generative
models [143]. Such settings and assumptions are often limiting for modern applications. To
obtain a globally accurate model, we need the ability to collect data from all parts of the
state space [144], which is often impossible. Furthermore, learning globally accurate models
may be unnecessary, unsafe, and inefficient. For example, to make an autonomous car drive
on the road, we should not require accurate models in situations where it tumbles and crashes
in different ways. This motivates a class of incremental methods for MBRL that interleave
policy and model learning to gradually construct and refine models in the task-relevant parts
of the state space. This is in sharp contrast to a two-stage approach of first building a model
of the world, and subsequently planning in it.

A unifying framework for incremental MBRL can connect insights from different approaches
and help simplify the algorithm design process from the lens of abstraction. As an example,
distribution or domain shift is known to be a major challenge for incremental MBRL. When
improving the policy using the learned model, the policy will attempt to shift the distribution
over visited states. The learned model may be inaccurate for this modified distribution,
resulting in a greatly biased policy update. A variety of approaches have been developed
to mitigate this issue. One class of approaches [145, 146, 55], inspired by trust region

39

methods, make conservative changes to the policy to constrain the distribution between
successive iterates. In sharp contrast, an alternate set of approaches do not constrain the
policy updates in any way, but instead rely on data aggregation to mitigate distribution
shift [50, 147, 148]. Our game-theoretic framework for MBRL reveals that these two seemingly
disparate approaches are essentially dual approaches to solve the same game.

4.1.1 Highlights and contributions of this chapter

1. We develop a novel framework that casts MBRL as a game between: (a) a policy player,
which maximizes rewards in the learned model; and (b) a model player, which minimizes
prediction error of data collected by policy player. Theoretically, we establish that at
equilibrium, the policy is near-optimal for the environment.

2. Developing learning algorithms for general continuous games is well known to be challenging.
To develop stable and convergent algorithms, we setup a Stackelberg game [149] between the
two players, which can be solved efficiently through (approximate) bi-level optimization.

3. Stackelberg games are asymmetric games where players make decisions in a pre-specified
order. The leader plays first and subsequently the follower. Due to the asymmetric nature,
the MBRL game can take two forms depending on choice of leader player. This gives rise
to two natural families of algorithms that have complementary strengths. Together, they
unify and generalize many prior MBRL algorithms.

4. Experimentally, we show that our algorithms outperform prior model-based and model-
free algorithms in sample efficiency; match the asymptotic performance of model-free
policy gradient algorithms; and scale gracefully to high-dimensional tasks like dexterous
manipulation.

4.2 Background and Notations

We treat the environment as an infinite horizon MDP characterized by: M = {S,A,R, P, γ, ρ}.
Per usual notation, S ⊆ Rn and A ⊆ Rm represent the continuous state and action spaces.
The transition dynamics is described by s′ ∼ P (·|s, a). R : S → [0, Rmax] , γ ∈ [0, 1), and ρ
represents the reward, discount, and initial state distribution respectively. Policy is a mapping
from states to a probability distribution over actions, i.e. π : S → P (A), and in practice we
typically consider parameterized policies. The goal is to optimize the objective:

max
π

J(π,M) := EM ,π

[
∞∑
t=0

γtR(st)

]
(4.1)

Model-free methods solve this optimization by directly estimating a gradient using collected
samples or through value functions. Model-based methods, in contrast, construct an explicit
world model to aid policy optimization.

40

4.2.1 Model-Based Reinforcement Learning

We represent the world model with another tuple: M̂ = {S,A,R, P̂ , γ, ρ}. The model has
the same state-action space, reward function, discount, and initial state distribution. We
parameterize the transition dynamics of the model P̂ (as a neural network) and learn the
parameters so that it approximates the environment transition dynamics, i.e. P̂ ≈ P . For
simplicity, we assume that the reward function and initial state distribution are known. This
is a benign assumption for many applications in control, robotics, and operations research.
If required, these quantities can also be learned from data, and are typically easier to learn
than P̂ . Enormous quantities of experience can be cheaply generated by simulating the
model, without interacting with the world, and can be used for policy optimization. Thus,
model-based methods tend to be sample efficient.

Idealized Global Model Setting To motivate challenges in MBRL, we first consider the
idealized setting of an approximate global model. This corresponds to the case where M̂ is
sufficiently expressive and approximates M everywhere. Lemma 2 relates the performance of
a policy in the model and environment.

Lemma 2. (Simulation Lemma) Suppose M̂ is such that DTV

(
P (·|s, a), P̂ (·|s, a)

)
≤ εM ,

∀(s, a). Then, for any policy π, we have∣∣∣J(π,M)− J(π,M̂)
∣∣∣ ≤ O

(
εM

(1− γ)2

)
∀π. (4.2)

The proof is provided in the appendix. Since Lemma 2 provides a uniform bound applicable
to all policies, we can expect good performance in the environment by optimizing the policy
in the model, i.e. maxπ J(π,M̂).

Beyond global models A global modeling approach as above is often impractical. To
obtain a globally accurate model, we need the ability to collect data from all parts of the
state space [78, 150], which can be difficult. More importantly, learning globally accurate
models may be unnecessary, unsafe, and inefficient. For example, to make a robot walk, we
should not require accurate models in situations where it falls and crashes in different ways.
This motivates the need for incremental MBRL, where models are gradually constructed and
refined in the task-relevant parts of the state space. To formalize this intuition, we consider
the below notion of model quality.

Definition 4. (Model approximation loss) Given M̂ and distribution µ(s, a), the model
approximation loss is

L(M̂ , µ) = E(s,a)∼µ

[
DKL

(
P (·|s, a), P̂ (·|s, a)

)]
. (4.3)

41

We use DKL to refer to the KL divergence which can be optimized using samples fromM ,
and is closely related to DTV through Pinsker’s inequality. In the case of isotropic Gaussian
distributions, as typically considered in continuous control applications, DKL reduces to the
familiar `2 loss. Importantly, the loss is intimately tied to the sampling distribution µ. In
general, models that are accurate in some parts of the state space need not generalize/transfer
to other parts. As a result, a more conservative policy learning procedure is required, in
contrast to the global model case.

4.3 Model Based RL as a Two Player Game

In order to capture the interactions between model and policy learning, we formulate MBRL
as the following two-player general sum game (ref. as MBRL game)

policy−player︷ ︸︸ ︷
max
π

J(π,M̂) ,

model−player︷ ︸︸ ︷
min
M̂

L(M̂ , µπM) (4.4)

We use µπM = 1
T

∑T
t=0 P (st = s, at = a) to denote the average state visitation distribution.

The policy player maximizes performance in the learned model, while the model player
minimizes prediction error under policy player’s induced state distribution. This is a game
since the objective of each player depends on the parameters of both players.

The above formulation separates MBRL into the constituent components of policy learning
(planning) and generative model learning. At the same time, it exposes that the two
components are closely intertwined and must be considered together in order to succeed
in MBRL. We discuss algorithms for solving the game in Section 4.4, and first focus on
the equilibrium properties of the MBRL game. Our results establish that at (approximate)
Nash equilibrium of the MBRL game: (1) the model can accurately simulate and predict the
performance of the policy; (2) the policy is near-optimal.

Theorem 2. (Global perf. of equilibrium pair; informal) Suppose we have a pair of policy
and model, (π,M̂), such that simultaneously

L(M̂ , µπM) ≤ εM and J(π,M̂) ≥ J(π′,M̂)− επ ∀π′.

For an optimal policy π∗, we have

J(π∗,M)− J(π,M) ≤

O

(
επ +

√
εM

(1− γ)2
+

1

1− γ
DTV

(
µπ
∗

M , µ
π∗

M̂

))
.

(4.5)

Proof. A more formal version of the theorem and proof is provided in appendix C.1.

42

Remarks: We now make some remarks about the Theorem 2 and its implications.

1. The first two terms are related to sub-optimality in policy optimization and model learning,
and can be made small with more compute and data, assuming sufficient capacity.

2. There may be multiple Nash equilibrium for the MBRL game, and the third domain
adaptation or transfer learning term in the bound captures the quality of an equilibrium.
It captures the idea that model is trained under distribution of π, i.e. µπM , but evaluated
under the distribution of π∗, i.e. µπ∗M . If the model can accurately simulate π∗, we can
expect to find it in the planning phase, since it would obtain high rewards. This domain
adaptation term is a consequence of the exploration problem, and is unavoidable if we
desire globally optimal policies. Indeed, even purely model-free algorithms suffer from an
analogous divergence term [55, 87]. However, Theorem 2 also applies to locally optimal
policies (see appendix C.1) for which we may expect better model transfer.

3. The domain adaptation term can be minimized by considering a wide initial state distri-
bution [55, 12]. This ensures the learned model is more broadly accurate. However, in
some applications, the initial state distribution may not be under our control. In such a
case, we may draw upon advances in domain adaptation [151, 152] to learn state-action
representations better suited for transfer across different policies.

4.4 Algorithms

So far, we have established how MBRL can be viewed as a game that couples policy and model
learning. We now turn to developing algorithms for solving the game. Unlike common deep
learning settings (e.g. supervised learning), there are no standard workhorses for continuous
games. Direct extensions of optimization workhorses (e.g. SGD) are unstable for games due
to non-stationarity [153, 154]. We first review some of these extensions before presenting our
final algorithms.

4.4.1 Independent simultaneous learners

We first consider a class of algorithms where each player individually optimize their own ob-
jectives using gradient descent. Thus, each player treats the setting as stochastic optimization
unaware of potential drifts in their objectives due to the two-player nature. These algorithms
are sometimes called independent learners, simultaneous learners, or naive learners [153, 155].

Gradient Descent Ascent (GDA) In GDA, each player performs an improvement step
holding the parameters of the other player fixed. The resulting updates are given below.

πk+1 = πk + αk∇πJ(πk,M̂k) (4.6)

M̂k+1 = M̂k − βk∇M̂L(M̂k, µ
πk
M) (4.7)

43

Both the players update their parameters simultaneously from iteration k to k + 1. For
simplicity, we consider standard gradient descent, which can be equivalently replaced with
momentum, Adam, natural gradient etc. Variants of GDA have been used to solve min-max
games arising in deep learning such as GANs. However, for certain problems, it can exhibit
poor convergence and require very small learning rates [156] or domain-specific heuristics.
Furthermore, it makes sub-optimal use of data, since it is desirable to take multiple policy
improvement steps to fully reap the benefits of model learning.

Best Response (BR) The BR algorithm aims to mititage the above drawback, where
each player computes the best response while fixing the parameters of other players. The
best response can be approximated in practice using a large number of gradient steps.

πk+1 = arg max
π

J(π,M̂k) (4.8)

M̂k+1 = arg min
M̂

L(M̂ , µπkM) (4.9)

Again, both players simultaneously update their parameters. It is known from a large body
of work in online learning that aggressive changes can destabilize learning in non-stationary
settings [157]. Large changes to the policy can dramatically alter the sampling distribution,
which renders the model incompetent. Similarly, large changes in the model can bias policy
learning. In Section 4.5 we experimentally study the performance of GDA and BR on a suite
of control tasks and verify that they inefficient (slow) or unstable.

4.4.2 Stackelberg formulation and algorithms

To achieve stable and sample efficient learning, we require algorithms that take the game
structure into account. While good workhorses are lacking for general games, Stackelberg
games [149] are an exception. They are asymmetric games where we impose a specific playing
order and are a generalization of min-max games. We cast the MBRL game in the Stackelberg
form, and derive gradient based algorithms to solve the resulting game.

First, we briefly review continuous Stackelberg games. Consider a two player game with
players A and B. Let θA,θB be their parameters, and LA(θA,θB), LB(θA,θB) be their losses.
Each player would like their losses minimized. With player A as the leader, the Stackelberg
game corresponds to the following nested optimization:

min
θA
LA
(
θA,θ

∗
B(θA)

)
subject to θ∗B(θA) = arg min

θ̃
LB(θA, θ̃)

(4.10)

Since the follower chooses the best response, the follower’s parameters are implicitly a function
of the leader’s parameters. The leader is aware of this, and can utilize this information when
updating its parameters. The Stackelberg formulation has a number of appealing properties.

44

• Algorithm design based on optimization: From the leader’s viewpoint, the Stackel-
berg formulation transforms a game with complex interactions into a more familiar albeit
complex bi-level optimization, for which we have gradient based workhorses [158].

• Notion of stability and progress: In general games, there exists no single function that
can be used to check if an iterative algorithm makes progress towards the equilibrium. This
makes algorithm design and diagnosis difficult. By reducing the game to an optimization,
the leader’s loss LA(θA,θB) can be used to track progress.
For simplicity of exposition, we assume that the best-response is unique for the follower.

We later remark on the possibility of multiple minimizers. To solve the nested optimization,
it suffices to focus on θA since the follower parameters θ∗B(θA) are implicitly a function of
θA. We can iteratively optimize θA as: θA ← θA − αA (dLA(θA,θ

∗
B(θA))/dθA), where the

gradient is described in Eq. 4.11. The key to solving a Stackelberg game is to make the
follower learn very quickly to approximate the best response, while the leader learns slowly.

dLA (θA,θ
∗
B(θA))

dθA
=

dθ∗B
dθA

∂LA(θA,θB)

∂θB

∣∣∣∣
θB=θ∗B

+
∂LA(θA,θB)

∂θA

∣∣∣∣
θB=θ∗B

(4.11)

The implicit Jacobian term (dθ∗B/dθA) can be obtained using the implicit function theo-
rem [159, 17]. Thus, in principle, we can compute the gradient with respect to the leader
parameters and solve the nested optimization (to at least a local minimizer). To develop a
practical algorithm based on these ideas, we use a few relaxations and approximations. First,
we approximate the best response with multiple steps of an iterative optimization algorithm.
Secondly, we drop the implicit Jacobian term and use a “first-order” approximation of the
gradient. Such an approximation has proven effective in applications like meta-learning [160],
GANs [161, 162], and multiple timescale actor-critic methods [163]. Finally, since the Stack-
elberg game is asymmetric, we can cast the MBRL game in two forms based on which player
we choose as the leader.

Policy As Leader (PAL): Choosing the policy player as leader results in the following
optimization:

max
π

{
J(π,M̂π) s.t. M̂π ∈ arg min

M̂

`(M̂ , µπM)

}
.

We solve this nested optimization using the first order gradient approximation, resulting in
updates:

M̂k+1 ≈ arg min
M̂

L(M̂ , µπkM) (4.12)

πk+1 = πk + αk∇πJ(π,M̂k+1) (4.13)

45

We first aggressively improve the model to minimize the loss under current visitation distri-
bution. Subsequently we take a conservative policy. The algorithmic template is described
further in Algorithm 3. Note that the PAL updates are different from GDA even if a single
gradient step is used to approximate the arg min. In PAL, the model is first updated using
the current visitation distribution from M̂k to M̂k+1. The policy subsequently uses M̂k+1 for
improvement. In contrast, GDA uses M̂k for improving the policy. Finally, suppose we find
an approximate solution to the PAL optimization such that J(π,M̂π) ≥ supπ̃ J(π̃,M̂ π̃)− επ.
Since the model is optimal for the policy by constriction, we inherit the guarantees of
Theorem 2.

Algorithm 3 Policy as Leader (PAL) meta-algorithm

1: Initialize: policy π0, model M̂0, data buffer D = {}
2: for k = 0, 1, 2, . . . forever do
3: Collect data Dk by executing πk in the environment
4: Build local (policy-specific) dynamics model: M̂k+1 = arg min L(M̂ ,Dk)
5: Improve policy: πk+1 = πk +α∇πJ(πk,M̂k+1) with a conservative algorithm like NPG

or TRPO.
6: end for

Model as Leader (MAL): Conversely, choosing model as the leader results in the opti-
mization

min
M̂

{
L(M̂ , µ

π
M̂
M) s.t. πM̂ ∈ arg max

π
J(π,M̂)

}
. (4.14)

Similar to PAL, using first order approximation to the bi-level gradient results in:

πk+1 ≈ arg max
π

J(π,M̂k) (4.15)

M̂k+1 = M̂k − βk∇M̂L(M̂ , µ
πk+1

M) (4.16)

We first optimize a policy for the current model. Subsequently, we conservatively improve
the model using the data collected with the optimized policy. In practice, instead of a single
conservative model improvement step, we aggregate all the historical data and perform a few
epochs of training. This has an effect similar to conservative model improvement in a follow
the regularized leader interpretation [164, 50, 165]. The algorithmic template is described in
Algorithm 4. Similar to the PAL case, we again inherit the guarantees from Theorem 2.

On distributionally robust models and policies Finally, we illustrate how the Stackel-
berg framework is consistent with commonly used robustification heuristics. We now consider

46

Algorithm 4 Model as Leader (MAL) meta-algorithm

1: Initialize: policy π0, model M̂0, data buffer D = {}
2: for k = 0, 1, 2, . . . forever do
3: Optimize πk+1 = arg maxπ J(π,M̂k) using any algorithm (RL, MPC, planning etc.)
4: Collect environment data Dk+1 using πk+1

5: Improve model M̂k+1 = M̂k − β∇M̂L(M̂ ,Dk+1) using any conservative algorithm like
mirror descent, data aggregation etc.

6: end for

the case where there could be multiple best responses to the leader eq. 4.10. For instance,
in PAL, there could be multiple models that achieve low error for the policy. Similarly, in
MAL, there could be multiple policies that achieve high rewards for the specified model. In
such cases, the standard notion of Stackelberg equilibrium is to optimize under the worst
case realization [154], which results in:

min
θA

max
θB∈R(θA)

LA(θA,θB), where

R(θA)
def
=
{
θ̃ | LB(θA, θ̃) ≤ LB(θA,θB) ∀θB

}
.

(4.17)

In PAL, model ensemble approaches correspond to approximating the best response set with a
finite collection (ensemble) of models. Algorithms inspired by robust or risk-averse control [39,
27, 13] explicitly improve against the adversarial choice in the ensemble, consistent with the
Stackelberg setting. Similarly, in the MAL formulation, entropy regularization [166, 167] and
disagreement based reward bonuses [150, 168] lead to adversarial best response by encouraging
the policy to visit parts of the state space where the model is likely to be inaccurate. Our
Stackelberg formulation provides a principled foundation for these important components,
which have thus far been viewed as heuristics.

4.5 Experiments

In our experiemental evaluation, we aim to primarily answer the following questions:

1. Do independent learning algorithms (GDA and BR) learn slowly or suffer from instabilities?

2. Do the Stackelberg-style algorithms of PAL and MAL enable stable, monotonic, and
sample efficient learning?

3. Do MAL and PAL exhibit different learning characteristics and strengths? Can we
characterize the situations where one is more preferable than the other?

47

Figure 4.1: (a) Reacher task with a 7DOF arm. (b) In-hand manipulation task with a 24DOF
dexterous hand. (c) DClaw-Turn task with a 3 fingered “claw”. (d) DKitty-Orient task with
a quadrupedal robot. In all the tasks, the desired goal configurations are randomized every
episode, which forces the RL agent to learn generalizable policies. We measure and use
success rate for our experimental evaluations.

Task Suite We study the behavior of algorithms on a suite of continuous control tasks
consisting of: DClaw-Turn, DKitty-Orient, 7DOF-Reacher, and InHand-Pen. The tasks are
illustrated in Figure 4.1 and further details are provided in Appendix C.2.1. The DClaw
and DKitty tasks use physically accurate models of robots [169, 65]. The Reacher task is
a representative whole arm manipulation task, while the in-hand dexterous manipulation
task [170] serves as a representative high-dimensional control task. In addition, we also
present results with our algorithms in the OpenAI gym tasks in Appendix C.2.2.
Algorithm Details For all the algorithms of interest (GDA, BR, PAL, MAL), we represent
the policy as well as the dynamics model with fully connected neural networks. We instantiate
all of these algorithm families with model-based natural policy gradient. Details about the
implementation are provided in Appendix C.2. We use ensembles of dynamics models and
entropy regularization to encourage robustness.
Comparison of learning algorithms We first study the performance of Stackelberg-style
algorithms (PAL, MAL) and compare against the performance of independent algorithms
(GDA and BR). Our results, summarized in Figure 4.2, suggest that PAL and MAL can
learn all the tasks efficiently. We observe near monotonic improvement, suggesting that the
Stackelberg formulation enables stable learning. We also observe that PAL learns faster than
MAL for the tasks we study. While GDA eventually achieves near-100% success rate, it leads
to considerably slower learning. As outlined in Section 4.4, this is likely due to conservative
nature of updates for both the policy and the model. Furthermore, the performance fluctuates
rapidly during course of learning, since it does not correspond to stable optimization of any
objective. Finally, we observe that BR is unable to make consistent progress. As suggested
earlier in Section 4.4, BR makes rapid changes to both model and policy which exacerbates
the challenge of distribution mismatch.

48

0 2 4 6 8
Samples (×103)

0

20

40

60

80

100
Su
cc
es
s

(%
)

Reacher (7DOF)

0 100 200 300 400
Samples (×103)

0

20

40

60

80

100

Su
cc
es
s

(%
)

Dexterous In-Hand Pen Manipulation

0 10 20 30 40 50 60
Samples (×103)

0

20

40

60

80

100

Su
cc
es
s

(%
)

DClaw Turn

PAL (Ours) MAL (Ours) GDA BR SAC

0 10 20 30 40 50 60
Samples (×103)

0

20

40

60

80

100

Su
cc
es
s

(%
)

DKitty Orient

Figure 4.2: Comparison of the learning algorithms. We report results based on 5 random
seeds, with solid lines representing the average performance, and shaded regions indicate
standard deviation across seeds. PAL and MAL exhibit stable and sample efficient learning.
GDA learns very slowly due to sub-optimal use of data. BR does not lead to stable learning
due to aggressive changes to both policy and model. For the ROBEL tasks, as a point of
comparison, we also include results of SAC a state of the art model-free algorithm.

As a point of comparison, we also plot results of SAC [166], a leading model-free algorithm
for the ROBEL tasks (results taken from Ahn et al. [65]). Although SAC is able to solve these
tasks, its sample efficiency is comparable to GDA, and substantially slower than PAL and
MAL. To compare against other model-based algorithms, we turn to published results from
prior work on OpenAI gym tasks. In Figure 4.3, we show that PAL and MAL significantly
outperforms prior algorithms. In particular, PAL and MAL are 10 times as efficient as other
model-based and model-free methods. PAL is also twice as efficient as MBPO [88], a state of
the art hybrid model-based and model-free algorithm. Further details about this comparison
are provided in Appendix C.2.2.

Overall our results indicate that PAL and MAL: (a) are substantially more sample efficient
than prior model-based and model-free algorithms; (b) achieve the asymptotic performance of
their model-free counterparts; (c) can scale to high-dimensional tasks with complex dynamics
like dexterous manipulation; (d) can scale to tasks requiring extended rollout horizons (e.g.
the OpenAI gym tasks).

49

0 1 2 3 4 5
Samples (×103)

0

200

400

600

800

1000

Re
tu

rn

InvertedPendulum

0 20 40 60 80 100
Samples (×103)

0

1000

2000

3000

Hopper

PAL-NPG (Ours) MAL-NPG (Ours) MBPO PETS STEVE SLBO SAC

0 50 100 150 200 250 300
Samples (×103)

0

1000

2000

3000

4000

5000

6000 Ant

Figure 4.3: Comparison of results on the OpenAI gym benchmark tasks. Results for the
baselines are reproduced from [88]. Solid lines are the average performance curves over 5
random seeds, while shaded region represents the standard deviation over these 5 runs. We
observe that PAL and MAL show near-monotonic improvement, and substantially outperform
the baselines.

Choosing between PAL and MAL Finally, we turn to studying relative strengths of PAL
and MAL. For this, we consider two variations of the 7DOF reacher task (from Figure 4.1)
corresponding to environment perturbations at an intermediate point of training. In the first

0 5 10 15 20
Samples (×103)

0.1

0.2

0.3

0.4

0.5

0.6

Di
st
an
ce
 E
rr
or

Dynamics Adaptation

0 5 10 15
Samples (×103)

0.1

0.2

0.3

0.4

0.5

0.6

Di
st
an
ce
 E
rr
or

Goal Adaptation

PAL MAL

Figure 4.4: PAL vs MAL in non-stationary learning environments. Y axis is the distance
between end effector and goal, averaged over the trajectory (lower is better). The left plot
corresponds to the case where the dynamics of M is changed after 104 samples, while the
right plot corresponds to the case where we change the goal distribution after 8× 103 samples.
We observe that PAL recovers quickly from dynamics perturbations, while MAL recovers
quickly from goal perturbations.

50

case, we perturb the dynamics by changing the length of the forearm. In the second case,
halfway through the training, we change the goal distribution to a different region of 3D
space. Training curves are presented in Figure 4.4. Note that there is a performance drop at
the time of introducing the perturbation.

For the first case of dynamics perturbation, we observe that PAL recovers faster. Since
PAL learns the model aggressively using recent data, it can forget old inconsistent data
and improve the policy using an accurate model. In contrast, MAL adapts the model
conservatively, taking longer to forget old inconsistent data, ultimately biasing and slowing
the policy learning. In the second experiment, the dynamics is stationary but the goal
distribution changes midway. Note that the policy does not generalize zero-shot to the new
goal distribution, and requires additional learning or fine-tuning. Since MAL learns a more
broadly accurate model, it quickly adapts to the new goal distribution. In contrast, PAL
conservatively changes the policy and takes longer to adapt to the new goal distribution.

Thus, in summary, we find that PAL is better suited for situations where the dynamics of
the world can drift over time. In contrast, MAL is better suited for situations where the task
or goal distribution can change over time, and related settings like multi-task learning.

4.6 Related Work

MBRL and the closely related fields of adaptive control and system identification have a
long and rich history (see Åström and Wittenmark [140], Ljung [171] for overview). Early
works in MBRL primarily focused on tabular reinforcement learning in a known generative
model setting [143, 172]. However, this setting assumes access to a highly exploratory policy
to collect data, which is often not available in practice. Subsequent works like E3 [111] and
R-MAX [112] attempt to lift this limitation, but rely heavily on tabular representations
which are inadequate for modern applications like robotics. Coupled with advances in deep
learning, there has been a surge of interest in incremental MBRL algorithms with rich function
approximation. They generally fall into two sets of approaches, as we outline below.

The first set of approaches are largely inspired by trust region methods, and are similar
to the PAL family from our work. A highly accurate “local” model is constructed around
the visitation distribution of the current policy, which is subsequently used to conservatively
improve the policy. The trust region is intended to ensure that the model is accurate for all
policies within it, thereby enabling monotonic performance improvement. GPS [145, 173],
DPI [146], and related approaches [174] learn a time varying linear model and perform a
KL-constrained policy improvement step. Such a model representation is convenient for
an iLQG based policy update [84], but might be restrictive for complex dynamics beyond
trajectory-centric RL. To remove these limitations, recent works have started to consider
neural networks to represent both policy and the dynamics model. However, somewhat
surprisingly, a clean version from the PAL family has not been studied with neural network

51

models. The motivations presented by Xu et al. [175] and Kurutach et al. [89] resemble PAL,
however their practical implementations do not strongly enforce the conservative nature of
the policy update.

An alternate set of MBRL approaches take a view similar to MAL. Models are updated
conservatively through data aggregation, while policies are aggressively optimized. Ross and
Bagnell [50] explicitly studied the role of data aggregation in MBRL. They presented an ag-
nostic online learning view of MBRL and showed that data aggregation can lead to a no-regret
algorithm for learning the model, even with aggressive policy optimization. Subsequent works
have used data augmentation and proposed additional components to enhance efficiency and
stability, such as the use of model predictive control [120, 127, 148], uncertainty quantification
through Bayesian models [176], and ensembles of dynamics models [13, 147, 148]. We refer
readers to Wang et al. [177] for overview of recent MBRL advances.

While specific instances of PAL and MAL have been studied in the past, an overarching
framework around them has been lacking. Our descriptions of the PAL and MAL families
generalize and unify core insights from prior work and simplify them from the lens of
abstraction. Furthermore, the game theoretic formulation enables us to form a connection
between the PAL and MAL frameworks. We also note that the PAL and MAL families
have similarities to multiple timescale algorithms [163, 178, 179] studied for actor-critic
temporal difference learning. These ideas have also been extended to study min-max games
like GANs [161]. However, they have not been extended to study model-based RL.

We presented a model-based setting where the model is used to directly improve the
policy through rollout based optimization. However, models can be utilized in other ways
too. Dyna [180] and MBPO [88] use a learned model to provide additional learning targets
for an actor-critic algorithm through short-horizon synthetic trajectories. MBVE [181],
STEVE [182], and doubly-robust methods [183, 184, 185] use model-based rollouts to obtain
more favorable bias-variance trade-offs for off-policy evaluation. Some of these works have
noted that long horizon rollouts can exacerbate model bias. However, in our experiments,
we were able to successfully perform rollouts of hundreds of steps. This is likely due to our
practical implementation closely following the game theoretic algorithms designed explicitly
to mitigate distribution shift and enable effective simulation. It is straightforward to extend
PAL and MAL to a hybrid model-based and model-free algorithm, which is likely to provide
further performance gains. Similarly, approaches that bootstrap from the model’s predictions
can improve multi-step simulation [117, 118]. We leave exploration of these directions for
future work.

4.7 Summary and Conclusion

In this chapter, we presented a new framework for MBRL that casts it as a game between a
policy player and a model player. We established that at equilibrium: (1) the model accurately

52

simulates the policy and predicts its performance; (2) the policy is near-optimal. We derived
sub-optimality bounds and made a connection to domain adaptation to characterize the
equilibrium quality.

In order to solve the MBRL game, we constructed the Stackelberg version of the game.
This has the advantage of: (1) effective gradient based workhorses to solve the Stackelberg
optimization problem; (2) an effective objective function to track learning progress towards
equilibrium. General continuous games possess neither of these characteristics. The Stackel-
berg game can take two forms based on which player we choose as the leader, resulting in
two natural algorithm families, which we named PAL and MAL. Together they encompass,
generalize, and unify a large collection of prior MBRL works. This greatly simplifies MBRL
and particularly algorithm design from the lens of abstraction.

We developed practical versions of PAL and MAL using model-based natural policy
gradient. We demonstrated stable and sample efficient learning on a suite of control tasks,
including state of the art results on OpenAI gym benchmarks. These results suggest that our
practical variants of PAL and MAL:

• are more sample efficient compared to prior model-based and model-free algorithms,

• can achieve the same asymptotic performance as model-free counterparts,

• can scale to high-dimensional tasks with complex dynamics like dexterous manipulation,

• can scale to tasks requiring long horizon rollouts (e.g. OpenAI gym tasks which have a
1000 timestep horizon).

More broadly, our work adds to a growing body of recent work which suggests that MBRL
can be stable, sample efficient, and more generalizable or adaptable to new tasks and non-
stationary settings. For future work, we hope to study alternate ways to solve the Stackelberg
optimization; such as using the full implicit gradient term and unrolled optimization. Finally,
although we presented our game theoretic framework in the context of MBRL, it is more
broadly applicable for any surrogate based optimization including actor-critic methods. It
would make for interesting future work to study broader extensions and implications.

53

Chapter 5

META LEARNING WITH IMPLICIT GRADIENTS

5.1 Introduction

A core aspect of intelligence is the ability to quickly learn new tasks by drawing upon prior
experience from related tasks. Recent work has studied how meta-learning algorithms [186,
187, 188] can acquire such a capability by learning to efficiently learn a range of tasks, thereby
enabling learning of a new task with as little as a single example [189, 190, 191]. Meta-learning
algorithms can be framed in terms of recurrent [192, 189, 193] or attention-based [190, 194]
models that are trained via a meta-learning objective, to essentially encapsulate the learned
learning procedure in the parameters of a neural network. An alternative formulation is
to frame meta-learning as a bi-level optimization procedure [195, 191], where the “inner”
optimization represents adaptation to a given task, and the “outer” objective is the meta-
training objective. Such a formulation can be used to learn the initial parameters of a model
such that optimizing from this initialization leads to fast adaptation and generalization. In
this work, we focus on this class of optimization-based methods, and in particular the model-
agnostic meta-learning (MAML) formulation [191]. MAML has been shown to be as expressive
as black-box approaches [196], is applicable to a broad range of settings [197, 198, 199, 18],
and recovers a convergent and consistent optimization procedure [200].

Despite its appealing properties, meta-learning an initialization requires backpropagation
through the inner optimization process. As a result, the meta-learning process requires
higher-order derivatives, imposes a non-trivial computational and memory burden, and can
suffer from vanishing gradients. These limitations make it harder to scale optimization-based
meta learning methods to tasks involving medium or large datasets, or those that require
many inner-loop optimization steps. Our goal is to develop an algorithm that addresses these
limitations.

The main contribution of our work is the development of the implicit MAML (iMAML)
algorithm, an approach for optimization-based meta-learning with deep neural networks that
removes the need for differentiating through the optimization path. Our algorithm aims
to learn a set of parameters such that an optimization algorithm that is initialized at and
regularized to this parameter vector leads to good generalization for a variety of learning tasks.
By leveraging the implicit differentiation approach, we derive an analytical expression for the
meta (or outer level) gradient that depends only on the solution to the inner optimization
and not the path taken by the inner optimization algorithm, as depicted in Figure 1. This
decoupling of meta-gradient computation and choice of inner level optimizer has a number of

54

Figure 5.1: To compute the meta-gradient
∑

i
dLi(φi)
dθ

, the MAML algorithm differentiates
through the optimization path, as shown in green, while first-order MAML computes the
meta-gradient by approximating dφi

dθ
as I. Our implicit MAML approach derives an analytic

expression for the exact meta-gradient without differentiating through the optimization path
by estimating local curvature.

appealing properties.
First, the inner optimization path need not be stored nor differentiated through, thereby

making implicit MAML memory efficient and scalable to a large number of inner optimization
steps. Second, implicit MAML is agnostic to the inner optimization method used, as long as
it can find an approximate solution to the inner-level optimization problem. This permits the
use of higher-order methods, and in principle even non-differentiable optimization methods
or components like sample-based optimization, line-search, or those provided by proprietary
software (e.g. Gurobi). Finally, we also provide the first (to our knowledge) non-asymptotic
theoretical analysis of bi-level optimization. We show that an ε–approximate meta-gradient
can be computed via implicit MAML using Õ(log(1/ε)) gradient evaluations and Õ(1) memory,
meaning the memory required does not grow with number of gradient steps.

5.2 Problem Formulation

We first present the meta-learning problem in the context of few-shot supervised learning,
and then generalize the notation to aid the rest of the exposition in the paper.

5.2.1 Review of Few-Shot Supervised Learning and MAML

In few shot learning, we have a collection of meta-training tasks {Ti}Mi=1 drawn from P (T).
Each task Ti is associated with a dataset Di, from which we can sample two disjoint sets:
Dtr
i and Dtest

i . These datasets each consist of K input-output pairs. Let x ∈ X and y ∈ Y
denote inputs and outputs, respectively. The datasets take the form Dtr

i = {(xki ,yki)}Kk=1,
and similarly for Dtest

i . We are interested in learning models of the form hφ(x) : X → Y,
parameterized by φ ∈ Φ ≡ Rd. Performance on a task is specified by a loss function, such as

55

the cross entropy or squared error loss. We will write the loss function in the form L(φ,D),
as a function of a parameter vector and dataset. The goal for task Ti is to learn task-specific
parameters φi using Dtr

i such that we minimize the test loss, L(φi,Dtest
i).

In the general bi-level meta-learning setup, we consider a space of algorithms that compute
task-specific parameters using a set of meta-parameters θ ∈ Θ ≡ Rd and the training dataset
from the task, such that φi = Alg(θ,Dtr

i) for task Ti. The goal of meta-learning is to learn
meta-parameters that produce good task specific parameters after adaptation:

outer−level︷ ︸︸ ︷
θ∗ML := argmin

θ∈Θ
F (θ) , where F (θ) =

1

M

M∑
i=1

L
(inner−level︷ ︸︸ ︷
Alg

(
θ,Dtr

i

)
, Dtest

i

)
. (5.1)

We view this as a bi-level optimization problem since we typically interpret Alg
(
θ,Dtr

i

)
as either explicitly or implicitly solving an underlying optimization problem. At meta-test
(deployment) time, when presented with a dataset Dtr

j corresponding to a new task Tj ∼ P (T),
we can achieve good generalization performance (i.e., low test error) by using the adaptation
procedure with the meta-learned parameters as φj = Alg(θ∗ML,Dtr

j).
In the case of MAML [191], Alg(θ,D) corresponds to one or multiple steps of gradient

descent initialized at θ. For example, if one step of gradient descent is used, we have:

φi ≡ Alg(θ,Dtr
i) = θ − α∇θL(θ,Dtr

i). (inner-level of MAML) (5.2)

Typically, α is a scalar hyperparameter, but can also be a learned vector [201]. Hence, for
MAML, the meta-learned parameter (θ∗ML) has a learned inductive bias that is particularly
well-suited for fine-tuning on tasks from P (T) using K samples. To solve the outer-level
problem with gradient-based methods, we require a way to differentiate through Alg. In the
case of MAML, this corresponds to backpropagating through the dynamics of the gradient
descent learning algorithm.

5.2.2 Proximal Regularization in the Inner Level

To have sufficient learning in the inner level while also avoiding over-fitting, Alg needs to
incorporate some form of regularization. Since MAML uses a small number of gradient steps,
this corresponds to early stopping and can be interpreted as a form of regularization and
Bayesian prior [202]. In cases like ill-conditioned optimization landscapes and medium-shot
learning, we may want to take many gradient steps, which poses two challenges for MAML.
First, we need to store and differentiate through the long optimization path of Alg, which
imposes a considerable computation and memory burden. Second, the dependence of the
model-parameters {φi} on the meta-parameters (θ) shrinks and vanishes as the number of
gradient steps in Alg grows, making meta-learning difficult. To overcome these limitations,
we consider a more explicitly regularized algorithm:

Alg?(θ,Dtr
i) = argmin

φ′∈Φ
L(φ′,Dtr

i) +
λ

2
||φ′ − θ||2. (5.3)

56

The proximal regularization term in Eq. 5.3 encourages φi to remain close to θ, thereby
retaining a strong dependence throughout. The regularization strength (λ) plays a role
similar to the learning rate (α) in MAML, controlling the strength of the prior (θ) relative
to the data (Dtr

T). Like α, the regularization strength λ may also be learned. Furthermore,
both α and λ can be scalars, vectors, or full matrices. For simplicity, we treat λ as a scalar
hyperparameter. In Eq. 5.3, we use Alg? to denote that the optimization problem is solved
exactly. In practice, we use iterative algorithms (denoted by Alg) for finite iterations, which
return approximate minimizers. We explicitly consider the discrepancy between approximate
and exact solutions in our analysis.

5.2.3 The Bi-Level Optimization Problem

For notation convenience, we will sometimes express the dependence on task Ti using a
subscript instead of arguments, e.g. we write:

Li(φ) := L
(
φ, Dtest

i

)
, L̂i(φ) := L

(
φ,Dtr

i

)
, Algi

(
θ
)

:= Alg
(
θ,Dtr

i

)
.

With this notation, the bi-level meta-learning problem can be written more generally as:

θ∗ML = argmin
θ∈Θ

F (θ) :=
1

M

M∑
i=1

Li
(
Alg?i (θ)

)
, and

Alg?i (θ) = argmin
φ′∈Φ

Gi(φ
′,θ) := L̂i(φ′) +

λ

2
||φ′ − θ||2.

(5.4)

5.2.4 Total and Partial Derivatives

We use d to denote the total derivative and ∇ to denote partial derivative. For nested
function of the form Li(φi) where φi = Algi(θ), we have from chain rule

dθLi(Algi(θ)) =
dAlgi(θ)

dθ
∇φLi(φ) |φ=Algi(θ) =

dAlgi(θ)

dθ
∇φLi(Algi(θ))

Note the important distinction between dθLi(Algi(θ)) and ∇φLi(Algi(θ)). The former
passes derivatives through Algi(θ) while the latter does not. ∇φLi(Algi(θ)) is simply the
gradient function, i.e. ∇φLi(φ), evaluated at φ = Algi(θ). Also note that dθLi(Algi(θ))

and ∇φLi(Algi(θ)) are d–dimensional vectors, while dAlgi(θ)
dθ

is a (d× d)–size Jacobian matrix.
Throughout this text, we will also use dθ and d

dθ
interchangeably.

5.3 The Implicit MAML Algorithm

Our aim is to solve the bi-level meta-learning problem in Eq. 5.4 using an iterative gradient
based algorithm of the form θ ← θ − η dθF (θ). Although we derive our method based

57

on standard gradient descent for simplicity, any other optimization method, such as quasi-
Newton or Newton methods, Adam [203], or gradient descent with momentum can also be
used without modification. The gradient descent update be expanded using the chain rule as

θ ← θ − η 1

M

M∑
i=1

dAlg?i (θ)

dθ
∇φLi(Alg?i (θ)). (5.5)

Here, ∇φLi(Alg?i (θ)) is simply ∇φLi(φ) |φ=Alg?i (θ) which can be easily obtained in practice
via automatic differentiation. For this update rule, we must compute dAlg?i (θ)

dθ
, where Alg?i

is implicitly defined as an optimization problem (Eq. 5.4), which presents the primary
challenge. We now present an efficient algorithm (in compute and memory) to compute the
meta-gradient..

5.3.1 Meta-Gradient Computation

If Alg?i (θ) is implemented as an iterative algorithm, such as gradient descent, then one way
to compute dAlg?i (θ)

dθ
is to propagate derivatives through the iterative process, either in forward

mode or reverse mode. However, this has the drawback of depending explicitly on the path of
the optimization, which has to be fully stored in memory, quickly becoming intractable when
the number of gradient steps needed is large. Furthermore, for second order optimization
methods, such as Newton’s method, third derivatives are needed which are difficult to obtain.
Furthermore, this approach becomes impossible when non-differentiable operations, such
as line-searches, are used. However, by recognizing that Alg?i is implicitly defined as the
solution to an optimization problem, we may employ a different strategy that does not need
to consider the path of the optimization but only the final result. This is derived in the
following Lemma.

Lemma 3. (Implicit Jacobian) Consider Alg?i (θ) as defined in Eq. 5.4 for task Ti. Let
φi = Alg?i (θ) be the result of Alg?i (θ). If

(
I + 1

λ
∇2
φL̂i(φi)

)
is invertible, then the derivative

Jacobian is
dAlg?i (θ)

dθ
=

(
I +

1

λ
∇2
φL̂i(φi)

)−1

. (5.6)

Please see appendix for the proof. Note that the derivative (Jacobian) depends only on the
final result of the algorithm, and not the path taken by the algorithm. Thus, in principle any
approach of algorithm can be used to compute Alg?i (θ), thereby decoupling meta-gradient
computation from choice of inner level optimizer.

Practical Algorithm: While Lemma 3 provides an idealized way to compute the Alg?i
Jacobians and thus by extension the meta-gradient, it may be difficult to directly use it in
practice. Two issues are particularly relevant. First, the meta-gradients require computation

58

Algorithm 5 Implicit Model-Agnostic Meta-Learning (iMAML)
1: Require: Distribution over tasks P (T), outer step size η, regularization strength λ,
2: while not converged do
3: Sample mini-batch of tasks {Ti}Bi=1 ∼ P (T)

4: for Each task Ti do
5: Compute task meta-gradient gi = Implicit-Meta-Gradient(Ti,θ, λ)

6: end for
7: Average above gradients to get ∇̂F (θ) = (1/B)

∑B
i=1 gi

8: Update meta-parameters with gradient descent: θ ← θ − η∇̂F (θ) // (or Adam)
9: end while

Algorithm 6 Implicit Meta-Gradient Computation
1: Input: Task Ti, meta-parameters θ, regularization strength λ
2: Hyperparameters: Optimization accuracy thresholds δ and δ′

3: Obtain task parameters φi using iterative optimization solver such that: ‖φi−Alg?i (θ)‖ ≤
δ

4: Compute partial outer-level gradient vi = ∇φLT (φi)

5: Use an iterative solver (e.g. CG) along with reverse mode differentiation (to compute
Hessian vector products) to compute gi such that: ‖gi −

(
I + 1

λ
∇2L̂i(φi)

)−1
vi‖ ≤ δ′

6: Return: gi

of Alg?i (θ), which is the exact solution to the inner optimization problem. In practice, we may
be able to obtain only approximate solutions. Second, explicitly forming and inverting the
matrix in Eq. 5.6 for computing the Jacobian may be intractable for large deep neural networks.
To address these difficulties, we consider approximations to the idealized approach that enable
a practical algorithm. First, we consider an approximate solution to the inner optimization
problem, that can be obtained with iterative optimization algorithms like gradient descent.

Definition 5. (δ–approx. algorithm) Let Algi(θ) be a δ–accurate approximation of Alg?i (θ),

‖Algi(θ)−Alg?i (θ)‖ ≤ δ

Second, we will perform a partial or approximate matrix inversion given by:

Definition 6. (δ′–approximate Jacobian-vector product) Let gi be a vector such that

‖gi −
(
I +

1

λ
∇2
φL̂i(φi)

)−1

∇φLi(φi)‖ ≤ δ′

where φi = Algi(θ) and Algi is based on definition 5.

59

Note that gi in definition 6 is an approximation of the meta-gradient for task Ti. Observe
that gi can be obtained as an approximate solution to the optimization problem:

min
w

1

2
w>
(
I +

1

λ
∇2
φL̂i(φi)

)
w −w>∇φLi(φi) (5.7)

The conjugate gradient (CG) algorithm is particularly well suited for this problem due to
its excellent iteration complexity and requirement of only Hessian-vector products of the
form ∇2L̂i(φi)v. Such hessian-vector products can be obtained cheaply without explicitly
forming or storing the Hessian matrix (as we discuss in Appendix D.3). This CG based
inversion has been successfully deployed in Hessian-free or Newton-CG methods for deep
learning [204, 205] and trust region methods in reinforcement learning [33, 12]. Algorithm 5
presents the full practical algorithm. Note that these approximations to develop a practical
algorithm introduce errors in the meta-gradient computation. We analyze the impact of
these errors in Section 5.3.2 and show that they are controllable. See Appendix D.1 for how
iMAML generalizes prior gradient optimization based meta-learning algorithms.

5.3.2 Theoretical Analysis

In Section 5.3.1, we outlined a practical algorithm that makes approximations to the idealized
update rule of Eq. 5.5. Here, we attempt to analyze the impact of these approximations, and
also understand the computation and memory requirements of iMAML. We find that iMAML
can match the minimax computational complexity of backpropagating through the path of
the inner optimizer, but is substantially better in terms of memory usage. This work to our
knowledge also provides the first non-asymptotic result that analyzes approximation error
due to implicit gradients. Theorem 3 provides the computational and memory complexity for
obtaining an ε–approximate meta-gradient. We assume Li is smooth but do not require it to
be convex. We assume that Gi in Eq. 5.4 is strongly convex, which can be made possible by
appropriate choice of λ. The key to our analysis is a second order Lipshitz assumption, i.e.
L̂i(·) is ρ-Lipshitz Hessian. This assumption and setting has received considerable attention
in recent optimization and deep learning literature [206, 207].

Table 5.1 summarizes our complexity results and compares with MAML and truncated
backpropagation [208] through the path of the inner optimizer. We use κ to denote the
condition number of the inner problem induced by Gi (see Equation 5.4), which can be viewed
as a measure of hardness of the inner optimization problem. Mem(∇L̂i) is the memory taken
to compute a single derivative ∇L̂i. Under the assumption that Hessian vector products are
computed with the reverse mode of auto-differentiation, we will have that both: the compute
time and memory used for computing a Hessian vector product are with a (universal) constant
factor of the compute time and memory used for computing ∇L̂i itself (see Appendix D.3).
This allows us to measure the compute time in terms of the number of ∇L̂i computations.

60

Table 5.1: Compute and memory for computing the meta-gradient when using a δ–accurate Algi, and
the corresponding approximation error. Our compute time is measured in terms of the number of ∇L̂i
computations. All results are in Õ(·) notation, which hide additional log factors; the error bound hides
additional problem dependent Lipshitz and smoothness parameters (see the respective Theorem statements).
κ ≥ 1 is the condition number for inner objective Gi (see Equation 5.4), and D is the diameter of the search
space. The notions of error are subtly different: we assume all methods solve the inner optimization to error
level of δ (as per definition 5). For our algorithm, the error refers to the `2 error in the computation of
dθLi(Alg?i (θ)). For the other algorithms, the error refers to the `2 error in the computation of dθLi(Algi(θ)).
We use Prop 3.1 of Shaban et al. [208] to provide the guarantee we use. See Appendix D.4 for additional
discussion.

Algorithm Compute Memory Error

MAML (GD + full back-prop) κ log
(
D
δ

)
Mem(∇L̂i) · κ log

(
D
δ

)
0†

MAML (Nesterov’s AGD + full back-prop)
√
κ log

(
D
δ

)
Mem(∇L̂i) ·

√
κ log

(
D
δ

)
0†

Truncated back-prop (GD) [2] κ log
(
D
δ

)
Mem(∇L̂i) · κ log

(
1
ε

)
ε†

Implicit MAML (this work)
√
κ log

(
D
δ

)
Mem(∇L̂i) δ∗

We refer readers to Appendix D.4 for additional discussion about the algorithms and their
trade-offs. Our main theorem is as follows:

Theorem 3. (Informal Statement; Approximation error in Algorithm 6) Suppose that: Li(·)
is B Lipshitz and L smooth function; that Gi(·,θ) (in Eq. 5.4) is a µ-strongly convex function
with condition number κ; that D is the diameter of search space for φ in the inner optimization
problem (i.e. ‖Alg?i (θ)‖ ≤ D); and L̂i(·) is ρ-Lipshitz Hessian.

Let gi be the task meta-gradient returned by Algorithm 6. For any task i and desired
accuracy level ε, Algorithm 6 computes an approximate task-specific meta-gradient with the
following guarantee:

||gi − dθLi(Alg?i (θ))|| ≤ ε .

Furthermore, under the assumption that the Hessian vector products are computed by the
reverse mode of auto-differentiation, Algorithm 6 can be implemented using at most
Õ
(√

κ log
(

poly(κ,D,B,L,ρ,µ,λ)
ε

))
gradient computations of L̂i(·) and 2 ·Mem(∇L̂i) memory.

The formal statement of the theorem and the proof are provided the appendix. Importantly,
the algorithm’s memory requirement is equivalent to the memory needed for Hessian-vector
products which is a small constant factor over the memory required for gradient computations,
assuming the reverse mode of auto-differentiation is used. Finally, based on the above, we
also present corollary 2 which shows that iMAML efficiently finds a stationary point of F (·),
due to iMAML having controllable approximation error in gradient computation.

61

Corollary 2. (iMAML finds stationary points) Suppose the conditions of Theorem 3 hold
and that F (·) is an LF smooth function. Then the implicit MAML algorithm (Algorithm 5),
when the batch size is M (so that we are doing gradient descent), will find a point θ such
that: ‖∇F (θ)‖ ≤ ε in a number of calls to Implicit-Meta-Gradient that is at most
4MLf (F (0)−minθ F (θ))

ε2
. Furthermore, the total number of gradient computations (of ∇L̂i) is

at most
Õ

(
M
√
κ
Lf (F (0)−minθ F (θ))

ε2
log

(
poly(κ,D,B, L, ρ, µ, λ)

ε

))
,

and only Õ(Mem(∇L̂i)) memory is required throughout.

5.4 Experimental Results and Discussion

In our experimental evaluation, we aim to answer the following questions empirically: (1)
Does the iMAML algorithm asymptotically compute the exact meta-gradient? (2) With
finite iterations, does iMAML approximate the meta-gradient more accurately compared
to MAML? (3) How does the computation and memory requirements of iMAML compare
with MAML? (4) Does iMAML lead to better results in realistic meta-learning problems?
We have answered (1) - (3) through our theoretical analysis, and now attempt to validate it
through numerical simulations. For (1) and (2), we will use a simple synthetic example for
which we can compute the exact meta-gradient and compare against it (exact-solve error, see
definition 7). For (3) and (4), we will use the common few-shot image recognition domains of
Omniglot and Mini-ImageNet.

To study the question of meta-gradient accuracy, Figure 5.2 considers a synthetic regression
example, where the predictions are linear in parameters. This provides an analytical expression

(a) (b)

Figure 5.2: Accuracy, Computation, and Memory tradeoffs of iMAML, MAML, and FOMAML. (a)
Meta-gradient accuracy level in synthetic example. Computed gradients are compared against the exact
meta-gradient per Def 7. (b) Computation and memory trade-offs with 4 layer CNN on 20-way-5-shot
Omniglot task. We implemented iMAML in PyTorch, and for an apples-to-apples comparison, we use a
PyTorch implementation of MAML from: https://github.com/dragen1860/MAML-Pytorch

https://github.com/dragen1860/MAML-Pytorch

62

Table 5.2: Omniglot results. MAML results are taken from the original work of Finn et al. [191], and
first-order MAML and Reptile results are from Nichol et al. [160]. iMAML with gradient descent (GD) uses
16 and 25 steps for 5-way and 20-way tasks respectively. iMAML with Hessian-free uses 5 CG steps to
compute the search direction and performs line-search to pick step size. Both versions of iMAML use λ = 2.0

for regularization, and 5 CG steps to compute the task meta-gradient.

Algorithm 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

MAML [191] 98.7 ± 0.4% 99.9 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2%
first-order MAML [191] 98.3 ± 0.5% 99.2 ± 0.2% 89.4 ± 0.5% 97.9 ± 0.1%
Reptile [160] 97.68 ± 0.04% 99.48 ± 0.06% 89.43 ± 0.14% 97.12 ± 0.32%
iMAML, GD (ours) 99.16 ± 0.35% 99.67 ± 0.12% 94.46 ± 0.42% 98.69 ± 0.1%
iMAML, Hessian-Free (ours) 99.50 ± 0.26% 99.74 ± 0.11% 96.18 ± 0.36% 99.14 ± 0.1%

for Alg?i allowing us to compute the true meta-gradient. We fix gradient descent (GD) to
be the inner optimizer for both MAML and iMAML. The problem is constructed so that
the condition number (κ) is large, thereby necessitating many GD steps. We find that both
iMAML and MAML asymptotically match the exact meta-gradient, but iMAML computes
a better approximation in finite iterations. We observe that with 2 CG iterations, iMAML
incurs a small terminal error. This is consistent with our theoretical analysis. In Algorithm 6,
δ is dominated by δ′ when only a small number of CG steps are used. However, the terminal
error vanishes with just 5 CG steps. The computational cost of 1 CG step is comparable to 1
inner GD step with the MAML algorithm, since both require 1 hessian-vector product (see
section D.3 for discussion). Thus, the computational cost as well as memory of iMAML with
100 inner GD steps is significantly smaller than MAML with 100 GD steps.

To study (3), we turn to the Omniglot dataset [209] which is a popular few-shot image
recognition domain. Figure 5.2 presents compute and memory trade-off for MAML and
iMAML (on 20-way, 5-shot Omniglot). Memory for iMAML is based on Hessian-vector
products and is independent of the number of GD steps in the inner loop. The memory use
is also independent of the number of CG iterations, since the intermediate computations
need not be stored in memory. On the other hand, memory for MAML grows linearly in
grad steps, reaching the capacity of a 12 GB GPU in approximately 16 steps. First-order
MAML (FOMAML) does not back-propagate through the optimization process, and thus
the computational cost is only that of performing gradient descent, which is needed for
all the algorithms. The computational cost for iMAML is also similar to FOMAML along
with a constant overhead for CG that depends on the number of CG steps. Note however,
that FOMAML does not compute an accurate meta-gradient, since it ignores the Jacobian.
Compared to FOMAML, the compute cost of MAML grows at a faster rate. FOMAML

63

requires only gradient computations, while backpropagating through GD (as done in MAML)
requires a Hessian-vector products at each iteration, which are more expensive.

Finally, we study empirical performance of iMAML on the Omniglot and Mini-ImageNet
domains. Following the few-shot learning protocol in prior work [190], we run the iMAML
algorithm on the dataset for different numbers of class labels and shots (in the N-way, K-shot
setting), and compare two variants of iMAML with published results of the most closely
related algorithms: MAML, FOMAML, and Reptile. While these methods are not state-of-
the-art on this benchmark, they provide an apples-to-apples comparison for studying the
use of implicit gradients in optimization-based meta-learning. For a fair comparison, we use
the identical convolutional architecture as these prior works. Note however that architecture
tuning can lead to better results for all algorithms [210].

The first variant of iMAML we consider involves solving the inner level problem (the
regularized objective function in Eq. 5.4) using gradient descent. The meta-gradient is
computed using conjugate gradient, and the meta-parameters are updated using Adam. This
presents the most straightforward comparison with MAML, which would follow a similar
procedure, but backpropagate through the path of optimization as opposed to invoking
implicit differentiation. The second variant of iMAML uses a second order method for the
inner level problem. In particular, we consider the Hessian-free or Newton-CG [205, 204]
method. This method makes a local quadratic approximation to the objective function (in
our case, G(φ′,θ) and approximately computes the Newton search direction using CG. Since
CG requires only Hessian-vector products, this way of approximating the Newton search
direction is scalable to large deep neural networks. The step size can be computed using
regularization, damping, trust-region, or linesearch. We use a linesearch on the training loss
in our experiments to also illustrate how our method can handle non-differentiable inner
optimization loops. We refer the readers to Nocedal & Wright [205] and Martens [204] for a
more detailed exposition of this optimization algorithm. Similar approaches have also gained
prominence in reinforcement learning [33, 12].

Table 5.3: Mini-ImageNet 5-way-1-shot accuracy

Algorithm 5-way 1-shot

MAML 48.70 ± 1.84 %
first-order MAML 48.07 ± 1.75 %
Reptile 49.97 ± 0.32 %
iMAML GD (ours) 48.96 ± 1.84 %
iMAML HF (ours) 49.30 ± 1.88 %

Tables 5.2 and 5.3 present the results on
Omniglot and Mini-ImageNet, respectively.
On the Omniglot domain, we find that the
GD version of iMAML is competitive with
the full MAML algorithm, and substatially
better than its approximations (i.e., first-
order MAML and Reptile), especially for
the harder 20-way tasks. We also find that
iMAML with Hessian-free optimization per-
forms substantially better than the other
methods, suggesting that powerful optimiz-
ers in the inner loop can offer benefits to meta-learning. In the Mini-ImageNet domain, we

64

find that iMAML performs better than MAML and FOMAML. We used λ = 0.5 and 10

gradient steps in the inner loop. We did not perform an extensive hyperparameter sweep,
and expect that the results can improve with better hyperparameters. 5 CG steps were used
to compute the meta-gradient. The Hessian-free version also uses 5 CG steps for the search
direction. Additional experimental details are Appendix D.6.

5.5 Related Work

Our work considers the general meta-learning problem [186, 187, 188], including few-shot
learning [209, 190]. Meta-learning approaches can generally be categorized into metric-
learning approaches that learn an embedding space where non-parametric nearest neighbors
works well [211, 190, 212, 213, 214], black-box approaches that train a recurrent or recursive
neural network to take datapoints as input and produce weight updates [192, 215, 216, 193]
or predictions for new inputs [189, 217, 218, 219, 194], and optimization-based approaches
that use bi-level optimization to embed learning procedures, such as gradient descent, into
the meta-optimization problem [191, 200, 220, 221, 201, 222, 223, 224]. Hybrid approaches
have also been considered to combine the benefits of different approaches [225, 226]. We
build upon optimization-based approaches, particularly the MAML algorithm [191], which
meta-learns an initial set of parameters such that gradient-based fine-tuning leads to good
generalization. Prior work has considered a number of inner loops, ranging from a very general
setting where all parameters are adapted using gradient descent [191], to more structured
and specialized settings, such as ridge regression [220], Bayesian linear regression [224], and
simulated annealing [227]. The main difference between our work and these approaches is that
we show how to analytically derive the gradient of the outer objective without differentiating
through the inner learning procedure.

Mathematically, we view optimization-based meta-learning as a bi-level optimization
problem. Such problems have been studied in the context of few-shot meta-learning (as
discussed previously), gradient-based hyperparameter optimization [195, 228, 229, 230, 231],
and a range of other settings [232, 233]. Some prior works have derived implicit gradients for
related problems [228, 230, 232] while others propose innovations to aid back-propagation
through the optimization path for specific algorithms [195, 229, 234], or approximations like
truncation [208]. While the broad idea of implicit differentiation is well known, it has not
been empirically demonstrated in the past for learning more than a few parameters (e.g.,
hyperparameters), or highly structured settings such as quadratic programs [232]. In contrast,
our method meta-trains deep neural networks with thousands of parameters. Closest to our
setting is the recent work of Lee et al. [235], which uses implicit differentiation for quadratic
programs in a final SVM layer. In contrast, our formulation allows for adapting the full
network for generic objectives (beyond hinge-loss), thereby allowing for wider applications.

We also note that prior works involving implicit differentiation make a strong assumption

65

of an exact solution in the inner level, thereby providing only asymptotic guarantees. In
contrast, we provide finite time guarantees which allows us to analyze the case where the inner
level is solved approximately. In practice, the inner level is likely to be solved using iterative
optimization algorithms like gradient descent, which only return approximate solutions with
finite iterations. Thus, this paper places implicit gradient methods under a strong theoretical
footing for practically use.

5.6 Chapter Summary

In this chapter, we presented a new method for optimization-based meta-learning that removes
the need for differentiating through the inner optimization path, allowing us to decouple the
outer meta-gradient computation from the choice of inner optimization algorithm. We showed
how this gives us significant gains in compute and memory efficiency, and also conceptually
allows us to use a variety of inner optimization methods. While we focused on developing the
foundations and theoretical analysis of this method, we believe that this work opens up a
number of interesting avenues for future study.
Broader classes of inner loop procedures. While we studied different gradient-based
optimization methods in the inner loop, iMAML can in principle be used with a variety of inner
loop algorithms, including dynamic programming methods such as Q-learning, two-player
adversarial games such as GANs, energy-based models [236], and actor-critic RL methods,
and higher-order model-based trajectory optimization methods. This significantly expands
the kinds of problems that optimization-based meta-learning can be applied to.
More flexible regularizers. We explored one very simple regularization, `2 regularization
to the parameter initialization, which already increases the expressive power over the implicit
regularization that MAML provides through truncated gradient descent. To further allow the
model to flexibly regularize the inner optimization, a simple extension of iMAML is to learn
a vector- or matrix-valued λ, which would enable the meta-learner model to co-adapt and
co-regularize various parameters of the model. Regularizers that act on parameterized density
functions would also enable meta-learning to be effective for few-shot density estimation.

66

Chapter 6

META LEARNING UNDER NON-STATIONARITY

6.1 Introduction

In the previous chapter, we considered meta-learning, which provided a paradigm to achieve
generalization in new tasks using a small amount of data. This was achieved by constructing
an agent that learns how to learn by utilizing prior tasks to learn priors that are amenable
to fast adaptation. This question of how to use prior tasks or experience to inform future
learning has actually been studied by two distinct paradigms. As we discussed, meta-
learning [186, 190, 191] casts this as the problem of learning to learn, where past experience is
used to acquire a prior over model parameters or a learning procedure, and typically studies
a setting where a set of meta-training tasks are made available together upfront.

In contrast, online learning [237, 157] considers a sequential setting where tasks are
revealed one after another, but aims to attain zero-shot generalization without any task-
specific adaptation. We argue that neither setting is ideal for studying continual lifelong
learning, as experienced by humans in the real world. Meta-learning deals with learning to
learn, but neglects the sequential and non-stationary aspects of the problem. Online learning
offers an appealing theoretical framework, but does not generally consider how past experience
can accelerate adaptation to a new task. In this chapter, we motivate and present the online
meta-learning problem setting, where the agent simultaneously uses past experiences in a
sequential setting to learn good priors, and also adapt quickly to the current task at hand.

As a motivating example, Figure 6.1 shows a family of sinusoids. Imagine that each task
is a regression problem from x to y corresponding to one sinusoid. When presented with
data from a large collection of such tasks, a naïve approach that does not consider the task
structure would collectively use all the data, and learn a prior that corresponds to the model
y = 0. An algorithm that understands the underlying structure would recognize that each
curve in the family is a (different) sinusoid, and would therefore attempt to identify, for a new
batch of data, which sinusoid it corresponds to. As another example where naïve training
on prior tasks fails, Figure 6.1 also shows colored MNIST digits with different backgrounds.
Suppose we’ve seen MNIST digits with various colored backgrounds, and then observe a “7”
on a new color. We might conclude from training on all of the data seen so far that all digits
with that color must all be “7.” In fact, this is an optimal conclusion from a purely statistical
standpoint. However, if we understand that the data is divided into different tasks, and take
note of the fact that each task has a different color, a better conclusion is that the color is
irrelevant.

67

Figure 6.1: (left) sinusoid functions and (right) colored MNIST

Meta-learning offers an appealing solution: by learning how to learn from past tasks, we
can make use of task structure and extract information from the data that both allows us to
succeed on the current task and adapt to new tasks more quickly. However, typical meta
learning approaches assume that a sufficiently large set of tasks are made available upfront for
meta-training. In the real world, tasks are likely available only sequentially, as the agent is
learning in the world, and also from a non-stationary distribution. By recasting meta-learning
in a sequential or online setting, that does not make strong distributional assumptions, we
can enable faster learning on new tasks as they are presented.

Contributions: In this chapter, we formulate the online meta-learning problem setting and
present the follow the meta-leader (FTML) algorithm. This extends the MAML algorithm to
the online meta-learning setting, and is analogous to follow the leader in online learning. We
analyze FTML and show that it enjoys a O(log T) regret guarantee when competing with
the best meta-learner in hindsight. We also develop a practical form of FTML that can be
used effectively with deep neural networks on large scale tasks, and show that it significantly
outperforms prior methods. The experiments involve vision-based sequential learning tasks
with the MNIST, CIFAR-100, and PASCAL 3D+ datasets.

6.2 Foundations

Before introducing online meta-learning, we first briefly summarize the foundations of meta-
learning, the model-agnostic meta-learning (MAML) algorithm, and online learning. To
illustrate the differences in setting and algorithms, we will use the running example of few-shot
learning, which we describe below first. We emphasize that online learning, MAML, and the
online meta-learning formulations have a broader scope than few-shot supervised learning.
We use the few-shot supervised learning example primarily for illustration.

68

6.2.1 Few-Shot Learning

In the few-shot supervised learning setting [189], we are interested in a family of tasks, where
each task T is associated with a notional and infinite-size population of input-output pairs.
In the few-shot learning, the goal is to learn a task while accessing only a small, finite-size
labeled dataset Di := {xi,yi} corresponding to task Ti. If we have a predictive model, h(·;φ),
with parameters φ, the population risk of the model is

Li(φ) := E(x,y)∼Ti [`(x,y,φ)],

where the expectation is defined over the task population and ` is a loss function, such as the
square loss or cross-entropy between the model prediction and the correct label. An example
of ` corresponding to squared error loss is

`(x,y,φ) = ||y − h(x;φ)||2.

Let L(Di,φ) represent the average loss on the dataset Di. Being able to effectively minimize
Li(φ) is likely hard if we rely only on Di due to the small size of the dataset. However, we are
exposed to many such tasks from the family — either in sequence or as a batch, depending
on the setting. By being able to draw upon the multiplicity of tasks, we may hope to perform
better, as for example demonstrated in the meta-learning literature.

6.2.2 Meta-Learning and MAML

Meta-learning, or learning to learn [186], aims to effectively bootstrap from a set of tasks
to learn faster on a new task. It is assumed that tasks are drawn from a fixed distribution,
T ∼ P(T). At meta-training time, M tasks {Ti}Mi=1 are drawn from this distribution and
datasets corresponding to them are made available to the agent. At deployment time, we
are faced with a new test task Tj ∼ P(T), for which we are again presented with a small
labeled dataset Dj := {xj,yj}. Meta-learning algorithms attempt to find a model using the
M training tasks, such that when Dj is revealed from the test task, the model can be quickly
updated to minimize Lj(φ).

Model-agnostic meta-learning (MAML) [191] does this by learning an initial set of pa-
rameters φMAML, such that at meta-test time, performing a few steps of gradient descent
from φMAML using Dj minimizes Lj(·). To get such an initialization, at meta-training time,
MAML solves the optimization problem:

φMAML := arg min
φ

1

M

M∑
i=1

Li
(
φ− α∇L̂i(φ)

)
. (6.1)

The inner gradient ∇L̂i(φ) is based on a small mini-batch of data from Di. Hence, MAML
optimizes for few-shot generalization. Note that the optimization problem is subtle: we have

69

a gradient descent update step embedded in the actual objective function. Regardless, Finn
et al. [191] show that gradient-based methods can be used on this optimization objective
with existing automatic differentiation libraries. Stochastic optimization techniques are used
to solve the optimization problem in Eq. 6.1 since the population risk is not known directly.
At meta-test time, the solution to Eq. 6.1 is fine-tuned as: φj ← φMAML − α∇L̂j(φMAML)

with the gradient obtained using Dj. Meta-training can be interpreted as learning a prior
over model parameters, and fine-tuning as inference [202].

MAML and other meta-learning algorithms (see Section 6.7) are not directly applicable
to sequential settings for two reasons. First, they have two distinct phases: meta-training
and meta-testing or deployment. We would like the algorithms to work in a continuous
learning fashion. Second, meta-learning methods generally assume that the tasks come from
some fixed distribution, whereas we would like methods that work for non-stationary task
distributions.

6.2.3 Online Learning

In the online learning setting, an agent faces a sequence of loss functions {Lt}∞t=1, one in
each round t. These functions need not be drawn from a fixed distribution, and could
even be chosen adversarially over time. The goal for the learner is to sequentially decide
on model parameters {φt}∞t=1 that perform well on the loss sequence. In particular, the
standard objective is to minimize some notion of regret defined as the difference between our
learner’s loss,

∑T
t=1 Lt(φt), and the best performance achievable by some family of methods

(comparator class). The most standard notion of regret is to compare to the cumulative loss
of the best fixed model in hindsight:

RegretT =
T∑
t=1

Lt(φt)−min
φ

T∑
t=1

Lt(φ). (6.2)

The goal in online learning is to design algorithms such that this regret grows with T as
slowly as possible. In particular, an agent (algorithm) whose regret grows sub-linearly in T is
non-trivially learning and adapting. One of the simplest algorithms in this setting is follow
the leader (FTL) [237], which updates the parameters as:

φt+1 = arg min
φ

t∑
k=1

Lk(φ).

FTL enjoys strong performance guarantees depending on the properties of the loss function,
and some variants use additional regularization to improve stability [164]. For the few-shot
supervised learning example, FTL would consolidate all the data from the prior stream of
tasks into a single large dataset and fit a single model to this dataset. As alluded to in
Section 6.1, and as we find in our empirical evaluation in Section 6.6, such a “joint training”

70

approach may not learn effective models. To overcome this issue, we may desire a more
adaptive notion of a comparator class, and algorithms that have low regret against such a
comparator, as we will discuss next.

6.3 The Online Meta-Learning Problem

We consider a general sequential setting where an agent is faced with tasks one after another.
Each of these tasks correspond to a round, denoted by t. In each round, the goal of the
learner is to determine model parameters φt that perform well for the corresponding task
at that round. This is monitored by Lt : φ ∈ W → R, which we would like to be minimized.
Crucially, we consider a setting where the agent can perform some local task-specific updates
to the model before it is deployed and evaluated in each round. This is realized through
an update procedure, which at every round t is a mapping Algt : φ ∈ W → φ ∈ W. This
procedure takes as input φ and returns φ that performs better on Lt. One example for Algt
is a step of gradient descent [191]:

Algt(φ) = φ− α∇L̂t(φ).

Here, as specified in Section 6.2, ∇L̂t is potentially an approximate gradient of Lt, as for
example obtained using a mini-batch of data from the task at round t. The overall protocol
for the setting is as follows:

1. At round t, the agent chooses a model defined by φt.

2. The world simultaneously chooses task defined by ft.

3. The agent obtains access to the update procedure Algt, and uses it to update parameters
as φt = Algt(φt).

4. The agent incurs loss Lt(φt). Advance to round t+ 1.

The goal for the agent is to minimize regret over the rounds. A highly ambitious comparator
is the best meta-learned model in hindsight. Let {φt}Tt=1 be the sequence of models generated
by the algorithm. Then, the regret we consider is:

RegretT =
T∑
t=1

Lt
(
Algt(φt)

)
−min

φ

T∑
t=1

Lt
(
Algt(φ)

)
. (6.3)

Notice that we allow the comparator to adapt locally to each task at hand; thus the comparator
has strictly more capabilities than the learning agent, since it is presented with all the task
functions in batch mode. Here, again, achieving sublinear regret suggests that the agent
is improving over time and is competitive with the best meta-learner in hindsight. As
discussed earlier, in the batch setting, when faced with multiple tasks, meta-learning performs
significantly better than training a single model for all the tasks. Thus, we may hope that
learning sequentially, but still being competitive with the best meta-learner in hindsight,
provides a significant leap in continual learning.

71

6.4 Algorithm and Analysis

In this section, we outline the follow the meta leader (FTML) algorithm and provide an
analysis of its behavior.

6.4.1 Follow the Meta Leader

One of the most successful algorithms in online learning is follow the leader [237, 238], which
enjoys strong performance guarantees for smooth and convex functions. Taking inspiration
from its form, we propose the FTML algorithm template:

φt+1 = arg min
φ

t∑
k=1

Lk
(
Algk(φ)

)
. (6.4)

This can be interpreted as the agent playing the best meta-learner in hindsight if the learning
process were to stop at round t. In the remainder of this section, we will show that under
standard assumptions on the losses, and just one additional assumption on higher order
smoothness, this algorithm has strong regret guarantees. In practice, we may not have full
access to Lk(·), such as when it is the population risk and we only have a finite size dataset. In
such cases, we will draw upon stochastic approximation algorithms to solve the optimization
problem in Eq. (6.4).

6.4.2 Assumptions

We make the following assumptions about each loss function in the learning problem for all t.
Let u and v represent two arbitrary choices of model parameters.

Assumption A1. (C2-smoothness)

1. (Lipschitz in function value) L has gradients bounded by G, i.e. ||∇L(u)|| ≤ G ∀ u. This
is equivalent to L being G−Lipschitz.

2. (Lipschitz gradient) L is β−smooth, i.e.
||∇L(u)−∇L(v)|| ≤ β||u− v|| ∀(u,v).

3. (Lipschitz Hessian) L has ρ−Lipschitz Hessians, i.e.
||∇2L(u)−∇2L(v)|| ≤ ρ||u− v|| ∀(u,v).

Assumption A2. (Strong convexity) Suppose that L is convex. Furthermore, suppose L is
µ−strongly convex, i.e. ||∇L(u)−∇L(v)|| ≥ µ||u− v||.

These assumptions are largely standard in online learning, in various settings [157],
except 1.3. Examples where these assumptions hold include logistic regression and L2

72

regression over a bounded domain. Assumption 1.3 is a statement about the higher order
smoothness of functions which is common in non-convex analysis [207, 206]. In our setting,
it allows us to characterize the landscape of the MAML-like function which has a gradient
update step embedded within it. Importantly, these assumptions do not trivialize the meta-
learning setting. A clear difference in performance between meta-learning and joint training
can be observed even in the case where L(·) are quadratic functions, which correspond to the
simplest strongly convex setting. See Appendix E.1 for an example illustration.

6.4.3 Analysis

We analyze the FTML algorithm when the update procedure is a single step of gradient
descent, as in the formulation of MAML. Concretely, the update procedure we consider is
Algt(φ) = φ− α∇L̂t(φ). For this update rule, we first state our main theorem below.

Theorem 4. Suppose L and L̂ : Rd → R satisfy assumptions 1 and 2. Let L̃ be the function
evaluated after a one step gradient update procedure, i.e.

L̃(φ) := L
(
φ− α∇L̂(φ)

)
.

If the step size is selected as α ≤ min{ 1
2β
, µ

8ρG
}, then L̃ is convex. Furthermore, it is also

β̃ = 9β/8 smooth and µ̃ = µ/8 strongly convex.

Corollary 3. (inherited convexity for the MAML objective) If {Li, L̂i}Ki=1 satisfy assump-
tions 1 and 2, then the MAML optimization problem,

minimize
φ

1

M

M∑
i=1

Li
(
φ− α∇L̂i(φ)

)
,

with α ≤ min{ 1
2β
, µ

8ρG
} is convex. Furthermore, it is 9β/8-smooth and µ/8-strongly convex.

The proofs are provided in the appendix. Since the objective function is convex, we may
expect first-order optimization methods to be effective, since gradients can be efficiently
computed with standard automatic differentiation libraries (as discussed in Finn et al. [191]).
In fact, this work was chronologically the first to show that MAML-like objective functions
can be provably and efficiently optimized under any set of assumptions. Another immediate
corollary of our main theorem is that FTML now enjoys the same regret guarantees (up to
constant factors) as FTL does in the comparable setting (with strongly convex losses).

Corollary 4. (inherited regret bound for FTML) Suppose that for all t, Lt and L̂t satisfy
assumptions 1 and 2. Suppose that the update procedure in FTML (Eq. 6.4) is chosen as
Algt(φ) = φ− α∇L̂t(φ) with α ≤ min{ 1

2β
, µ

8ρG
}. Then, FTML enjoys the following regret

guarantee
T∑
t=1

Lt
(
Algt(φt)

)
−min

φ

T∑
t=1

Lt
(
Algt(φ)

)
= O

(
32G2

µ
log T

)

73

Proof. From Theorem 4, we have that each function L̃t(φ) = Lt(Algt(φ)) is µ̃ = µ/8 strongly
convex. The FTML algorithm is identical to FTL on the sequence of loss functions {L̃t}Tt=1,
which has a O(4G2

µ̃
log T) regret guarantee (see Cesa-Bianchi and Lugosi [157] Theorem 3.1).

Using µ̃ = µ/8 completes the proof.

More generally, our main theorem implies that there exists a large family of online meta-
learning algorithms that enjoy sub-linear regret, based on the inherited smoothness and
strong convexity of L̃(·). See Hazan [239], Shalev-Shwartz [164], Shalev-Shwartz and Kakade
[240] for algorithmic templates to derive sub-linear regret based algorithms.

6.5 Practical Online Meta-Learning Algorithm

In the previous section, we derived a theoretically principled algorithm for convex losses.
However, many problems of interest in machine learning and deep learning have a non-convex
loss landscape, where theoretical analysis is challenging. Nevertheless, algorithms originally
developed for convex losses like gradient descent and AdaGrad [241] have shown promising
results in practical non-convex settings. Taking inspiration from these successes, we describe
a practical instantiation of FTML in this section, and empirically evaluate its performance in
Section 6.6.

The main considerations when adapting the FTML algorithm to few-shot supervised
learning with high capacity neural network models are: (a) the optimization problem in
Eq. (6.4) has no closed form solution, and (b) we do not have access to the population risk
Lt but only a subset of the data. To overcome both these limitations, we can use iterative
stochastic optimization algorithms. Specifically, by adapting the MAML algorithm [191], we
can use stochastic gradient descent with a minibatch Dtr

k as the update rule, and stochastic
gradient descent with an independently-sampled minibatch Dval

k to optimize the parameters.
The gradient computation is described below:

gt(φ) = ∇φ Ek∼νtL
(
Dval
k ,Algk(φ)

)
, where

Algk(φ) ≡ φ− α ∇φ L
(
Dtr
k ,φ

) (6.5)

Here, νt(·) denotes a sampling distribution for the previously seen tasks T1, ..., Tt. In our
experiments, we use the uniform distribution, νt ≡ P (k) = 1/t ∀k = {1, 2, . . . t}, but other
sampling distributions can be used if required. Recall that L(D,φ) is the loss function (e.g.
cross-entropy) averaged over the datapoints (x,y) ∈ D for the model with parameters φ.
Using independently sampled minibatches Dtr and Dval minimizes interaction between the
inner gradient update Algt and the outer optimization (Eq. 6.4), which is performed using
the gradient above (gt) in conjunction with Adam [203]. While Algt in Eq. 6.5 includes only
one gradient step, we observed that it is beneficial to take multiple gradient steps in the inner
loop (i.e., in Algt), which is consistent with prior works [191, 202, 242, 208].

74

Now that we have derived the gradient, the overall algorithm proceeds as follows. We
first initialize a task buffer B = []. When presented with a new task at round t, we add
task Tt to B and initialize a task-specific dataset Dt = [], which is appended to as data
incrementally arrives for task Tt. As new data arrives for task Tt, we iteratively compute and
apply the gradient in Eq. 6.5, which uses data from all tasks seen so far. Once all of the data
(finite-size) has arrived for Tt, we move on to task Tt+1. This procedure is further described
in Algorithm 7, including the evaluation, which we discuss next.

Algorithm 7 Online Meta-Learning with FTML
1: Input: Performance threshold of proficiency, γ
2: randomly initialize φ1

3: initialize the task buffer as empty, B ← []

4: for t = 1, . . . do
5: initialize Dt = ∅
6: Add B ← B + [Tt]
7: while |DTt | < N do
8: Append batch of n new datapoints {(x,y)} to Dt
9: φt ← Meta-Update(φt,B, t)
10: φt ← Update-Procedure (φt,Dt)
11: if L (Dtest

t ,φt) < γ then
12: Record efficiency for task Tt as |Dt| datapoints
13: end if
14: end while
15: Record final performance of φt on test set Dtest

t for task t.
16: φt+1 ← φt

17: end for

Algorithm 8 FTML Subroutine: Meta-Update(φ,B, t)
1: Hyperparameters: α, η, Nmeta, Ngrad

2: for nm = 1, . . . , Nmeta steps do
3: Sample task Tk: k ∼ νt(·) // (or a minibatch of tasks)
4: Sample minibatches Dtr

k , Dval
k uniformly from Dk

5: Compute gradient gt using Dtr
k , Dval

k , and Eq. 6.5
6: Update parameters φ← φ− η gt // (or use Adam)
7: end for
8: Return φ

75

Algorithm 9 FTML Subroutine: Update-Procedure(φ, D)

1: Hyperparameters: α, η, Nmeta, Ngrad

2: Initialize φ← φ

3: for ng = 1, . . . , Ngrad steps do
4: φ← φ− α∇L(D,φ)
5: end for
6: Return φ

To evaluate performance of the model at any point within a particular round t, we
first update the model as using all of the data (Dt) seen so far within round t. This is
outlined in the Update-Procedure subroutine of Algorithm 8. Note that this is different from
the update Ut used within the meta-optimization, which uses a fixed-size minibatch since
many-shot meta-learning is computationally expensive and memory intensive. In practice, we
meta-train with update minibatches of size at-most 25, whereas evaluation may use hundreds
of datapoints for some tasks. After the model is updated, we measure the performance using
held-out data Dtest

t from task Tt. This data is not revealed to the online meta-learner at any
time. Further, we also evaluate task learning efficiency, which corresponds to the size of Dt
required to achieve a specified performance threshold γ, e.g. γ = 90% classification accuracy
or γ corresponds to a certain loss value. If less data is sufficient to reach the threshold, then
priors learned from previous tasks are being useful and we have achieved positive transfer.

6.6 Experimental Evaluation

Our experimental evaluation studies the practical FTML algorithm (Section 6.5) in the context
of vision-based online learning problems. These problems include synthetic modifications of
the MNIST dataset, pose detection with synthetic images based on PASCAL3D+ models [243],
and realistic online image classification experiments with the CIFAR-100 dataset. The aim of
our experimental evaluation is to study the following questions: (1) can online meta-learning
(and specifically FTML) be successfully applied to multiple non-stationary learning problems?
and (2) does online meta-learning (FTML) provide empirical benefits over prior methods?

To this end, we compare to the following algorithms: (a) Train on everything (TOE)
trains on all available data so far (including Dt at round t) and trains a single predictive
model. This model is directly tested without any specific adaptation since it has already
been trained on Dt. (b) Train from scratch, which initializes φt randomly, and finetunes it
using Dt. (c) Joint training with fine-tuning, which at round t, trains on all the data jointly
till round t− 1, and then finetunes it specifically to round t using only Dt. This corresponds
to the standard online learning approach where FTL is used (without any meta-learning
objective), followed by task-specific fine-tuning.

We note that TOE is a very strong point of comparison, capable of reusing representations
across tasks, as has been proposed in a number of prior continual learning works [244, 245, 246].

76

However, unlike FTML, TOE does not explicitly learn the structure across tasks. Thus, it
may not be able to fully utilize the information present in the data, and will likely not be able
to learn new tasks with only a few examples. Further, the model might incur negative transfer
if the new task differs substantially from previously seen ones, as has been observed in prior
work [247]. Training on each task independently from scratch avoids negative transfer, but
also precludes any reuse between tasks. When the amount of data for a given task is large, we
may expect training from scratch to perform well since it can avoid negative transfer and can
learn specifically for the particular task. Finally, FTL with fine-tuning represents a natural
online learning comparison, which in principle should combine the best parts of learning from
scratch and TOE, since this approach adapts specifically to each task and benefits from prior
data. However, in contrast to FTML, this method does not explicitly meta-learn and hence
may not fully utilize any structure in the tasks.

6.6.1 Rainbow MNIST

In this experiment, we create a sequence of tasks based on the MNIST character recognition
dataset. We transform the digits in a number of ways to create different tasks, such as 7
different colored backgrounds, 2 scales (half size and original size), and 4 rotations of 90
degree intervals. As illustrated in Figure 6.2, a task involves correctly classifying digits
with a randomly sampled background, scale, and rotation. This leads to 56 total tasks. We
partitioned the MNIST training dataset into 56 batches of examples, each with 900 images
and applied the corresponding task transformation to each batch of images. The ordering
of tasks was selected at random and we set 90% classification accuracy as the proficiency
threshold. The learning curves in Figure 6.3 show that FTML learns tasks more and more
quickly, with each new task added. We also observe that FTML substantially outperforms

Figure 6.2: Illustration of three tasks for Rainbow MNIST (top) and pose prediction (bottom).
CIFAR images not shown. Rainbow MNIST includes different rotations, scaling factors, and
background colors. For the pose prediction tasks, the goal is to predict the global position and
orientation of the object on the table. Cross-task variation includes varying 50 different object
models within 9 object classes, varying object scales, and different camera viewpoints.

77

Figure 6.3: Rainbow MNIST results. Left: amount of data needed to learn each new task. Center:
task performance after 100 datapoints on the current task. Right: The task performance after all
900 datapoints for the current task have been received. Lower is better for all plots, while shaded
regions show standard error computed using three random seeds. FTML can learn new tasks more
and more efficiently as each new task is received, demonstrating effective forward transfer.

the alternative approaches in both efficiency and final performance. FTL performance better
than TOE since it performs task-specific adaptation, but its performance is still inferior to
FTML. We hypothesize that, while the prior methods improve in efficiency over the course of
learning as they see more tasks, they struggle to prevent negative transfer on each new task.
Our last observation is that training independent models does not learn efficiently, compared
to models that incorporate data from other tasks; but, their final performance with 900 data
points is similar.

6.6.2 Five-Way CIFAR-100

In this experiment, we create a sequence of 5-way classification tasks based on the CIFAR-100
dataset, which contains more challenging and realistic RGB images than MNIST. Each
classification problem involves a newly-introduced class from the 100 classes in CIFAR-100.
Thus, different tasks correspond to different labels spaces. The ordering of tasks is selected
at random, and we measure performance using classification accuracy. Since it is less clear
what the proficiency threshold should be for this task, we evaluate the accuracy on each
task after varying numbers of datapoints have been seen. Since these tasks are mutually
exclusive (as label space is changing), it makes sense to train the TOE model with a different
final layer for each task. An extremely similar approach to this is to use our meta-learning
approach but to only allow the final layer parameters to be adapted to each task. Further,
such a meta-learning approach is a more direct comparison to our full FTML method, and
the comparison can provide insight into whether online meta-learning is simply learning
features and performing training on the last layer, or if it is adapting the features to each
task. Thus, we compare to this last layer online meta-learning approach instead of TOE

78

Figure 6.4: Online CIFAR-100 results, evaluating task performance after 50, 250, and 2000 datapoints
have been received for a given task. We see that FTML learns each task much more efficiently
than models trained from scratch, while both achieve similar asymptotic performance after 2000
datapoints. We also observe that FTML benefits from adapting all layers rather than learning a
shared feature space across tasks while adapting only the last layer.

with multiple heads. The results (see Figure 6.4) indicate that FTML learns more efficiently
than independent models and a model with a shared feature space. The results on the right
indicate that training from scratch achieves good performance with 2000 datapoints, reaching
similar performance to FTML. However, the last layer variant of FTML seems to not have
the capacity to reach good performance on all tasks.

6.6.3 Sequential Object Pose Prediction

In our final experiment, we study a 3D pose prediction problem. Each task involves learning
to predict the global position and orientation of an object in an image. We construct a
dataset of synthetic images using 50 object models from 9 different object classes in the
PASCAL3D+ dataset [243], rendering the objects on a table using the renderer accompanying
the MuJoCo [30] (see Figure 6.2). To place an object on the table, we select a random 2D
location, as well as a random azimuthal angle. Each task corresponds to a different object with
a randomly sampled camera angle. We place a red dot on one corner of the table to provide
a global reference point for the position. Using this setup, we construct 90 tasks (with an
average of about 2 camera viewpoints per object), with 1000 datapoints per task. All models
are trained to regress to the global 2D position and the sine and cosine of the azimuthal angle
(the angle of rotation along the z-axis). For the loss functions, we use mean-squared error,
and set the proficiency threshold to an error of 0.05. We show the results of this experiment
in Figure 6.5. The results demonstrate that meta-learning can improve both efficiency and
performance of new tasks over the course of learning, solving many of the tasks with only
10 datapoints. Unlike the previous settings, TOE substantially outperforms training from
scratch, indicating that it can effectively make use of the previous data from other tasks,
likely due to the greater structural similarity between the pose detection tasks. However,

79

Figure 6.5: Object pose prediction results. Left: we observe that online meta-learning generally
leads to faster learning as more and more tasks are introduced, learning with only 10 datapoints
for many of the tasks. Center & right, we see that meta-learning enables transfer not just for
faster learning but also for more effective performance when 60 and 400 datapoints of each task
are available. The order of tasks is randomized, leading to spikes when more difficult tasks are
introduced. Shaded regions show standard error across three random seeds

the superior performance of FTML suggests that even better transfer can be accomplished
through meta-learning. Finally, we find that FTL performs comparably or worse than TOE,
indicating that task-specific fine-tuning can lead to overfitting when the model is not explicitly
trained for the ability to be fine-tuned effectively.

6.7 Connections to Related Work

Our work proposes to use meta-learning or learning to learn [187, 186, 188], in the context of
online (regret-based) learning. We reviewed the foundations of these approaches in Section 6.2,
and we summarize additional related work along different axis.
Meta-learning: Prior works have proposed learning update rules, selective copying of weights,
or optimizers for fast adaptation [192, 248, 215, 216, 249, 250, 251], as well as recurrent models
that learn by ingesting datasets directly [189, 217, 218, 219, 252]. While some meta-learning
works have considered online learning settings at meta-test time [189, 199, 253], nearly all
prior meta-learning algorithms assume that the meta-training tasks come from a stationary
distribution. Furthermore, most prior work has not evaluated versions of meta-learning
algorithms when presented with a continuous stream of tasks. One exception is work that
adapts hyperparameters online [254, 255, 256]. In contrast, we consider a more flexible
approach that allows for adapting all of the parameters in the model for each task. More
recent work has considered handling non-stationary task distributions in meta-learning using
Dirichlet process mixture models over meta-learned parameters [257]. Unlike this prior work,
we introduce a simple extension onto the MAML algorithm without mixtures over parameters,
and provide theoretical guarantees.

80

Continual learning: Our problem setting is related to (but distinct from) continual, or
lifelong learning [258, 259]. In lifelong learning, a number of recent papers have focused on
avoiding forgetting and negative backward transfer [260, 261, 262, 263, 264, 265, 266, 267, 268].
Other papers have focused on maintaining a reasonable model capacity as new tasks are
added [269, 270]. In this paper, we sidestep the problem of catastrophic forgetting by
maintaining a buffer of all the observed data [271]. In future work, we hope to understand
the interplay between limited memory and catastrophic forgetting for variants of the FTML
algorithm. Here, we instead focuses on the problem of forward transfer: maximizing the
efficiency of learning new tasks within a non-stationary learning setting. Prior works have
also considered settings that combine joint training across tasks (in a sequential setting)
with task-specific adaptation [272, 127], but have not explicitly employed meta-learning.
Furthermore, unlike prior works [273, 244, 245, 246], we also focus on the setting where there
are several tens or hundreds of tasks. This setting is interesting since there is significantly
more information that can be transferred from previous tasks and we can employ more
sophisticated techniques such as meta-learning for transfer, enabling the agent to move
towards few-shot learning after experiencing a large number of tasks.

Online learning: Similar to continual learning, online learning deals with a sequential setting
with streaming tasks. It is well known in online learning that FTL is computationally expensive,
with a large body of work dedicated to developing cheaper algorithms [157, 274, 275, 164].
Again, in this work, we sidestep the computational considerations to first study if the meta-
learning analog of FTL can provide performance gains. For this, we derived the FTML
algorithm which has low regret when compared to a powerful adaptive comparator class that
performs task-specific adaptation. We leave the design of more computationally efficient
versions of FTML to future work.

To avoid the pitfalls associated with a single best model in hindsight, online learning
literature has also studied alternate notions of regret, with the closest settings being dynamic
regret and adaptive or tracking regret. In the dynamic regret setting [276, 277, 278], the
performance of the online learner’s model sequence is compared against the sequence of
optimal solutions corresponding to each loss function in the sequence. Unfortunately, lower-
bounds [277] suggest that the comparator class is too powerful and may not provide for
any non-trivial learning in the general case. To overcome these limitations, prior work
has placed restrictions on how quickly the loss functions or the comparator model can
change [279, 280, 276]. In contrast, we consider a different notion of adaptive regret, where
the learner and comparator both have access to an update procedure. The update procedures
allow the comparator to produce different models for different loss functions, thereby serving
as a powerful comparator class (in comparison to a fixed model in hindsight). For this setting,
we derived sublinear regret algorithms without placing any restrictions on the sequence of loss
functions. Recent and concurrent works have also studied algorithms related to MAML and
its first order variants using theoretical tools from online learning literature [281, 282, 283].

81

These works also derive regret and generalization bounds, but these algorithms have not yet
been empirically studied in large scale domains or in non-stationary settings. We believe that
our online meta-learning setting captures the spirit and practice of continual lifelong learning,
and also shows promising empirical results.

6.8 Discussions and Conclusion

In this paper, we introduced the online meta-learning problem statement, with the aim of
connecting the fields of meta-learning and online learning. Online meta-learning provides,
in some sense, a more natural perspective on the ideal real-world learning procedure: an
intelligent agent interacting with a constantly changing environment should utilize streaming
experience to both master the task at hand, and become more proficient at learning new
tasks in the future. We analyzed the proposed FTML algorithm and showed that it achieves
logarithmic regret. We then illustrated how FTML can be adapted to a practical algorithm.
Our experimental evaluations demonstrated that the proposed algorithm outperforms prior
methods. In the rest of this section, we reiterate a few salient features of the online meta
learning setting (Section 6.3), and outline avenues for future work.
More powerful update procedures. In this work, we concentrated our analysis on the
case where the update procedure Algt, inspired by MAML, corresponds to one step of
gradient descent. However, in practice, many works with MAML (including our experimental
evaluation) use multiple gradient steps in the update procedure, and back-propagate through
the entire path taken by these multiple gradient steps. Analyzing this case, and potentially
higher order update rules will also make for exciting future work.
Memory and computational constraints. In this work, we primarily aimed to discern
if it is possible to meta-learn in a sequential setting. For this purpose, we proposed the
FTML template algorithm which draws inspiration from FTL in online learning. As discussed
in Section 6.7, it is well known that FTL has poor computational properties, since the
computational cost of FTL grows over time as new loss functions are accumulated. Further, in
many practical online learning problems, it is challenging (and sometimes impossible) to store
all datapoints from previous tasks. While we showed that our method can effectively learn
nearly 100 tasks in sequence without significant burdens on compute or memory, scalability
remains a concern. Can a more streaming algorithm like mirror descent that does not store
all the past experiences be successful as well? Our main theoretical results suggests that
there exist a large family of online meta-learning algorithms that enjoy sublinear regret.
Tapping into the large body of work in online learning, particularly mirror descent, to develop
computationally cheaper algorithms would make for exciting future work.

82

Chapter 7

CONCLUSION

In this thesis we developed abstractions and algorithms to enable domain transfer – the
transfer of models, inductive biases, and representations – from one or more source domains to
a desired target domain. Successful domain transfer would allow agents to be either directly
proficient in the target domain without any domain-specific learning (zero-shot transfer), or
be capable of quickly learning in the target domain with minimal data (few-shot adaptation).
Such capabilities would likely allow AI systems to move beyond current success in narrowly
defined tasks, to be broadly competent in unstructured real-world settings.

In Chapter 2, we studied domain transfer in the context of simulation to reality transfer
in deep RL. For this case, we drew upon the principle of risk-aversion to develop the EPOpt
algorithm, which learns to successful transfer policies from the simulated source domain to
the target domain. In Chapter 2.6, we presented a case study that demonstrates the success
of such an approach on a physical robot.

In Chapter 3, we studied offline RL where an agent must learn effective control policies
using a fixed static dataset. We outlined the major challenges in this paradigm including the
distribution/domain shift between the training data distribution and the induced distribution
of the trained policy. We introduced the concept of pessimism or conservatism in the face of
uncertainty, and used this to derive MOReL, a model-based offline RL algorithm. We showed
that MOReL enjoys strong theoretical guarentees, including minimax optimality, and also
achieves state of the art experiment results in offline RL benchmarks. In Chapter 3.8, we
extend this approach to offline RL from high dimensional observations like pixels. This is
especially challenging since it simultaneously requires representation learning and uncertainty
quantification to impart the necessary conservatism. We addressed all of these challenges
through the use of variational latent state-space dynamics models which provide a rich
auxiliary task for representation learning as well as the ability to perform model rollouts and
uncertainty quantification in the compact latent space of the model.

In Chapter 4, we studied model-based RL in the more standard interactive RL paradigm.
We illustrated how domain/distribution shift may manifest even in this well studied setting,
due to simultaneous policy and model learning that can introduce bias and nonstationarity.
By drawing upon insights from game theory, we developed stable algorithms that mitigate
against the impact of distribution shift. This enabled the development of model-based RL
algorithms that can: (a) be highly sample efficient; (b) match the asymptotic performance
of model-free policy gradient; (c) scale gracefully to high dimensional tasks like dexterous

83

manipulation; and (d) handle extended rollout horizons of several hundred timesteps.
In Chapter 5, we moved from transferring from a single source domain to a collection of

source domains, by considering the setting of meta-learning. This involves the learning of
inductive biases and adaptable representations for accelerating the learning of a new task.
We demonstrated how meta-learning can be formalized as a bi-level optimization problem,
and developed the implicit MAML algorithm. We showed that implicit MAML is provably
convergent, provably compute and memory efficient compared to prior approaches, and
demonstrates strong empirical gains over baselines in benchmark tasks.

Finally, in Chapter 6, we studied meta-learning in the continual and non-stationary
setting. This allows the agent to continuously accelerate the learning process in new tasks
as it encounters more and more tasks in a sequence. We established a new regret metric
that is suitable for this setting, and showed that the algorithm we develop (FTML) enjoys a
no-regret property. We validated this algorithm on few-shot vision domains, and showed that
FTML can enable CNNs to recognize and predict pose of new objects more efficiently than
conventional online learning approaches.

While this work presents first steps towards algorithm development for domain transfer in
a variety of scenarios, a number of additional steps are required before we can realize the
ideal of broadly competent and generalizable AI systems. We outline a few directions for
future work below.
Learning multiple skills from offline datasets In this thesis, we showed how model-
based offline RL algorithms like MOReL can learn policies for downstream tasks different
from those encountered in the offline dataset. However, when we are interested in multiple
downstream tasks, this approach of drawing upon the dataset every-time for policy learning
can be computationally expensive, repetitive, and may not exhibit the best generalization.
One potential way to overcome this is to compress the offline dataset into a library of skills
that can be readily drawn upon and re-purposed for a multitude of downstream tasks. While
there have been early explorations in this direction [284, 285, 286, 287], development of more
capable algorithms and model-based methods may allow for extraction of more diverse skills
and better ways to utilize them.
Larger offline datasets and high-capacity models The fields of computer vision and
NLP have seen the success of high-capacity self-supervised models like SimCLR, BERT, and
GPT, when trained on large and diverse datasets. In the future, it is clear that we will move
towards larger and more diverse datasets for offline RL as well. For such high-data regimes,
how can we develop offline RL algorithms that scale gracefully with data and compute?
Our recent work on decision transformers [288] takes first steps towards this question by
demonstrating successful results with the transformer architecture for offline RL benchmarks.
Explorations along similar directions would make for exciting future work.
Scaling up meta-learning Similar to above, research in meta-learning has also primarily
focused on algorithmic development in the past half decade. As the algorithms mature and

84

we work with larger datasets for real-world applications, the scaling up of meta-learning
to larger datasets may open the doors for adaptable representations that can support the
learning of thousands of tasks in both perception and control. The study of meta-learning at
scale and understanding if qualitatively different representations emerge when training at
scale would make for important future work.

85

BIBLIOGRAPHY

[1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT Press, 2016.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Commun. ACM, 60(6), 2017.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep
Jaitly, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep
neural networks for acoustic modeling in speech recognition, November 2012.

[4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013.

[5] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. CoRR,
abs/1802.05365, 2018.

[6] Yonghui Wu et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. ArXiv, abs/1609.08144, 2016.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

[8] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–489, 2016.

[9] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and
Sergey Levine. Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. In CoRL, 2018.

86

[10] OpenAI et al. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

[11] Christian Szegedy, W. Zaremba, Ilya Sutskever, Joan Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2014.

[12] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards
generalization and simplicity in continuous control. In NIPS, 2017.

[13] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt:
Learning robust neural network policies using model ensembles. In ICLR, 2017.

[14] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind Rajeswaran, and Emanuel
Todorov. Reinforcement learning for non-prehensile manipulation: Transfer from
simulation to physical system. In IEEE SIMPAR, 2018.

[15] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.
Morel : Model-based offline reinforcement learning. In NeurIPS, 2020.

[16] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework
for model-based reinforcement learning. In ICML, 2020.

[17] Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning
with implicit gradients. In NeurIPS, 2019.

[18] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-
learning. International Conference on Machine Learning (ICML), 2019.

[19] Volodymyr Mnih et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[20] David Silver et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, January 2016.

[21] Oriol Vinyals et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, pages 1–5, 2019.

[22] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In ICLR, 2016.

[23] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel Todorov.
Interactive control of diverse complex characters with neural networks. In NIPS, 2015.

[24] Bowen Baker, I. Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. In ICLR, 2020.

87

[25] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Terrain-adaptive locomo-
tion skills using deep reinforcement learning. ACM Transactions on Graphics (Proc.
SIGGRAPH 2016), 2016.

[26] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis,
University College London, 2003.

[27] Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 2015.

[28] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian
reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 8
(5-6):359–483, 2015.

[29] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10:1633–1685, December
2009.

[30] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In IROS, 2012.

[31] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3):229–256, 1992.

[32] Sham M Kakade. A natural policy gradient. In NIPS, 2002.

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning
(ICML), 2015.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[35] Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling.
In AAAI Conference on Artificial Intelligence, 2015.

[36] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference on
Machine Learning (ICML), 2016.

[37] Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control
for periodic tasks with contacts. In Proceedings of Robotics: Science and Systems, 2011.

[38] Pawel Wawrzynski. Real-time reinforcement learning by sequential actor-critics and
experience replay. Neural Networks, 22:1484–1497, 2009.

88

[39] Kemin Zhou, John C. Doyle, and Keith Glover. Robust and Optimal Control. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-456567-3.

[40] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with
uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

[41] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust markov
decision processes. In NIPS. 2013.

[42] Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor, and Pascal Poupart. Bayesian
Reinforcement Learning, pages 359–386. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[43] Pascal Poupart, Nikos A. Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution
to discrete bayesian reinforcement learning. In ICML, 2006.

[44] S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in continuous
pomdps with application to robot navigation. In ICRA, 2008.

[45] Michael O. Duff. Design for an optimal probe. In ICML, 2003.

[46] Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. Spaan, and Pascal Poupart. Point-
based value iteration for continuous pomdps. Journal of Machine Learning Research, 7:
2329–2367, 2006.

[47] Erick Delage and Shie Mannor. Percentile optimization for markov decision processes
with parameter uncertainty. Operations Research, 58(1):203–213, 2010.

[48] Lennart Ljung. System Identification, pages 163–173. Birkhäuser Boston, Boston, MA,
1998.

[49] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search
for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

[50] Stéphane Ross and Drew Bagnell. Agnostic system identification for model-based
reinforcement learning. In ICML, 2012.

[51] I. Mordatch, K. Lowrey, and E. Todorov. Ensemble-CIO: Full-body dynamic motion
planning that transfers to physical humanoids. In IROS, 2015.

[52] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Optimizing walking controllers
for uncertain inputs and environments. ACM Trans. Graph., 2010.

[53] Bruno Castro da Silva, George Konidaris, and Andrew G. Barto. Learning parameterized
skills. In ICML, 2012.

89

[54] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. In AAAI Conference on Artificial Intelligence. 2015.

[55] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In ICML, 2002.

[56] Sergey Levine and Vladlen Koltun. Guided policy search. In ICML, JMLR Workshop
and Conference Proceedings, pages 1–9. JMLR.org, 2013.

[57] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483,
2009.

[58] Aviv Tamar, Dotan Di Castro, and Ron Meir. Integrating a partial model into model
free reinforcement learning. Journal of Machine Learning Research, 2012.

[59] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in
reinforcement learning. In ICML, 2006.

[60] Svetoslav Kolev and Emanuel Todorov. Physically consistent state estimation and
system identification for contacts. In IEEE Humanoid Robots (Humanoids), 2015.

[61] Joshua Tobin, Rachel Fong, Alex Ray, J. Schneider, W. Zaremba, and P. Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 23–30, 2017.

[62] Joshua Tobin, W. Zaremba, and P. Abbeel. Domain randomization and generative
models for robotic grasping. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3482–3489, 2018.

[63] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-
real transfer of robotic control with dynamics randomization. CoRR, abs/1710.06537,
2017.

[64] Yevgen Chebotar, A. Handa, Viktor Makoviychuk, M. Macklin, J. Issac, Nathan D.
Ratliff, and D. Fox. Closing the sim-to-real loop: Adapting simulation randomization
with real world experience. 2019 International Conference on Robotics and Automation
(ICRA), pages 8973–8979, 2019.

[65] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey
Levine, and Vikash Kumar. Robel: Robotics benchmarks for learning with low-cost
robots. In Conference on Robot Learning (CoRL), 2019.

90

[66] Ofir Nachum, Michael J. Ahn, Hugo Ponte, Shixiang Gu, and Vikash Kumar. Multi-
agent manipulation via locomotion using hierarchical sim2real. ArXiv, abs/1908.05224,
2019.

[67] OpenAI et al. Solving rubik’s cube with a robot hand. ArXiv, abs/1910.07113, 2019.

[68] J. Deng, W. Dong, R. Socher, L. J. Li, K.Li, and L. Fei Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, pages 248–255, 2009.

[69] W. Fisher, G. Doddington, and K. Goudie-Marshall. The DARPA Speech Recognition
Research Database: Specification and Status. In Proceedings of the DARPA Workshop,
pages 93–100, 1986.

[70] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp
Koehn. One billion word benchmark for measuring progress in statistical language
modeling. CoRR, abs/1312.3005, 2013.

[71] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[72] David Silver et al. A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362:1140–1144, 2018.

[73] Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning.
In Reinforcement Learning, volume 12. Springer, 2012.

[74] Philip S Thomas. Safe reinforcement learning. PhD Thesis, 2014. URL http://
scholarworks.umass.edu/dissertations_2/514.

[75] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere, Yuriy
Brun, and Emma Brunskill. Preventing undesirable behavior of intelligent machines.
Science, 366(6468):999–1004, 2019.

[76] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. CoRR, abs/1812.02900, 2018.

[77] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. CoRR, abs/1906.00949, 2019.

[78] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity
in off-policy deep reinforcement learning. CoRR, abs/1907.04543, 2019.

[79] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. CoRR, arXiv:1911.11361, 2019.

http://scholarworks.umass.edu/dissertations_2/514
http://scholarworks.umass.edu/dissertations_2/514

91

[80] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata
Lapedriza, Noah Jones, Shixiang Gu, and Rosalind W. Picard. Way off-policy batch deep
reinforcement learning of implicit human preferences in dialog. CoRR, abs/1907.00456,
2019.

[81] Romain Laroche and Paul Trichelair. Safe policy improvement with baseline bootstrap-
ping. CoRR, abs/1712.06924, 2017.

[82] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans.
Algaedice: Policy gradient from arbitrary experience. CoRR, arXiv:1912.02074, 2019.

[83] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodríguez, and Thomas A. Funkhouser.
Tossingbot: Learning to throw arbitrary objects with residual physics. ArXiv,
abs/1903.11239, 2019.

[84] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In ACC, 2005.

[85] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex
behaviors through online trajectory optimization. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 4906–4913. IEEE, 2012.

[86] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Pe-
ter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon
Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4:1–43, 2012.

[87] Rémi Munos and Csaba Szepesvari. Finite-time bounds for fitted value iteration. J.
Mach. Learn. Res., 9:815–857, 2008.

[88] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. In Advances in Neural Information Processing
Systems, pages 12498–12509, 2019.

[89] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. In ICLR, 2018.

[90] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and
Pieter Abbeel. Model-based reinforcement learning via meta-policy optimization. ArXiv,
abs/1809.05214, 2018.

[91] Omer Gottesman, Fredrik D. Johansson, Joshua Meier, Jack Dent, Donghun Lee,
Srivatsan Srinivasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao,

92

Isaac Lage, Christopher Mosch, Li-Wei H. Lehman, Matthieu Komorowski, Aldo Faisal,
Leo Anthony Celi, David A. Sontag, and Finale Doshi-Velez. Evaluating reinforcement
learning algorithms in observational health settings. CoRR, abs/1805.12298, 2018.

[92] Lu Wang, Wei Zhang 0056, Xiaofeng He, and Hongyuan Zha. Supervised reinforcement
learning with recurrent neural network for dynamic treatment recommendation. In
Yike Guo and Faisal Farooq, editors, KDD, pages 2447–2456. ACM, 2018.

[93] Chao Yu, Guoqi Ren, and Jiming Liu 0001. Deep inverse reinforcement learning for
sepsis treatment. In ICHI, pages 1–3. IEEE, 2019. ISBN 978-1-5386-9138-0.

[94] Alexander L. Strehl, John Langford, and Sham M. Kakade. Learning from logged
implicit exploration data. CoRR, abs/1003.0120, 2010.

[95] Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback
through counterfactual risk minimization. J. Mach. Learn. Res, 16:1731–1755, 2015.

[96] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube
recommendations. In RecSys. ACM, 2016.

[97] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi.
Top-k off-policy correction for a reinforce recommender system. CoRR, abs/1812.02353,
2018.

[98] Li Zhou, Kevin Small, Oleg Rokhlenko, and Charles Elkan. End-to-end offline goal-
oriented dialog policy learning via policy gradient. CoRR, abs/1712.02838, 2017.

[99] Nikos Karampatziakis, Sebastian Kochman, Jade Huang, Paul Mineiro, Kathy Osborne,
and Weizhu Chen. Lessons from real-world reinforcement learning in a customer support
bot. CoRR, abs/1905.02219, 2019.

[100] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Kumar Yogamani.
Deep reinforcement learning framework for autonomous driving. CoRR, abs/1704.02532,
2017.

[101] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms, 2010. Comment: 10
pages, 7 figures, revised from the published version at the WSDM 2011 conference.

[102] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy
gradient with state distribution correction. CoRR, abs/1904.08473, 2019.

[103] Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. CoRR,
abs/1702.07121, 2017.

93

[104] Carles Gelada and Marc G. Bellemare. Off-policy deep reinforcement learning by
bootstrapping the covariate shift. In AAAI, pages 3647–3655. AAAI Press, 2019.

[105] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic
estimation of discounted stationary distribution corrections. CoRR, abs/1906.04733,
2019.

[106] Chris Watkins. Learning from delayed rewards. PhD Thesis, Cambridge University,
1989.

[107] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018.

[108] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In ICML, 2019.

[109] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement
by minimizing robust baseline regret. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 2298–2306, 2016.

[110] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. CoRR,
abs/2005.13239, 2020.

[111] Michael Kearns and Satinder Singh. Near optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232, 2002.

[112] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm
for near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2001.

[113] Sham M. Kakade, Michael J. Kearns, and John Langford. Exploration in metric state
spaces. In ICML, 2003.

[114] Nan Jiang. Pac reinforcement learning with an imperfect model. In AAAI, pages
3334–3341, 2018.

[115] Anirudh Vemula, Yash Oza, J. Andrew Bagnell, and Maxim Likhachev. Planning and
execution using inaccurate models with provable guarantees, 2020.

[116] Samuel K. Ainsworth, Matt Barnes, and Siddhartha S. Srinivasa. Mo’ states mo’
problems: Emergency stop mechanisms from observation. CoRR, abs/1912.01649, 2019.

94

[117] Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Improving multi-step
prediction of learned time series models. In AAAI, 2015.

[118] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling
for sequence prediction with recurrent neural networks. ArXiv, abs/1506.03099, 2015.

[119] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[120] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron
Boots, and Evangelos Theodorou. Information theoretic mpc for model-based rein-
forcement learning. 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 1714–1721, 2017.

[121] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning,
1998.

[122] Rasool Fakoor, Pratik Chaudhari, and Alexander J. Smola. P3o: Policy-on policy-off
policy optimization. CoRR, abs/1905.01756, 2019.

[123] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, ICLR, 2015.

[124] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep
reinforcement learning. CoRR, abs/1806.03335, 2018.

[125] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient
exploration through bayesian deep q-networks. In ITA, pages 1–9. IEEE, 2018.

[126] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by
random network distillation. In ICLR, 2019.

[127] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor
Mordatch. Plan online, learn offline: Efficient learning and exploration via model-based
control. In International Conference on Learning Representations (ICLR), 2019.

[128] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[129] Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and S. Levine. D4rl: Datasets for
deep data-driven reinforcement learning. ArXiv, abs/2004.07219, 2020.

[130] Aviral Kumar, Aurick Zhou, G. Tucker, and S. Levine. Conservative q-learning for
offline reinforcement learning. ArXiv, abs/2006.04779, 2020.

95

[131] D. Blei, A. Kucukelbir, and J. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112:859–877, 2016.

[132] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[133] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl:
Datasets for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219,
2020.

[134] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

[135] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to
control: Learning behaviors by latent imagination. International Conference on Learning
Representations, 2020.

[136] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model. arXiv preprint
arxiv:1907.00953.pdf, 2020.

[137] Annie S. Chen, HyunJi Nam, Suraj Nair, and Chelsea Finn. Batch exploration with
examples for scalable robotic reinforcement learning, 2020.

[138] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
2786–2793. IEEE, 2017.

[139] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey
Levine. Stochastic variational video prediction. In ICML, 2018.

[140] Karl Johan Åström and Björn Wittenmark. Adaptive control. 1989.

[141] Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic program-
ming. In Wiley Series in Probability and Statistics, 1994.

[142] Kumpati S. Narendra and Anuradha M. Annaswamy. Persistent excitation in adaptive
systems. International Journal of Control, 1987.

[143] Michael Kearns and Satinder P. Singh. Finite-sample convergence rates for q-learning
and indirect algorithms. In NIPS, 1998.

[144] Alekh Agarwal, Sham M. Kakade, and Lin F. Yang. On the optimality of sparse
model-based planning for markov decision processes. ArXiv, abs/1906.03804, 2019.

96

[145] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy
search under unknown dynamics. In NIPS, 2014.

[146] Wen Sun, Geoffrey J. Gordon, Byron Boots, and J. Andrew Bagnell. Dual policy
iteration. CoRR, abs/1805.10755, 2018.

[147] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models. In
NeurIPS, 2018.

[148] Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep dynamics
models for learning dexterous manipulation. ArXiv, abs/1909.11652, 2019.

[149] Heinrich von Stackelberg. Market structure and equilibrium. 1934.

[150] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In ICML, 2017.

[151] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando C Pereira. Analysis of
representations for domain adaptation. In NIPS, 2006.

[152] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain
adaptation. In AAAI, 2015.

[153] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization
locally: A follow-the-ridge approach. ArXiv, abs/1910.07512, 2019.

[154] Tanner Fiez, Benjamin Chasnov, and Lillian J. Ratliff. Convergence of learning dynamics
in stackelberg games. ArXiv, abs/1906.01217, 2019.

[155] Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. Learning with opponent-learning awareness. In AAMAS,
2017.

[156] Florian Schäfer and Anima Anandkumar. Competitive gradient descent. In NeurIPS,
2019.

[157] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. 2006.

[158] Benoît Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization.
Annals of Operations Research, 153:235–256, 2007.

[159] Steven G. Krantz and Harold R. Parks. The implicit function theorem: History, theory,
and applications. 2002.

97

[160] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algo-
rithms. arXiv preprint arXiv:1803.02999, 2018.

[161] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In NIPS, 2017.

[162] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative
adversarial networks. ArXiv, abs/1611.02163, 2017.

[163] Vijaymohan Konda and Vivek S. Borkar. Actor-critic - type learning algorithms for
markov decision processes. SIAM J. Control and Optimization, 38:94–123, 1999.

[164] Shai Shalev-Shwartz. Online learning and online convex optimization. "Foundations
and Trends in Machine Learning", 2012.

[165] H. Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence
theorems and l1 regularization. In AISTATS, 2011.

[166] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine.
Soft actor-critic algorithms and applications. ArXiv, abs/1812.05905, 2018.

[167] Elad Hazan, Sham M. Kakade, Karan Singh, and Abby Van Soest. Provably efficient
maximum entropy exploration. In ICML, 2018.

[168] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. ArXiv, abs/1906.04161, 2019.

[169] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar.
Dexterous manipulation with deep reinforcement learning: Efficient, general, and
low-cost. 2019 International Conference on Robotics and Automation (ICRA), pages
3651–3657, 2018.

[170] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. In Proceedings of Robotics: Science
and Systems (RSS), 2018.

[171] Lennart Ljung. System identification: Theory for the user. 1987.

[172] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality
and approximation with policy gradient methods in markov decision processes. ArXiv,
abs/1908.00261, 2019.

98

[173] Igor Mordatch and Emanuel Todorov. Combining the benefits of function approximation
and trajectory optimization. In RSS, 2014.

[174] Vikash Kumar, Emanuel Todorov, and Sergey Levine. Optimal control with learned local
models: Application to dexterous manipulation. 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 378–383, 2016.

[175] Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based reinforcement learning with theoretical guarantees. ArXiv,
abs/1807.03858, 2018.

[176] Marc Peter Deisenroth and Carl E. Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In ICML, 2011.

[177] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois,
S. Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based
reinforcement learning. ArXiv, abs/1907.02057, 2019.

[178] Vijay R. Konda and John N. Tsitsiklis. Convergence rate of linear two-time-scale
stochastic approximation. In The Annals of Applied Probability, 2004.

[179] Prasenjit Karmakar and Shalabh Bhatnagar. Two time-scale stochastic approximation
with controlled markov noise and off-policy temporal-difference learning. Mathematics
of Operations Research, 43:130–151, 2015.

[180] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In ICML, 1990.

[181] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph Gonzalez, and
Sergey Levine. Model-based value estimation for efficient model-free reinforcement
learning. CoRR, abs/1803.00101, 2018.

[182] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion. arXiv
preprint arXiv:1807.01675, 2018.

[183] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement
learning. In ICML, 2015.

[184] Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for
reinforcement learning. ArXiv, abs/1604.00923, 2016.

[185] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust
doubly robust off-policy evaluation. In ICML, 2018.

99

[186] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. Diploma thesis,
Institut f. Informatik, Tech. Univ. Munich, 1987.

[187] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business
Media, 1998.

[188] Devang K Naik and RJ Mammone. Meta-neural networks that learn by learning. In
International Joint Conference on Neural Netowrks (IJCNN), 1992.

[189] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. Meta-learning with memory-augmented neural networks. In International
Conference on Machine Learning (ICML), 2016.

[190] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Neural Information Processing Systems (NIPS), 2016.

[191] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. International Conference on Machine Learning (ICML),
2017.

[192] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using
gradient descent. In International Conference on Artificial Neural Networks, 2001.

[193] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[194] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[195] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International Conference on Machine
Learning, pages 2113–2122, 2015.

[196] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations
and gradient descent can approximate any learning algorithm. arXiv:1710.11622, 2017.

[197] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot
visual imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[198] Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings. Meta-learning for low-
resource natural language generation in task-oriented dialogue systems. arXiv preprint
arXiv:1905.05644, 2019.

[199] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and
Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary and competi-
tive environments. CoRR, abs/1710.03641, 2017.

100

[200] Chelsea Finn. Learning to Learn with Gradients. PhD thesis, UC Berkeley, 2018.

[201] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly
for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[202] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Re-
casting gradient-based meta-learning as hierarchical bayes. International Conference
on Learning Representations (ICLR), 2018.

[203] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations (ICLR), 2015.

[204] James Martens. Deep learning via hessian-free optimization. In ICML, 2010.

[205] Jorge Nocedal and Stephen J. Wright. Numerical optimization (springer series in
operations research and financial engineering). 2000.

[206] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How
to escape saddle points efficiently. In ICML, 2017.

[207] Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its
global performance. Math. Program., 108:177–205, 2006.

[208] Amirreza Shaban, Ching-An Cheng, Olivia Hirschey, and Byron Boots. Truncated
back-propagation for bilevel optimization. CoRR, abs/1810.10667, 2018.

[209] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. One
shot learning of simple visual concepts. In Conference of the Cognitive Science Society
(CogSci), 2011.

[210] Jaehong Kim, Youngduck Choi, Moonsu Cha, Jung Kwon Lee, Sangyeul Lee, Sungwan
Kim, Yongseok Choi, and Jiwon Kim. Auto-meta: Automated gradient based meta
learner search. arXiv preprint arXiv:1806.06927, 2018.

[211] Gregory Koch. Siamese neural networks for one-shot image recognition. ICML Deep
Learning Workshop, 2015.

[212] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems, pages 4077–4087,
2017.

[213] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent
adaptive metric for improved few-shot learning. In Advances in Neural Information
Processing Systems, pages 721–731, 2018.

101

[214] Kelsey R Allen, Evan Shelhamer, Hanul Shin, and Joshua B Tenenbaum. Infinite
mixture prototypes for few-shot learning. arXiv preprint arXiv:1902.04552, 2019.

[215] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In Neural Information Processing Systems (NIPS), 2016.

[216] Ke Li and Jitendra Malik. Learning to optimize. International Conference on Learning
Representations (ICLR), 2017.

[217] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel.
Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv:1611.02779,
2016.

[218] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to
reinforcement learn. arXiv:1611.05763, 2016.

[219] Tsendsuren Munkhdalai and Hong Yu. Meta networks. International Conference on
Machine Learning (ICML), 2017.

[220] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning
with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[221] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, and Shimon White-
son. Fast context adaptation via meta-learning. arXiv preprint arXiv:1810.03642,
2018.

[222] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning.
In Advances in Neural Information Processing Systems, pages 9516–9527, 2018.

[223] Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning: Learning to learn in the
concept space. arXiv preprint arXiv:1802.03596, 2018.

[224] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning priors for efficient
online bayesian regression. arXiv preprint arXiv:1807.08912, 2018.

[225] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization.
arXiv preprint arXiv:1807.05960, 2018.

[226] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle.
Meta-dataset: A dataset of datasets for learning to learn from few examples. arXiv
preprint arXiv:1903.03096, 2019.

102

[227] Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning.
arXiv preprint arXiv:1806.10166, 2018.

[228] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. arXiv
preprint arXiv:1602.02355, 2016.

[229] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward
and reverse gradient-based hyperparameter optimization. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1165–1173. JMLR.
org, 2017.

[230] Justin Domke. Generic methods for optimization-based modeling. In AISTATS, 2012.

[231] Chuong B. Do, Chuan-Sheng Foo, and Andrew Y. Ng. Efficient multiple hyperparameter
learning for log-linear models. In NIPS, 2007.

[232] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in
neural networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 136–145. JMLR. org, 2017.

[233] Benoit Landry, Zachary Manchester, and Marco Pavone. A differentiable augmented
lagrangian method for bilevel nonlinear optimization. arXiv preprint arXiv:1902.03319,
2019.

[234] Laurent Hascoët and Mauricio Araya-Polo. Enabling user-driven checkpointing strategies
in reverse-mode automatic differentiation. CoRR, abs/cs/0606042, 2006.

[235] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-
learning with differentiable convex optimization. arXiv preprint arXiv:1904.03758,
2019.

[236] Igor Mordatch. Concept learning with energy-based models. CoRR, abs/1811.02486,
2018.

[237] James Hannan. Approximation to bayes risk in repeated play. Contributions to the
Theory of Games, 1957.

[238] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. J. Comput. Syst. Sci., 71:291–307, 2005.

[239] Elad Hazan. Introduction to online convex optimization. 2016.

[240] Shai Shalev-Shwartz and Sham M. Kakade. Mind the duality gap: Logarithmic regret
algorithms for online optimization. In NIPS, 2008.

103

[241] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 2011.

[242] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml.
arXiv preprint arXiv:1810.09502, 2018.

[243] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for
3d object detection in the wild. In Conference on Applications of Computer Vision
(WACV), 2014.

[244] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv:1606.04671, 2016.

[245] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong
learning with a network of experts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[246] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain: Fine-tuning by
increasing model capacity. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[247] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep
multitask and transfer reinforcement learning. arXiv:1511.06342, 2015.

[248] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization
of a synaptic learning rule. In Optimality in Artificial and Biological Neural Networks,
1992.

[249] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
International Conference on Learning Representations (ICLR), 2017.

[250] Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211–254,
2002.

[251] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. International Conference on
Learning Representations (ICLR), 2017.

[252] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-learning with
temporal convolutions. arXiv preprint arXiv:1707.03141, 2017.

[253] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-
learning: Continual adaptation for model-based rl. arXiv preprint arXiv:1812.07671,
2018.

104

[254] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Online meta-learning by parallel algorithm
competition. arXiv:1702.07490, 2017.

[255] Franziska Meier, Daniel Kappler, and Stefan Schaal. Online learning of a memory for
learning rates. arXiv:1709.06709, 2017.

[256] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank
Wood. Online learning rate adaptation with hypergradient descent. arXiv:1703.04782,
2017.

[257] Erin Grant, Ghassen Jerfel, Katherine Heller, and Thomas L. Griffiths. Modulating
transfer between tasks in gradient-based meta-learning, 2019.

[258] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn. Springer, 1998.

[259] Jieyu Zhao and Jurgen Schmidhuber. Incremental self-improvement for life-time multi-
agent reinforcement learning. In From Animals to Animats 4: International Conference
on Simulation of Adaptive Behavior, 1996.

[260] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An
empirical investigation of catastrophic forgetting in gradient-based neural networks.
arXiv:1312.6211, 2013.

[261] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 2017.

[262] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning, 2017.

[263] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proc. CVPR, 2017.

[264] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with
deep generative replay. In Advances in Neural Information Processing Systems, 2017.

[265] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of
object detectors without catastrophic forgetting. arXiv:1708.06977, 2017.

[266] David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances
in Neural Information Processing Systems, 2017.

[267] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational
continual learning. arXiv:1710.10628, 2017.

105

[268] Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by
continually searching for the simplest still unsolvable problem. In Front. Psychol., 2013.

[269] Jeongtae Lee, Jaehong Yun, Sungju Hwang, and Eunho Yang. Lifelong learning with
dynamically expandable networks. arXiv:1708.01547, 2017.

[270] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network
by iterative pruning. arXiv:1711.05769, 2017.

[271] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. arXiv
preprint arXiv:1802.10269, 2018.

[272] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using
real-time dynamic programming. Artif. Intell., 72:81–138, 1995.

[273] Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In Interna-
tional Conference on Machine Learning, pages 507–515, 2013.

[274] Elad Hazan, Adam Tauman Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret
algorithms for online convex optimization. Machine Learning, 69:169–192, 2006.

[275] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In ICML, 2003.

[276] Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning,
32:151–178, 1995.

[277] Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving
clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient.
In ICML, 2016.

[278] Omar Besbes, Yonatan Gur, and Assaf J. Zeevi. Non-stationary stochastic optimization.
Operations Research, 63:1227–1244, 2015.

[279] Elad Hazan and Seshadhri Comandur. Efficient learning algorithms for changing
environments. In ICML, 2009.

[280] Eric C. Hall and Rebecca M Willett. Online convex optimization in dynamic environ-
ments. IEEE Journal of Selected Topics in Signal Processing, 9:647–662, 2015.

[281] Pierre Alquier, The Tien Mai, and Massimiliano Pontil. Regret bounds for lifelong
learning. In AISTATS, 2016.

106

[282] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-
learn stochastic gradient descent with biased regularization. CoRR, abs/1903.10399,
2019.

[283] Mikhail Khodak, Maria-Florina Balcan, and Ameet S. Talwalkar. Provable guarantees
for gradient-based meta-learning. CoRR, abs/1902.10644, 2019.

[284] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal:
Offline primitive discovery for accelerating offline reinforcement learning. ArXiv,
abs/2010.13611, 2020.

[285] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey
Levine. Parrot: Data-driven behavioral priors for reinforcement learning. ArXiv,
abs/2011.10024, 2020.

[286] Tanmay Shankar and Abhinav Gupta. Learning robot skills with temporal variational
inference. ArXiv, abs/2006.16232, 2020.

[287] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning
with learned skill priors. ArXiv, abs/2010.11944, 2020.

[288] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. ArXiv, abs/2106.01345, 2021.

[289] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. In ICRA, 2018.

[290] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma.
Algorithmic framework for model-based deep reinforcement learning with theoretical
guarantees. In ICLR, 2019.

[291] Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship learning in reinforce-
ment learning. In ICML, 2005.

[292] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction tech-
niques for gradient estimates in reinforcement learning. JMLR, 2001.

[293] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen,
Sham M. Kakade, Igor Mordatch, and Pieter Abbeel. Variance reduction for policy
gradient with action-dependent factorized baselines. In ICLR, 2018.

107

[294] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. In ICLR,
2016.

[295] Sebastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 2015.

[296] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical
Computer Science, 22:317–330, 1983.

[297] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, second edition, 2008.

[298] Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey Radul. Automatic differentia-
tion in machine learning: a survey. CoRR, abs/1502.05767, 2015.

[299] Andreas Griewank. Some bounds on the complexity of gradients, jacobians, and hessians.
1993.

[300] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[301] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[302] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end learning
of deep visuomotor policies. Journal of Machine Learning Research (JMLR), 2016.

[303] Avi Singh, Larry Yang, and Sergey Levine. Gplac: Generalizing vision-based robotic
skills using weakly labeled images. arXiv:1708.02313, 2017.

108

Appendix A

EPOPT: ADDITIONAL ABLATIONS AND EXPERIMENTS

A.1 Hyperparameter and model details

1. Neural network architecture: We used a neural network with two hidden layers, each with
64 units and tanh non-linearity. The policy updates are implemented using TRPO.

2. Trust region size in TRPO: The maximum KL divergence between sucessive policy updates
are constrained to be 0.01

3. Number and length of trajectory rollouts: In each iteration, we sample N = 240 models
from the ensemble, one rollout is performed on each such model. This was implemented in
parallel on multiple (6) CPUs. Each trajectory is of length 1000 – same as the standard
implimentations of these tasks in gym and rllab.

The results in Fig 2.1 and Fig 2.2 were generated after 150 and 200 iterations of TRPO
respectively, with each iteration consisting of 240 trajectories as specified in (3) above.

A.2 Robustness results

We present the results for the Half-Cheetah domain in Figure A.1. This experiment is similar
to the experiment presented in Figure 2.2, where we evaluate the performance of the trained
policy on different physical parameter configurations. In particular, Figure 2.2 illustrates the
performance of the three considered policies: viz. TRPO on mean parameters, EPOpt(ε = 1),
and EPOpt(ε = 0.1). We repeat the same experiment in the half-cheetah domain, and again
find that the EPOpt(ε = 0.1) policy is significantly more robust than training on a single
source domain.

To analyze a stronger degree of robustness, we also analyze the 10th percentile of the
return distribution as a proxy for worst-case performance, which is important for a robust
control policy (here, distribution of returns for a given model instance is due to variations in
initial conditions). The corresponding results are presented below in Figure A.2. We again
find that the soft-adversarial approach with EPOpt(ε = 0.1) leads to the best results.

109

(a)

(b)

Figure A.1: Performance of policies for various model instances for the half-cheetah domain,
similar to Figure 2.2. Again, it is observed that the adversarial trained policy is robust and
generalizes well to all models in the source distribution.

Figure A.2: 10th percentile of return distribution for the hopper task. EPOpt(ε = 0.1)

clearly outperforms the other approaches. The 10th of return distribution for EPOpt(ε = 0.1)

also nearly overlaps with the expected return, indicating that the policies trained using
EPOpt(ε = 0.1) are highly robust and reliable.

110

A.3 Different settings for ε

Here, we analyze how different settings for ε influences the robustness of learned policies. The
policies in this section have been trained for 200 iterations with 240 trajectory samples per
iteration. Similar to the description in Section 3.1, the first 100 iterations use ε = 1, and the
final 100 iterations use the desired ε. The source distribution is described in Table 1. We test
the performance on a grid over the model parameters. Our results, summarized in Table A.1,
indicate that decreasing ε decreases the variance in performance, along with a small decrease
in average performance, and hence enhances robustness.

Table A.1: Performance statistics for different ε settings for the hopper task

Performance (Return)

ε mean std Percentiles

5 10 25 50 75 90

0.05 2889 502 1662 2633 2841 2939 2966 3083
0.1 3063 579 1618 2848 3223 3286 3336 3396
0.2 3097 665 1527 1833 3259 3362 3423 3483
0.3 3121 706 1461 1635 3251 3395 3477 3513
0.4 3126 869 1013 1241 3114 3412 3504 3546
0.5 3122 1009 984 1196 1969 3430 3481 3567
0.75 3133 952 1005 1516 2187 3363 3486 3548
1.0 3224 1060 1198 1354 1928 3461 3557 3604

Max-Lik 1710 1140 352 414 646 1323 3088 3272

A.4 Importance of the baseline for policy gradient

As described in Section 3.1, it is important to use a good baseline estimate for the value
function for the policy optimization step. When optimizing for the expected return, we can
interpret the baseline as a variance reduction technique. Intuitively, policy gradient methods
adjust parameters of the policy to improve probability of trajectories in proportion to their
performance. By using a baseline for the value function, we make updates that increase
probability of trajectories that perform better than average and vice versa. In practice, this
variance reduction is essential for getting policy gradients to work. For the CVaR case, [35]
showed that without using a baseline, the policy gradient is biased. To study importance of
the baseline, we first consider the case where we do not employ the adversarial sub-sampling
step, and fix ε = 1. We use a linear baseline with a time-varying feature vector as described in

111

0 50 100 150 200
Iterations

0

500

1000

1500

2000

2500

3000

3500

P
er

fo
rm

an
ce

EPOpt(ε= 1) with baseline
EPOpt(ε= 1) without baseline

0 50 100 150 200
Iterations

0

500

1000

1500

2000

2500

3000

3500

P
er

fo
rm

an
ce

EPOpt(ε= 1) with baseline
EPOpt(ε= 0. 1) with baseline
EPOpt(ε= 0. 1) without baseline

(a) (b)

Figure A.3: (a) depicts the learning curve for EPOpt(ε = 1) with and without baselines. The
learning curves indicate that use of a baseline provides a better ascent direction, thereby
enabling faster learning. Figure A.3(b) depicts the learning curve when using the average
return and CVaR objectives. For the comparison, we “pre-train” for 100 iterations with
ε = 1 setting and using a baseline. The results indicates that a baseline is very important
for the CVaR objective (ε < 1), without which the performance drops very quickly. Here,
performance is the average return in the source distribution.

Section 3.1. Figure A.3(a) presents the learning curve for the source distribution in Table 2.1.
The results indicate that baselines are crucial to make policy gradients work in practice.

Next, we turn to the case of ε < 1. As mentioned in section 3.1, setting a low ε from the
start leads to unstable learning. The adversarial nature encourages penalizing poor trajectories
more, which constrains the initial exploration needed to find promising trajectories. Thus we
will “pre-train” by using ε = 1 for some iterations, before switching to the desired ε setting.
From Figure A.3(a), it is clear that pre-training without a baseline is unlikely to help, since
the performance is poor. Thus, we use the following setup for comparison: for 100 iterations,
EPOpt(ε = 1) is used with the baseline. Subsequently, we switch to EPOpt(ε = 0.1) and
run for another 100 iterations, totaling 200 iterations. The results of this experiment are
depicted in Figure A.3(b). This result indicates that use of a baseline is crucial for the CVaR
case, without which the performance degrades very quickly. We repeated the experiment
with 100 iterations of pre-training with ε = 1 and without baseline, and observed the same
effect. These empirical results reinforce the theoretical findings of [35].

112

Appendix B

MOREL: PROOFS AND ADDITIONAL EXPERIMENT DETAILS

B.1 Theoretical Results: Proofs For Section 3.5

In this section, we present the proofs of our main results Theorem 1 and Proposition 1.

Proof of Theorem 1. We wish to show the following two inequalities.

Jρ̂0(π,M̂p) ≥ Jρ0(π,M)− 2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U
]
, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,M) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α.

The proof of this theorem is inspired by the simulation lemma of [111], with some additional
modifications due to pessimism, and goes through the pessimistic MDPMp, which is the
same as M̂p except that the starting state distribution is ρ0 instead of ρ̂0 and the transition
probability from a known state-action pair (s, a) is P (s′|s, a) instead of P̂ (s′|s, a). More
concretely, Mp is described by {S ∪ HALT, A, rp, Pp, ρ0, γ}, where HALT is an additional
absorbing state we introduce similar to what we did for M̂p. The modified reward and
transition dynamics are given by:

Pp(s
′|s, a) =

δ(s
′ = HALT)

if Uα(s, a) = TRUE

or s = HALT

P (s′|s, a) otherwise.
rp(s, a) =

{
−κ if s = HALT

r(s, a) otherwise

We first show that

Jρ̂0(π,M̂p) ≥ Jρ0(π,Mp)−
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α, and

Jρ̂0(π,M̂p) ≤ Jρ0(π,Mp) +
2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α,

The main idea is to couple the evolutions of any given policy on the pessimistic MDPMp

and the model-based pessimistic MDP M̂p so that (st−1, at−1)
def
= (s

Mp

t−1 , a
Mp

t−1) = (s
M̂p

t−1 , a
M̂p

t−1).
Assuming that such a coupling can be performed in the first step, since∥∥∥P (s, a)− P̂ (s, a)

∥∥∥
1
≤ α, this coupling can be performed at each subsequent step with

probability 1 − α. The probability that the coupling is not valid at time t is at most

113

1− (1− α)t. So the total difference in the values of the policy π on the two MDPs can be
upper bounded as:∣∣∣Jρ̂0(π,M̂p)− Jρ0(π,Mp)

∣∣∣ ≤ 2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

∑
t

γt
(
1− (1− α)t

)
· 2 ·Rmax

≤ 2Rmax

1− γ
·DTV (ρ0, ρ̂0) +

2γRmax

(1− γ)2
· α.

We now argue that

Jρ0(π,Mp) ≥ Jρ0(π,M)− 2Rmax

1− γ
· E
[
γT

π
u
]
, and

Jρ0(π,Mp) ≤ Jρ0(π,M).

For the first part, we see that the evolution of any policy π on the pessimistic MDPMp, can
be coupled with the evolution of π on the actual MDPM until π encounters an unknown
state. From this point, the total rewards obtained on the pessimistic MDPMp will be −Rmax

1−γ ,
while the maximum total reward obtained by π onM from that point on is Rmax

1−γ . Multiplying
by the discount factor E

[
γT

π
u
]
proves the first part.

For the second part, consider any policy π and let it evolve on the MDPM as (s, a, s′M).
Simulate an evolution of the same policy π onMp,

(
s, a, s′Mp

)
, as follows: if (s, a) ∈ SAk,

then s′Mp
= s′M and if (s, a) ∈ U , then s′Mp

= HALT. We see that the rewards obtained by π
on each transition inMp is less than or equal to that obtained by π on the same transition
inM. This proves the second part of the lemma.

Lemma 4. (Hitting time and visitation distribution) For any set S ⊆ S ×A, and any policy
π, we have E

[
γT

π
S
]
≤ 1

1−γ · d
π,M(S).

Proof of Lemma 4. The proof is rather straightforward. We have

E
[
γT

π
U
]
≤

∑
(s′,a′)∈U

E
[
γ
Tπ
(s′,a′)

]
≤

∑
(s′,a′)∈U

∞∑
t=0

γtP (st = s′, at = a′|s0 ∼ ρ0, π,M)

=
1

1− γ
∑

(s′,a′)∈U

dπ,M(s′, a′) =
1

1− γ
· dπ,M(U).

Proof of Proposition 1. We consider the MDP in Figure B.1, where we set k = 10 log 1
1−γ . The

MDP has k + 1 states, with three actions a1, a2 and a3 at each state. The rewards (shown on
the transition arrows) are all 0 except for the action a1 taken in state k+ 1, in which case it is
1. Note that the rewards can be scaled by Rmax but for simplicity, we consider the setting with

114

Figure B.1: This example shows that the suboptimality of any offline RL algorithm is at least
Rmax

4(1−γ)2
× dπ

∗,M(UD)

log 1
1−γ

in the worst case and hence Corollary 1 is tight. The states 1, 2, · · · , k + 1

in the MDP are depicted under the circles. The actions a1, a2, a3, rewards and transitions are
depicted on the arrows connecting the states. The actions taken by the behavior (i.e. the
data collection) policy are depicted in blue. See Proposition 1 and its proof for more details.

Rmax = 1. It is clear that the optimal policy π∗ is to take the action a1 in all the states. The
starting state distribution ρ0 is state 1 with probability p0

def
= ε

(1−γ) log 1
1−γ

and state k+ 1 with
probability 1− p0. The actions taken by the data collection policy are shown in blue. Since
the dataset consists only of (state, action, reward, next state) pairs (1, a1, 0, 2), (2, a2, 0, 1) and
(k + 1, a1, 1, k + 1) we see that UD = (S × A) \ {(1, a1), (2, a2), (k + 1, a1)} and dπ∗,M(UD) =

(1−γ)·
∑k−1

t=1 γ
t ·p0 ≤ (1−γ)·(k−1)·p0 ≤ ε proving the first claim. Since none of the states and

actions in UD are seen in the dataset, after permuting the actions if necessary, the expected
time taken by any policy learned from the dataset, to reach state k+ 1 starting from state 1 is
at least exp (k/5) ≥ (1−γ)−2. So, the value of any policy π̂ learned from the dataset is at most
1−p0
1−γ + p0·γ(1−γ)

−2

1−γ = 1
1−γ − p0 · 1−γ(1−γ)−2

1−γ ≤ 1
1−γ −

3p0
4(1−γ)

, where we used γ ∈ [0.95, 1) in the last

step. On the other hand, the value of π∗ is at least 1−p0
1−γ +p0 ·

(
1

1−γ − k
)
. So the suboptimality

of any learned policy is at least p0 ·
(

3
4(1−γ)

− k
)

= p0 ·
(

3
4(1−γ)

− 10 log 1
1−γ

)
≥ p0

4(1−γ)
,

where we again used γ ∈ [0.95, 1) in the last step. Substituting the value of p0 proves the
proposition.

Proof of Lemma 1. We first note that the empirical starting distribution ρ̂0 satisfies

DTV (ρ0, ρ̂0) ≤ C
ρ0,min

·

√
log 1

δρ0,min
n

, for a large enough constant C. This is because for each
state s in the support of ρ0, its empirical frequency in D satisfies:

|ρ̂0(s)− ρ0(s)| ≤ C

√
log 1

δρ0,min

n
,

with probability at least 1− δρ0,min using Chernoff’s bound, where C is an absolute numerical
constant. Using union bound over at most 1

ρ0,min
states in the support of ρ0, we see that with

115

probability at least 1− δ, we have DTV (ρ0, ρ̂0) ≤ C
ρ0,min

·

√
log 1

δρ0,min
n

.
Similarly, for any state action pair (s, a), denoting n(s,a) as the number of times (s, a)

appears in D, we have that:

n(s,a)

n
− dπb,M(s, a) ≥ −C

√
log 1

δd
πb
min

n
,

with probability at least 1− dπbminδ. Again using a union bound over all state-action pairs in
the support of dπb,M(·), we see that:

n(s,a) ≥ dπbmin · n− C

√
n · log

1

δdπbmin
,

for every (s, a) in the support of dπb,M(·) with probability at least 1− δ. The asssumption
on the size of n then implies that n(s,a) ≥

d
πb
min·n

2
. Using a similar Chernoff bound argument,

we see that DTV (P (·|s, a), P̂ (·|s, a)) ≤ C
pmin
·
√

log 1

δpmind
πb
min

n(s,a)
for every (s, a) in the support of

dπb,M(·) with probability at least 1 − δ. By choosing α = C
pmin
·
√

log 1

δpmind
πb
min

n(s,a)
, we see that

U ∩ Supp(dπb,M) = ∅ and hence T πbU =∞. By Theorem 1, we have that for any policy π, we
have:

Jρ0(πout,M) ≥ Jρ̂0(πout,M̂p)−
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α

≥ Jρ̂0(π,M̂p)− επ −
2Rmax

1− γ
·DTV (ρ0, ρ̂0)− 2γRmax

(1− γ)2
· α

≥ Jρ0(π,M)− επ −
4Rmax

1− γ
·DTV (ρ0, ρ̂0)− 4γRmax

(1− γ)2
· α− 2Rmax

1− γ
· E
[
γT

π
U
]
.

Plugging π = πb gives us the first assertion and plugging π = π∗ and using Lemma 4 gives us
the second assertion.

116

B.2 Additional Experimental Details And Results

B.2.1 Environment Details And Setup

As mentioned before, following recent efforts in offline RL [76, 77, 79], we consider four
continuous control tasks: Hopper-v2, HalfCheetah-v2, Ant-v2, Walker2d-v2 from OpenAI
gym [128] simulated with MuJoCo [30]. As normally done in MBRL literature with OpenAI
gym tasks [89, 289, 290, 16], we reduce the planning horizon for the environments to 400 or
500. Similar to [290, 16], we append our state parameterization with center of mass velocity
to compute the reward from observations. Mirroring realistic settings, we assume access to
data collected using a partially trained (sub-optimal) policy interacting with the environment.
To obtain a partially trained policy πp [76, 77, 79], we run (online) TRPO [33] until the policy
reaches a value of 1000, 4000, 1000, 1000 respectively for these environments. This policy in
conjunction with exploration strategies are used to collect the datasets (see below for more
details). All our results are obtained by averaging runs of five random seeds (for the planning
algorithm), with the seed values being 123, 246, 369, 492, 615. Each of our experiments are
run with 1 NVidia GPU and 2 CPUs using a total of 16GB of memory.

B.2.2 Dynamics Model, Policy Network And Evaluation

We use 2 hidden layer MLPs with 512 (for Hopper-v2, Walker2d-v2, Ant-v2) or 1024
(for HalfCheetah-v2) ReLU activated nodes each for representing the dynamics model, use
an ensemble of four such models for building the USAD, and our policy is represented with a
2 hidden layer MLP with 32 tanh activated nodes in each layer. The dynamics model is learnt
using Adam [123] and the policy parameters are learnt using model-based NPG steps [16].
We set hyper-parameters and track policy learning curve by performing rollouts in the real
environment; these rollouts aren’t used for other purposes in the learning procedure. Similar
protocols are used in prior work[76, 77, 79].

B.2.3 Details about the BRAC datasets

We build off the experimental setup of [79]. Towards this, we first go over some notation.
Firstly, let πb represent the behavior policy, πr is a random policy that picks actions according
to a certain probability distribution (for e.g., Gaussian πgr/Uniform πur etc.), πp a partially-
trained policy, which one can assume is better than a random policy in value. Let πub (q) be
a policy that plays random actions with probability q, and sampled actions from πb with
probability 1− q. Let πgb (β) be a policy that adds zero-mean Gaussian noise with standard
deviation β to actions sampled from πb. Consider a behavior policy which, for instance, can
be a partially trained data logging policy πb. We consider five different exploration strategies,
each corresponding to adding different kinds of exploratory noise to πb, as described below.

117

For each environment, we use a combination of a behavior policy πb, a noisy behavior
policy π̃b (see below), and a pure random stochastic process πr to collect several datasets,
following Wu et al. [79]. Each dataset contains the equivalent of 1 million timesteps of
interactions with the environment. See below for detailed instructions.

(E1) Pure: The entire dataset is collected with the data logging (behavioral) policy πb.

(E2) Eps-1: 40% of the dataset is collected with πb, another 40% collected with πub (0.1), and
the final 20% is collected with a random policy πr.

(E3) Eps-3: 40% of the dataset is collected with πb, another 40% collected with πub (0.3), and
the final 20% is collected with a random policy πr.

(E4) Gauss-1: 40% of the dataset is collected with πb, another 40% collected with πgb (0.1),
and the final 20% is collected with a random policy πr.

(E5) Gauss-3: 40% of the dataset is collected with πb, another 40% collected with πgb (0.3),
and the final 20% is collected with a random policy πr.

B.2.4 Hyperparameter Guidelines and Ablations

We did not have resources to perform a thorough hyperparamter search, and largely used our
intuitions to guide the choice of hyperparameters. We believe that better results are possible
with hyperparameter optimization. First, we present the influence of the discrepancy threshold
for differentiating known and unknown states. We first define the maximum discipancy in
the dataset:

discD = max
(s,a)∈D

max
i,j
‖fi(s, a)− fj(s, a)‖

where D denotes offline dataset, and fi denotes ith dynamics model in the ensemble.

Table B.1: Influence of discrepancy threshold on the Hopper-v2 task. We use a penalty of 0.0

along with episode termination for visiting unknown regions in these experiments. We train
all the cases for 1000 iterations, and report the average value over the last 100 iterations.

Discrepancy Threshold Value in P-MDP Value in true MDP

0.1× discD 1315.16 2082.21

0.2× discD 2479.92 3244.48

0.5× discD 3074.75 3359.66

1.0× discD 3543.23 3595.60

5.0× discD 3245.66 3027.59

Naive-MBRL 3656.08 2809.66

118

Our general observations and guidelines for hyperparameters are:

1. In Table B.1, we first note that 0.1 × discD has the most amount of pessimism and
Naive-MBRL has the least/no amount of pessimism. We observe that we obtain best
results in the true MDP with an intermediate level of pessimism. Having either too
much pessimism or no pessimism both lead to poor results, but for very different reasons
that we outline below.

2. A high degree of pessimism makes policy optimization in the P-MDP difficult. The opti-
mization process may be slow or highly noisy. This is due to non-smoothness introduced
in the dynamics and reward due to abrupt changes involving early episode terminations.
If difficulty in policy optimization is observed in the P-MDP, we recommend considering
reducing the degree of pessimism.

3. With a lack or low degree of pessimism, policy optimization is typically easier, but the
performance in the true MDP might degrade. If it is observed that the value in the
P-MDP overestimates the value in the true MDP substantially, then we recommend
increasing the degree of pessimism.

4. For the tasks considered in this work, positive rewards indicate progress towards the
goal. Most of the locomotion tasks involve forward velocity as the primary component
of the the reward term. In these cases, we observed that the choice of reward penalty
for going into unknown regions did not play a crucial role, as long as it was ≤ 0. The
degree of influence of this parameter in other environments is yet to be determined, and
beyond the scope of our empirical study.

119

Appendix C

GAME-MBRL: PROOFS AND EXPERIMENT DETAILS

C.1 Theoretical Results

Lemma 1 restated. (Simulation lemma) Suppose we have a model M̂ such that

DTV (PM (·|s, a), PM̂ (·|s, a)) ≤ εM ∀(s, a),

and the reward function is such that |R(s)| ≤ Rmax ∀s ∈ S. Then, we have∣∣∣J(π,M)− J(π,M̂)
∣∣∣ ≤ 2γεMRmax

(1− γ)2
∀π

Proof. Let V π(s,M) and V π(s,M̂) denote the value of policy π starting from an arbitrary
state s ∈ S in M and M̂ respectively. For simplicity of notation, we also define

P π
M (s′|s) := Ea∼π(·|s) [PM (s′|s, a)] and P π

M̂
(s′|s) := Ea∼π(·|s)

[
PM̂ (s′|s, a)

]
.

Before the proof, we note the following useful observations.

1. Since DTV (PM (·|s, a), PM̂ (·|s, a)) ≤ εM ∀(s, a), the inequality also holds for an average
over actions, i.e. DTV (P π

M (·|s), P π
M̂

(·|s)) ≤ εM ∀s.

2. Since the rewards are bounded, we can achieve a maximum reward of Rmax in each time
step. Using a geometric summation with discounting γ, we have

max
s∈S

V π(s,M) ≤ Rmax

1− γ
∀π, s

3. Let f(x) : x ∈ X → [−fmax, fmax] be a real-valued function with bounded range, i.e.
0 ≤ fmax <∞. Let P1(x) and P2(x) be two probability distribution (density) over the
space X . Then, we have∣∣Ex∼P1(·)[f(x)]− Ex∼P2(·)[f(x)]

∣∣ ≤ 2fmax DTV (P1, P2)

120

Using the above observations, we have the following inequalities:∣∣∣V π(s,M)− V π(s,M̂)
∣∣∣

=
∣∣∣R(s) + γEs′∼PπM (·|s)

[
V π(s′,M)

]
−R(s)− γEs′∼Pπ

M̂
(·|s)
[
V π(s′,M̂)

]∣∣∣
≤ γ

∣∣∣Es′∼PπM (·|s)
[
V π(s′,M)

]
− Es′∼Pπ

M̂
(·|s)
[
V π(s′,M)

]∣∣∣+
γ
∣∣∣Es′∼Pπ

M̂
(·|s)
[
V π(s′,M)− V π(s′,M̂)

]∣∣∣
≤ 2γ

(
max
s′∈S

V π(s′,M)

)
DTV (P π

M (·|s), P π
M̂

(·|s)) + γmax
s′∈S

∣∣∣V π(s′,M)− V π(s′,M̂)
∣∣∣

Since the above bound holds for all states, we have that ∀π

(1− γ) max
s′∈S

∣∣∣V π(s′,M)− V π(s′,M̂)
∣∣∣ ≤ 2γ

(
max
s′inS

V π(s′,M)
)
DTV (P π

M (·|s), P π
M̂

(·|s))

≤ 2γRmax

1− γ
DTV (P π

M (·|s), P π
M̂

(·|s))

≤ 2γεMRmax

1− γ
Stated alternatively, the above inequality implies∣∣∣V π(s,M)− V π(s,M̂)

∣∣∣ ≤ 2γεMRmax

(1− γ)2
∀s, π

Finally, note that the performance criteria J(π,M̂) and J(π,M) are simply the average of
the value function over the initial state distribution. Since the above inequality holds for all
states, it also holds for the average over initial state distribution.

We note that the above simulation lemma (or closely related forms) have been proposed
and proved several times in prior literature (e.g. see [113, 291]). We present the proof largely
for completeness and also to motivate the proof techniques we will use for our main theoretical
result (Theorem 2).

C.1.1 Performance with Task-Driven Local Models

We now relax the global model requirement and consider the case where we have more local
models, as well as the case of a policy-model equilibrium pair. We first provide a lemma that
characterizes error amplification in local simulation.

Lemma 5. (Error amplification in local simulation) Let P1(·|s) and P2(·|s) be two Markov
chains with the same initial state distribution. Let P t

1(s) and P t
2(s) be the marginal distributions

over states at time t when following P1 and P2 respectively. Suppose

Es∼P t1 [DTV (P1(·|s), P2(·|s))] ≤ ε ∀ t

121

then, the marginal distributions are bounded as:

DTV (P t
1, P

t
2) ≤ εt ∀ t

Proof. Let us fix a state s ∈ S, and let s̄ ∈ S denote a “dummy” state variable. Then,

∣∣P t
1(s)− P t

2(s)
∣∣ =

∣∣∣∣∣∑
s̄∈S

P1(s|s̄)P t−1
1 (s̄)−

∑
s̄∈S

P2(s|s̄)P t−1
2 (s̄)

∣∣∣∣∣
≤
∑
s̄∈S

∣∣P1(s|s̄)P t−1
1 (s̄)− P2(s|s̄)P t−1

2 (s̄)
∣∣

≤
∑
s̄∈S

∣∣P t−1
1 (s̄)

(
P1(s|s̄)− P2(s|s̄)

)∣∣+
∣∣P2(s|s̄)

(
P t−1

1 (s̄)− P t−1
2 (s̄)

)∣∣
Using the above inequality, we have

2DTV (P t
1, P

t
2) =

∑
s∈S

∣∣P t
1(s)− P t

2(s)
∣∣

≤
∑
s̄∼S

P t−1
1 (s̄)

∑
s∈S

|P1(s|s̄)− P2(s|s̄)|+
∑
s̄∈S

∣∣P t−1
1 (s̄)− P t−1

2 (s̄)
∣∣

≤ 2ε+ 2DTV (P t−1
1 , P t−1

2)

≤ 2tε

where the last step uses the previous inequality recursively till t = 0, where the Markov chains
have the same (initial) state distribution.

The above lemma considers the error between two Markov chains. Note that fixing a policy
in an MDP results in a Markov chain transition dynamics. Thus, fixing the policy, we can
use the above lemma to compare the resulting Markov chains in M and M̂ . Consider the
following definitions:

µπ
M̂

(s, a) =
1

T∞

T∞∑
t=0

P (st = s, at = a)

µ̃π
M̂

(s, a) = (1− γ)
∞∑
t=0

γtP (st = s, at = a)

The first distribution µπ
M̂

is the average state visitation distribution when executing π in
M̂ , and T∞ is the episode duration (could tend to ∞ in the non-episodic case). The second
distribution µ̃π

M̂
is the discounted state visitation distribution when executing π in M̂ . Let

µπM and µ̃πM be their analogues inM . When learning the dynamics model, we would minimize
the prediction error under µπM , while J(π,M) is dependent on rewards under µ̃πM . Let

µπ,tM (s, a) = P (st = s, at = a)

122

be the marginal distribution at time t when following π in M . Let µπ,t
M̂

(s, a) be analogously
defined when following π in M̂ . Using these definitions, we first characterize the difference in
performance of the same policy π under M and M̂ .

Lemma 6. (Performance difference due to model error) Let M and M̂ be two different
MDPs differing only in their transition dynamics – PM and PM̂ . Let the absolute value of
rewards be bounded by Rmax. Fix a policy π for both M and M̂ , and let P t

M and P t
M̂

be the
resulting marginal state distributions at time t. If the MDPs are such that

E(s,a)∼µπ,tM

[
DTV

(
PM (·|s, a), PM̂ (·|s, a)

)]
≤ ε ∀t

then, the performance difference is bounded as:∣∣∣J(π,M)− J(π,M̂)
∣∣∣ ≤ 2γεRmax

(1− γ)2

Proof. Recall that the performance of a policy can be written as:

J(π,M̂) =
1

1− γ
Eµ̃πM [R(s)] = E

[
∞∑
t=0

γtR(st)

]
where the randomness for the second term is due to M̂ and π. We can analogously write
J(π,M) as well. Thus, the performance difference can be bounded as:∣∣∣J(π,M)− J(π,M̂)

∣∣∣ =

∣∣∣∣ 1

1− γ
Eµ̃πM [R(s)]− 1

1− γ
Eµ̃π

M̂
[R(s)]

∣∣∣∣
≤ 2Rmax

1− γ
DTV

(
µ̃πM , µ̃

π
M̂

)
Also recall that we have

µπ,t
M̂

(s, a) = P (st = s, at = a) = P t
M̂

(s)π(a|s)

We can bound the discounted state visitation distribution as

2DTV

(
µ̃πM , µ̃

π
M̂

)
=
∑
s,a

∣∣∣µ̃πM (s, a)− µ̃π
M̂

(s, a)
∣∣∣

= (1− γ)
∑
s,a

∣∣∣∣∣∑
t

γtµπ,tM (s, a)− γtµπ,t
M̂

(s, a)

∣∣∣∣∣
≤ (1− γ)

∑
s,a

∑
t

γt
∣∣∣µπ,tM (s, a)− µπ,t

M̂
(s, a)

∣∣∣
= (1− γ)

∑
s

∑
t

γt
∣∣∣P t
M (s)− P t

M̂
(s)
∣∣∣

≤ (1− γ)
∞∑
t=0

γt (2tε)

123

where the last inequality uses Lemma 5. Notice that the final summation is an arithmetico-
geometric series. When simplified, this results in

DTV

(
µ̃πM , µ̃

π
M̂

)
≤ (1− γ)

εγ

(1− γ)2
≤ εγ

1− γ

Using this bound for the performance difference yields the desired result.

Remarks: The performance difference (due to model error) lemma we present is quite
distinct and different from the performance difference lemma from Kakade and Langford [55].
Specifically, our lemma bounds the performance difference between the same policy in two
different models. In contrast, the lemma from Kakade and Langford [55] characterizes the
performance difference between two different policies in the same model.

C.1.2 Proof of main theorem

Armed with the above results, we are now ready to prove the main theorem which
characterizes the global performance when we have a policy-model pair close to equilibrium.

Theorem 2 restated. (Global performance of equilibrium pair) Suppose we have policy-model
pair (π,M̂) such that the following conditions hold simultaneously:

L(M̂ , µπ,tM) ≤ εM ∀t and J(π,M̂) ≥ sup
π′
J(π′,M̂)− επ.

Let π∗ be an optimal policy so that J(π∗,M) ≥ J(π′,M) ∀π′. Then, we have

J(π∗,M)− J(π,M) ≤
2γ
√
εMRmax

(1− γ)2
+ επ +

2Rmax

1− γ
DTV

(
µ̃π
∗

M , µ̃
π∗

M̂

)
.

Proof. We first simplify the performance difference, and subsequently bound the different
terms. Let π∗

M̂
to be an optimal policy in the model, so that J(π∗

M̂
,M̂) ≥ J(π′,M̂) ∀π′. We

can decompose the performance difference due to various contributions as:

J(π∗,M)− J(π,M) = J(π∗,M)− J(π∗,M̂) + J(π∗,M̂)− J(π,M)

= J(π∗,M)− J(π∗,M̂)︸ ︷︷ ︸
Term−I

+ J(π∗,M̂)− J(π,M̂)︸ ︷︷ ︸
Term−II

+ J(π,M̂)− J(π,M)︸ ︷︷ ︸
Term−III

Let us first consider Term-II, which is related to the sub-optimality in the planning problem.
Notice that we have:

J(π∗,M̂)− J(π,M̂) =
(
J(π∗,M̂)− J(π∗

M̂
,M̂)

)
+
(
J(π∗

M̂
,M̂)− J(π,M̂)

)
≤ 0 + επ

124

We have J(π∗,M̂) − J(π∗
M̂
,M̂) ≤ 0 since π∗

M̂
is the optimal policy in the model, and we

have J(π∗
M̂
,M̂)− J(π,M̂) ≤ επ due to the approximate equilibrium condition.

For Term-III, we will draw upon the model error performance difference lemma (Lemma 6).
Note that the equilibrium condition of low error along with Pinsker’s inequality implies

Es∼µπ,tM
[
DTV

(
PM (·|s, a), PM̂ (·|s, a)

)]
≤
√
εM

Using this and Lemma 6, we have

J(π,M̂)− J(π,M) ≤
2γ
√
εMRmax

(1− γ)2

Finally, Term-I is a transfer learning term that measures the error of M̂ (which has low
error under π) under the distribution of π∗. The performance difference can be written as

J(π∗,M)− J(π∗,M̂) =
1

1− γ
E(s,a)∼µ̃π∗M

[R(s)]− 1

1− γ
E(s,a)∼µ̃π∗

M̂

[R(s)]

≤ 2Rmax

1− γ
DTV

(
µ̃π
∗

M , µ̃
π∗

M̂

)
Putting all the terms together, we have

J(π∗,M)− J(π,M) ≤ 2Rmax

1− γ
DTV

(
µ̃π
∗

M , µ̃
π∗

M̂

)
+ επ +

2γ
√
εMRmax

(1− γ)2

Remarks: Tighter bounds on the transfer learning term is not possible without additional
assumptions. However, the spirit of the transfer learning issue is captured by the term.

1. It suggests that there is a preference hierarchy between models that achieve similar low
error under µπM . The models that can simulate a wider class of policies (i.e. have better
transfer) are preferable for MBRL. This establishes a concrete connection between
MBRL and domain adaptation, and we hope that various ideas from transfer learning
and domain adaptation [151] can benefit MBRL.

2. The structure of µπ∗M provides avenues to achieve better transfer. Note that the start
state distribution is the same for M and M̂ , and is also shared by all policies. Thus, if
we could design or choose the start state distribution to be wide, it automatically ensures
good mixing between µπ∗M and µπ∗

M̂
by virtue of them sharing the start state distribution.

We could obtain such a distribution by training an exploratory policy [150, 167], and
executing it for a few steps to construct a starting state distribution.

125

The theorem assumes that the errors are small at each timestep: L(M̂ , µπ,tM) ≤ εM ∀t. This
is only a slightly stronger assumption than the average error being small. In practice, by
executing the policy, we would have a dataset drawn from µπM . Thus, it should be possible to
make the error small under µπM . Recall that µπM = (1/T∞)

∑T∞
t=0 µ

π,t
M . If we use an expressive

function approximator, and if there is sufficient concentration of measure, small error over µπM
would lead to small error at each timestep. Furthermore, since we typically store time-indexed
trajectories, we can check in practice that the error is small at each timestep.

C.2 Algorithm Implementation Details and Experiments

Our implementation builds on top of MJRL (https://github.com/aravindr93/mjrl) for
NPG [12, 170] and interfacing with MuJoCo/OpenAI-gym [30, 128]. We adapt the NPG
implementation to work with learned models. Our model learning minimizes one-step
prediction error using Adam. We first describe the details of these subroutines before
describing the full algorithms.

Policy Details We represent the policy as a neural network, and use the learned model
for performing synthetic rollouts as specified in Subroutine 1. For the set of initial states, we
can either sample from the initial state distribution of MDP (if it is known) or keep track
of initial states from the environment in a separate initial state replay buffer. We found
both to perform near-identically. Furthermore, the synthetic rollouts can be started from
either the initial state distribution of the MDP, or from intermediate states in real rollouts.
We found starting 50% of synthetic rollouts from intermediate (real-world) rollout states
leads to better asymptotic results for longer horizon gym tasks. This is consistent with prior
works that suggest sampling from a wide initial state distribution is beneficial for policy
gradient methods [55, 12]. The subroutine is written assuming a reward oracle, which can
either be a known function, or can be learned from data. We found both settings to work
near-identically, since rewards are often simple functions of the state-action and substantially
easier to learn than dynamics. We consider a maximum rollout horizon of 500, which can
become shorter if the maximum environment horizon is smaller, or if termination conditions
kick in for the rollouts. If the environments have termination conditions, we enforce these for
the synthetic rollouts as well. Finally, we use a baseline/value network for the purposes of
variance reduction [292, 293] – specifically GAE [294]. We use the default values for most
parameters as summarized in Table C.1, and do not tune them.

Model details We model the MDP dynamics with ensembles of neural network dynamics
models. Ensembles capture epistemic uncertainty [147] and provide robustness for policy
optimization [13]. We are provided with a dataset of tuples D = {(st, at, st+1)}, and we

https://github.com/aravindr93/mjrl

126

Subroutine 1 Model-Based Natural Policy Gradient Update Step
1: Require: Policy (stochastic) network πθ, value/baseline network Vψ, ensemble of MDP

dynamics models {M̂φ}, reward function R, initial state distribution or buffer.
2: Hyperparameters: Discount factor γ, GAE λ, number of trajectories Nτ , rollout

horizon H, normalized NPG step size δ
3: Initialize trajectory buffer Dτ = {}
4: for k = 1, 2, . . . , Nτ do
5: Sample initial state sk0 from initial state distribution/buffer
6: Perform H step rollout from sk0 with πθ to get τ kj = (sk0, a

k
0, s

k
1, a

k
2, . . . s

k
H , a

k
H), one for

each model M̂ j
φ in the ensemble.

7: Query reward function to obtain rewards for each step of the trajectories
8: Truncate trajectories if termination/truncation conditions are part of the environment
9: Aggregate the trajectories in trajectory buffer, Dτ = Dτ ∪ {τ}
10: end for
11: Compute advantages for each trajectory using Vψ and GAE [294].
12: Compute vanilla policy gradient using the dataset

g = E(s,a)∼Dτ [∇θ log πθ(a|s)Aπ(s, a)]

13: Perform normalized NPG update (F denotes the Fisher matrix)

θ = θ +

√
δ

gTF−1g
F−1g

14: Update value/baseline network Vψ to fit the computed returns in Dτ .
15: Return Policy network πθ, value network Vψ

parameterize the model as:

M̂φ(st, at) = st + σ∆ MLPφ

(
st − µs
σs

,
at − µa
σa

)
where we ∆t = st+1−st are the state differences, and mean centering and scaling are performed
based on the dataset. We solve the following optimization problem to learn the parameters:

min
φ

E(st,at,st+1)∼D

[∥∥∥∥(st+1 − st)− σ∆ MLPφ

(
st − µs
σs

,
at − µa
σa

)∥∥∥∥2
]
.

We specify the important hyperparameters along with PAL and MAL descriptions. When
training, we also ensure that at-least 102 gradient steps and at-most 105 gradient steps are
used, to avoid boundary issues when the buffer size is too small or large.

127

Table C.1: Hyperparameters used for policy improvement with NPG

Parameter Value
Policy network MLP (64, 64)

Value/baseline network MLP (128, 128)
Discount γ 0.995
GAE λ 0.97

synthetic trajectories (Nτ) 200
Rollout horizon (H) min (env-horizon, 500, termination)
normalized step size δ 0.05

Policy As Leader: The practical version of the PAL-NPG algorithm is provided below.
The algorithm alternates between collecting a small amount of data in each iteration, learning
a dynamics model, and conservatively improving the policy. We use a small replay buffer
to aggregate data from the past few iterations, but the replay buffer is kept small in size to
ensure that the model is primarily trained to be accurate under current state visitation.

Algorithm 10 Policy As Leader (PAL) – Practical Version

1: Initialize: Policy network π0, model network(s) M̂0, value network V0.
2: Hyperparameters: Initial samples Ninit, samples per update N , buffer size B ≈ N ,

number of NPG steps K ≈ 1

3: Initial Data: Collect Ninit samples from the environment by interacting with initial
policy. Store data in buffer D.

4: for k = 0, 1, 2, . . . do
5: Learn dynamics model(s) M̂k+1 using data in the buffer.
6: Policy updates: πk+1, Vk+1 = Model-Based NPG(πk, Vk,M̂k+1) // call K times
7: Collect dataset of N samples from world by interacting with πk+1. Add data to replay

buffer D, discarding old data if size is larger than B.
8: end for

For hyperparameter selection, we performed a coarse search on DClaw task and used the
same parameters for the remaining tasks with minor changes. The main parameters we focused
on were the number of NPG updates per iteration, for which we triedK = {1, 2, 4, 8} and found
4 to be best. Similarly, we studied number of samples per iteration N = {1, 5, 10, 20}×env-
horizon, and found 5 to be ideal for DClaw, DKitty, Reacher, and Hand tasks. For the hand
task, N = 10×horizon produced more stable results, and we report results with this choice.
The OpenAI gym tasks are longer horizon and we found fewer samples are sufficient. For the

128

gym tasks, we use N = 1000 samples per iteration, which towards the later half of training
often amounts to only one trajectory. We use a buffer of size B = 2500, which often amounts
to using data from the past 2-5 iterations. We also use ensembles of dynamics models and we
tried ensemble sizes of {1, 2, 4, 8} and found 4 to be a good trade-off between performance
and computation. We also found it important to initialize the policy with sufficient small
amount of exploratory noise to avoid stability and divergence issues. We consider Gaussian
policies with diagonal covariance where the neural network parameterizes the mean, and the
diagonal co-variance is also learned. We initialize the standard deviation as σ = exp(−1).
We do not add any additional exploratory noise when collecting data, but simply use the
learned covariance in the Gaussian policy. We summarize the details in Table C.2.

Table C.2: Hyperparameters used for the PAL-NPG algorithm

Parameter Value
Model network MLP (512, 512)

Learning algorithm Adam (default parameters)
No. of epochs 100
Mini-batch size 200
Ensemble size 4
Buffer size B 2500

Initial samples (Ninit) 2500
Samples per iteration (N) min(5×env-horizon, 1000)

NPG updates (K) 4

Model As Leader: The practical version of the MAL-NPG algorithm is provided in
Algorithm 10. The algorithm alternates between optimizing a policy using current model,
collecting additional data which is aggregated into a data buffer, and finally improving the
model using the aggregated data. For hyperparameter selection, we follow the same overall
approach as described in MAL. Compared to PAL, the main differences are that a larger
number of initial samples are required, since the policy is optimized aggressively. We tried
K = {10, 25, 40, 60} and found K = 25 to be a good trade-off between performance and
computation. We tried N = {1, 5, 10, 20}×env-horizon and found N = 20×horizon to provide
the best results. For the OpenAI gym tasks, we used N = 3000 samples. For the simpler
Pendulum task, we use fewer samples which still leads to stable results. We again use an
ensemble of 4 models. The hyperparameter details are summarized in Table C.3.

129

Algorithm 11 Model As Leader (MAL) – Practical Version

1: Initialize: Policy network π0, model network(s) M̂0, value network V0.
2: Hyperparameters: Initial samples Ninit, samples per update N , number of NPG steps
K � 1

3: Initial Data: Collect Ninit samples from the environment by interacting with initial
policy. Store data in buffer D.

4: Initial Model: Learn model(s) M̂0 using data in D.
5: for k = 0, 1, 2, . . . do
6: Optimize πk+1 using M̂k for K � 1 steps of model-based NPG (Subroutine 1).
7: Collect dataset Dk+1 of N samples from environment using πk+1.
8: Aggregate all collected data so far D = D ∪Dk+1.
9: Learn dynamics model(s) M̂k+1 using data in D.
10: end for

Table C.3: Hyperparameters used for the MAL-NPG algorithm

Parameter Value
Model network MLP (512, 512)

Learning algorithm Adam (default parameters)
No. of epochs 10
Mini-batch size 200
Ensemble size 4
Buffer size B ∞

Initial samples (Ninit) 5000
Samples per iteration (N) min(20×env-horizon, 3000)

NPG updates (K) 25

130

C.2.1 Task Suite

The main tasks we study are DClaw-Turn, DKitty-Orient, 7DOF-Reacher, and InHand-Pen.

1. The DClaw-Turn task requires a 3 fingered “DClaw” to rotate a faucet to a desired
orientation (see illustration below). The observations consist of the joint positions
and velocities of the claw as well as the faucet; in addition to the desired valve
orientation. The reward measures the closeness between the current faucet configuration
and desired configuration. For further details about the task, see Ahn et al. [65] (task
DClawTurnRandom-v0)..

2. The DKitty-Orient task requires a quadruped (DKitty) to change its orientation in
order to face in a desired direction (as illustrated below). The observations consist of
the pose and velocity of various joints in the robot, and the desired orientation. The
reward measures the difference between current pose of the robot and the desired pose.
For further details about the task, see Ahn et al. [65] (task DKittyOrientRandom-v0).

3. The 7DOF-Reacher reacher task requires a 7DOF robot arm (corresponding to a Sawyer
robot) to reach various spatial goals with its end effector (finger tip). The observations
consist of the joint pose and velocities of the arm and the desired location for the end
effector. The reward measures the distance between the end effector and the goal.

131

4. Finally, the InHand-Pen task requires a 24DOF dexterous hand to manipulate a pen
in-hand to point in a desired orientation. The observations consist of the joint pose and
velocity for the hand and pen, and the desired pose for the pen. The reward measures
the difference between the pose of the pen and the desired pose. For additional details
about the task, see Rajeswaran et al. [170] (task pen-v0).

C.2.2 Results on OpenAI gym benchmarks

We also benchmark the performance of PAL-NPG and MAL-NPG in the OpenAI gym
benchmarks [128]. Specifically, we consider three tasks: InvertedPendulum-v2, Hopper-v2,
and Ant-v2. For baselines, we consider MBPO [88], PETS [147], STEVE [182], SLBO [175],
and SAC [166]. A subset of these algorithms were considered for benchmarking deep RL in the
recent work of Wang et al. [177]. MBPO is the current state of the art model-based method,
and SAC is a state of the art model-free algorithm. The hyperparameters for PAL and MAL
are specified in Tables 1-3 and related discussion. The results are presented in Figure C.1.
We find that our methods substantially outperform the baselines. In particular, compared
to state of the art MBPO, our method is nearly twice as efficient in InvertedPendulum and
Hopper. Our methods are nearly 10× as efficient as other baselines.

In the hopper and ant tasks, we include the velocity of center of mass in the observation
space in order to be able to compute the rewards for synthetic rollouts. Similar approaches
are followed in prior works as well, e.g. in SLBO [175]. Finally, we note that MBPO is a
hybrid model-based and model-free method, while our PAL and MAL implementations are
entirely model-based. In MBPO, it was noted that long horizon model-based rollouts were

132

0 1 2 3 4 5
Samples (×103)

0

200

400

600

800

1000

Re
tu

rn

InvertedPendulum

0 20 40 60 80 100
Samples (×103)

0

1000

2000

3000

Hopper

PAL-NPG (Ours) MAL-NPG (Ours) MBPO PETS STEVE SLBO SAC

0 50 100 150 200 250 300
Samples (×103)

0

1000

2000

3000

4000

5000

6000 Ant

Figure C.1: Comparison of results on the OpenAI gym benchmark tasks. Results for the
baselines are reproduced from Janner et al. [88]. We observe that PAL and MAL have stable
near-monotonic improvement, and substantially outperform the baselines.

unstable and combining with an off-policy critic was important. We find that through our
Stackelberg formulation, which is intended to carefully control the effects of distribution
shift, we are able to perform rollouts of hundreds of steps without error amplification. As a
result, even though our algorithms are purely model based, they can achieve sample efficient
learning without loss in asymptotic performance. It is straightforward to extend our PAL
and MAL approaches to the hybrid model-based and model-free setting, and could likely lead
to a further increase in efficiency for some tasks. We leave exploration of this to future work.

C.2.3 Model Error Amplification

While the 1-step (prediction) generalization error is easy to measure, it does not provide
direct intuitions about the model quality for the purpose of policy improvement. We study
error amplification over lookahead horizon to better understand the quality of model for
purposes of policy improvement. Let s0 be the initial state for both M and M̂ . We wish to
measure L(t) = E[‖sMt − sM̂t ‖] where sMt and sM̂t are obtained by following the dynamics of
M and M̂ respectively. The state evolution depends on actions, and for this we consider
two modes: open loop and closed loop.

In open loop mode, we first sample an initial state and set it for both M and M̂ , i.e.
sM0 = sM̂0 . Subsequently, we execute π in M in obtain a trajectory. The action sequence
is then executed in open-loop in M̂ . Specifically, this makes aM̂t = aMt = π(sMt). In
closed loop mode, we again sample the initial state and set sM0 = sM̂0 . Subsequently, we
collect trajectory by indipendetly executing the policy, so that we have: aMt = π(sMt) and
aM̂t = π(sM̂t).
We study the error for the DClaw task, and plot the error in prediction of faucet angle. This

133

Figure C.2: Error amplification over look-ahead horizon in the DClawTurnRandom task. In
this experiment, we measure the error of policy πk under model M̂k for various stages of
training (20K, 40K, and 60K samples). The x-axis is the look-ahead horizon, and the y-axis
is the error in prediction of the valve orientation (in radians). See main text for explanation
of open loop and closed loop.

is the primary quantity of interest, since the task involves turning the faucet to the desired
orientation. The results are presented in Figure C.2. We make the following observations:

1. With more training, the entire profile of errors reduce. This is encouraging, since it
suggests that the model quality improves with more training.

2. Closed loop prediction errors are smaller than open loop errors. This suggests that the
policy shapes the state visitation to regions where the model is more accurate. Thus,
the algorithms we consider ensure that the policy and model remain compatible.

3. During initial stages of training, PAL has lower error. However, towards the end of
training, MAL learns more accurate models, by improving the model quality at a faster
rate. This is likely due to MAL maintaining a larger replay buffer with more diverse
transitions obtained over the course of training. This further underscores why MAL
can better handle non-stationarities in task and goal distribution.

4. The error does not strictly increase with time. In particular, we observe profiles where
the error shrinks towards the end of the horizon. As the policy improves, it turns
the faucet to the desired configuration with greater probability. Thus, the long term
consequences of the policy are in fact more easily predictable than the intermediate
transient effects. This further suggests that the policy-model pair together capture the
semantics of the task.

134

Appendix D

IMPLICIT MAML: PROOFS AND EXPERIMENT DETAILS

D.1 Relationship between iMAML and Prior Algorithms

The presented iMAML algorithm has close connections, as well as notable differences, to
a number of related algorithms like MAML [191], first-order MAML, and Reptile [160].
Conventionally, these algorithms do not consider any explicit regularization in the inner-level
and instead rely on early stopping, through only a few gradient descent steps. In our problem
setting described in Eq. 5.4, we consider an explicitly regularized inner-level problem (refer
to discussion in Section 5.2.2). We describe the connections between the algorithms in this
explicitly regularized setting below.

MAML The MAML algorithm first invokes an iterative algorithm to solve the inner
optimization problem (see definition 5). Subsequently, it backpropagates through the path of
the optimization algorithm to update the meta-parameters as:

θk+1 = θk − η 1

M

M∑
i=1

dθLi(Algi(θk)).

Since Algi(θ) approximates Alg?i (θ), it can be viewed that both MAML and iMAML intend
to perform the same idealized update in Eq. 5.5. However, they perform the meta-gradient
computation very differently. MAML backpropagates through the path of an iterative
algorithm, while iMAML computes the meta-gradient through the implicit Jacobian approach
outlined in Section 5.3.1 (see Figure 5.1 for a visual depiction). As a result, iMAML can be
vastly more efficient in memory while having lesser or comparable computational requirements.
It also allows for higher order optimization methods and non-differentiable components.

First-order MAML ignores the effect of meta-parameters θ on task parameters {φi} in
the meta-gradient computation and updates the meta-parameters as:

θk+1 = θk − η 1

M

M∑
i=1

∇φLi(φi) |φi=Algi(θk)

Note that iMAML strictly generalizes this, since first-order MAML is simply iMAML when
the conjugate gradient procedure is not invoked (or 0 steps of CG). Thus, iMAML allows for
an easy way to interpolate from first-order MAML to the full MAML algorithm.

135

Reptile, similar to first-order MAML, ignores the dependence of task-parameters on meta-
parameters [160]. However, instead of following the gradients at φi = Algi(θk), Reptile uses
the task-parameters as targets and slowly moves meta-parameters towards them:

θk+1 = θk − η 1

M

M∑
i=1

(θk − φi).

From the proximal point equation in the proof of Lemma 3, we have φi = θk − 1
λ
∇φLi(φi),

using which we see that the Reptile equation becomes: θk+1 = θk − η
λM

∑M
i=1∇φLi(φi). Thus,

Reptile and first-order MAML are identical in our problem formulation up to the choice of
learning rate. Making the regularization explicit allows us to illustrate this equivalence.

D.2 Optimization Preliminaries

Let f : Rd → R. A function f is B Lipschitz (or B-bounded gradient norm) if for all x ∈ Rd

||∇f(x)|| ≤ B .

Similarly, we say that a matrix valued function M : Rd × Rd′ → R is ρ-Lipschitz if

||M(x)−M(x′)|| ≤ ρ||x− x′|| ,

where ‖ · ‖ denotes the spectral norm. We say that f is L-smooth if for all x, x′ ∈ Rd

||∇f(x)−∇f(x′)|| ≤ L||x− x′||

and that f is µ-strongly convex if f is convex and if for all x, x′ ∈ Rd,

||∇f(x)−∇f(x′)|| ≥ µ||x− x′|| .

We will make use of the following black-box complexity of first-order gradient methods for
minimizing strongly convex and smooth functions.

Lemma 7. (δ-approximate solver; see [295]) Suppose f is a function that is L-smooth and µ
strongly convex. Define κ := L/µ, and let x? = argmin f(x). Nesterov’s accelerated gradient
descent can be used to find a point x such that:

‖x− x?‖ ≤ δ

using a number of gradient computations of f that is bounded as follows:

gradient computations of f(·) ≤ 2
√
κ log

(
2κ
‖x?‖
δ

)
.

136

D.3 Review: Time and Space Complexity of Hessian-Vector Products

We briefly discuss the time and space complexity of Hessian-vector product computation
using the reverse mode of automatic differentiation. The reverse mode of automatic differen-
tiation [296, 297] is the widely used method for automatic differentiation in modern software
packages like TensorFlow and PyTorch [298]. Recall that for a differentiable function f(x),
the reverse mode of automatic differentiation computes ∇f(x) in time that is no more than a
factor of 5 of the time it takes to compute f(x) itself (see [297] for review). As our algorithm
makes use of Hessian vector products, we will make use of the following assumption as to
how Hessian vector products will be computed when executing Algorithm 6.

Assumption A3. (Complexity of Hessian-vector product) We assume that the time to
compute the Hessian-vector product ∇2

φL̂i(φ)v is no more than a (universal) constant over
the time used to compute ∇L̂i(φ) (typically, this constant is 5). Furthermore, we assume that
the memory used to compute the Hessian-vector product ∇2

φL̂i(φ)v is no more than twice
the memory used when computing ∇L̂i(φ). This assumption is valid if the reverse mode of
automatic differentiation is used to compute Hessian vector products (see [299]).

A few remarks about this assumption are in order. With regards to computation, first
observe that the gradient of the scalar function ∇φL̂i(φ)>v is the desired Hessian vector
product ∇2

φL̂i(φ)v. Thus computing the Hessian vector product using the reverse mode
is within a constant factor of computing the function itself, which is simply the cost of
computing ∇L̂i(φ)>v. The issue of memory is more subtle (see [299]), which we now discuss.
The memory used to compute the gradient of a scalar cost function f(x) using the reverse
mode of auto-differentiation is proportional to the size of the computation graph; precisely,
the memory required to compute the gradient is equal to the total space required to store all
the intermediate variables used when computing f(x). In practice, this is often much larger
than the memory required to compute f(x) itself, due to that all intermediate variables need
not be simultaneously stored in memory when computing f(x). However, for the special case
of computing the gradient of the function f(φ) = ∇φL̂i(φ)>v, the factor of 2 in the memory
bound is a consequence of the following reason: first, using the reverse mode to compute f(φ)

means we already have stored the computation graph of L̂i(φ) itself. Furthermore, the size
of the computation graph for computing f(φ) = ∇φL̂i(φ)>v is essentially the same size as
the computation graph of L̂i(φ). This leads to the factor of 2 memory bound; see Griewank
[299] for further discussion.

D.4 Additional Discussion About Compute and Memory Complexity

Our main complexity results are summarized in Table 1. For these results, we consider two
notions of error that are subtly different, which we explicitly define below. Let gi be the
computed meta-gradient for task Ti. Then, the errors we consider are:

137

Definition 7. Exact-solve error (our notion of error): Our goal is to accurately compute the
gradient of F (θ) as defined in Equation 5.4, where Alg?i (θ) is an exact algorithm. Specifically,
we seek to compute a gi such that:

‖gi − dθLi(Alg?i (θ))‖ ≤ ε

where ε is the error in the gradient computation.

Definition 8. Approx-solve error: Here we suppose that Algi computes a δ–accurate solution
to the inner optimization problem over Gi in Eq. 5.4, i.e. that Algi satisfies ‖Algi(θ) −
Alg?i (θ)‖ ≤ δ, as per definition 5. Then the objective is to compute a g such that:

‖g − dθLi(Algi(θ))‖ ≤ ε

where ε is the error in the gradient computation of dθLi(Algi(θ)). Subtly, note that the
gradient is with respect to the δ-approximate algorithm, as opposed to using Alg?i .

For the complexity results, we assume that MAML invokes Algi to get a δ-approximate
solution for inner problem (recall definition 5). The exact-solve error for MAML is not known
in the literature; in particular, even as δ → 0 it is not evident if the approx-solve solution tends
to the exact-solve solution, unless further regularity conditions are imposed. The approx-solve
error for MAML is 0, ignoring finite-precision and numerical issues, since it backpropagates
through the path. Truncated backprop [208] also invokes Algi to obtain a δ-approximate
solution but instead performs a truncated or partial back-propagation so that it uses a smaller
number of iterations when computing the gradient through the path of Algi(θ). Exact-solve
error for truncated backprop is also not known, but a small approx-solve error can be obtained
with less memory than full back-prop. We use Prop 3.1 of Shaban et al. [208] to provide
a guarantee that leads to an ε–accurate approximation of the full-backprop (i.e. MAML)
gradient. It is not evident how accurate the truncated procedure is when an accelerated
method is used instead. Finally, our iMAML algorithm also invokes an approximate solver
Algi rather than Alg?i . However, importantly, we guarantee a small exact-solve error even
though we do not require access to Alg?i . Furthermore, the iMAML algorithm also requires
substantially less memory. Up to small constant factors, it only utilizes the memory required
for computing a single gradient of L̂i(·).

D.5 Theoretical Results and Proofs

Lemma 5.3.1 Consider Alg?i (θ) as defined in Eq. 5.4 for task Ti. Let φi = Alg?i (θ) be the
result of Alg?i (θ). If

(
I + 1

λ
∇2
φL̂i(φi)

)
is invertible, then the derivative Jacobian is

dAlg?i (θ)

dθ
=

(
I +

1

λ
∇2
φL̂i(φi)

)−1

.

138

Proof. We drop the task i subscripts in the proof for convenience. Since φ = Alg?(θ) is the
minimizer of G(φ′,θ) in Eq. 5.4, the stationary point conditions imply that

∇φ′G(φ′,θ) |φ′=φ = 0 =⇒ ∇L̂(φ) + λ(φ− θ) = 0 =⇒ φ = θ − 1

λ
∇L̂(φ),

which is an implicit equation that often arises in proximal point methods. When the derivative
exists, we can differentiate the above equation to obtain:

dφ

dθ
= I − 1

λ
∇2L̂(φ)

dφ

dθ
=⇒

(
I +

1

λ
∇2L̂(φ)

)
dφ

dθ
= I.

which completes the proof.

Assumption A4. (Regularity conditions) Suppose the following holds for all tasks i:

1. Li(·) is B Lipshitz and L smooth.

2. For all θ, Gi(·,θ) is both a β-smooth function and a µ-strongly convex function. Define:

κ :=
β

µ
.

3. L̂i(·) is ρ-Lipshitz Hessian, i.e. ∇2L̂i(·) is ρ-Lipshitz.

4. For all θ, suppose the arg-minimizer of Gi(·,θ) is unique and bounded in a ball of radius
D, i.e. for all θ,

‖Alg?i (θ)‖ ≤ D .

Lemma 8. (Implicit Gradient Accuracy) Suppose Assumption A4 holds. Fix a task i.
Suppose that φi satisfies:

‖φi −Alg?i (θ)‖ ≤ δ

and that gi satisfies:

‖gi −
(
I +

1

λ
∇2L̂i(φ)

)−1

∇φLi(φ)‖ ≤ δ′ .

Assuming that δ < µ/(2ρ), we have that:

‖gi − dθLi(Alg?i (θ))‖ ≤
(

2
λρ

µ2
B +

λL

µ

)
δ + δ′

139

Proof. First, observe that:

dθLi(Alg?i (θ)) =

(
I +

1

λ
∇2L̂i(Alg?i (θ))

)−1

∇φLi(Alg?i (θ))

For notational convenience, we drop the i subscripts within the proof. We have:

‖dθL(Alg?(θ))− g‖

≤ ‖dθL(Alg?(θ))−
(
I +

1

λ
∇2L̂(φ)

)−1

∇φL(φ)‖+ δ′

≤ ‖dθL(Alg?(θ))−
(
I +

1

λ
∇2L̂(φ)

)−1

∇φL(Alg?(θ))‖+

‖
(
I +

1

λ
∇2L̂(φ)

)−1

(∇φL(Alg?(θ))−∇φL(φ)) ‖+ δ′

where the first inequality uses the triangle inequality.
We now bound each of these terms. For the second term,

‖
(
I +

1

λ
∇2L̂(φ)

)−1

(∇φL(Alg?(θ))−∇φL(φ)) ‖

≤ ‖
(
I +

1

λ
∇2L̂(φ)

)−1

‖‖∇φL(Alg?(θ))−∇φL(φ)‖

≤ λL‖
(
λI +∇2L̂(φ)

)−1

‖‖Alg?(θ)− φ‖

= λL‖∇2
φG(φ,θ)−1‖‖Alg?(θ)− φ‖

≤ λL

µ
δ

where we the second inequality uses that ∇φL is L-smooth and the final inequality uses that
G is µ strongly convex.

For the first term, we have:

‖dθL(Alg?(θ))−
(
I +

1

λ
∇2L̂(φ)

)−1

∇φL(Alg?(θ))‖

= ‖

((
I +

1

λ
∇2L̂(Alg?(θ))

)−1

−
(
I +

1

λ
∇2L̂(φ)

)−1
)
∇φL(Alg?(θ))‖

≤ λ‖
(
λI +∇2L̂(Alg?(θ))

)−1

−
(
λI +∇2L̂(φ)

)−1

‖B,

using that ∇φL is B Lipshitz. Now let

∆ := ∇2L̂(Alg?(θ))−∇2L̂(φ), M := ∇2
φG(φ,θ) = λI +∇2L̂(φ)

140

Due to that ∇2L̂(·) is Lipshitz Hessian, ‖∆‖ ≤ ρδ. Also, by our assumption on δ, we have
that:

‖M−1∆‖ ≤ ‖∆‖/µ ≤ ρδ/µ ≤ 1/2,

which implies that ‖ (I +M−1∆)
−1 ‖ ≤ 2. Hence,

‖
(
λI +∇2L̂(Alg?(θ))

)−1

−
(
λI +∇2L̂(φ)

)−1

‖

= ‖ (M + ∆)−1 −M−1‖
≤ ‖M−1‖‖

(
I +M−1∆

)−1 − I‖
= ‖M−1‖‖

(
I +M−1∆

)−1 (
I −

(
I +M−1∆

))
‖

≤ ‖M−1‖‖
(
I +M−1∆

)−1 ‖‖M−1∆‖

≤ 1

µ
· 2 · ρδ

µ
= 2

ρ

µ2
δ.

The proof is completed by substitution.

Theorem 5. (Approximate Implicit Gradient Computation) Suppose Assumption A4 holds.
Fix a task i. Let

B1 := 2
λρ

µ2
B +

λL

µ

Suppose Nesterov’s accelerated gradient descent algorithm is used to compute φ (as desired in
Algorithm 6), using a number of iterations that is:

2
√
κ log

(
8κD

(
B1

ε
+
ρ

µ

))
and suppose Nesterov’s accelerated gradient descent algorithm (or the conjugate gradient
algorithm) is used to compute gi using a number of iterations that is:

2
√
κ log

(
4κ

(λ/µ)B

ε

)
.

We have that:
‖gi − dθLi(Alg?i (θ))‖ ≤ ε.

Proof. The result will follow from the guarantees in Lemma 7. Specifically, let us set
δ = min{ε/(2B1), µ/(2ρ)} and δ′ = ε/2. To ensure the bound of δ, by Lemma 8, it suffices to
use a number of iterations that is bounded by:

2 log

(
2κ
‖D‖
δ

)
≤ 2
√
κ log

(
8κD

(
B1

ε
+
ρ

µ

))

141

To ensure the bound of δ′, the algorithm will be solving the sub-problem in Equation 5.7. First

observe that in the context of in Lemma 7, note that ‖x?‖ = ‖
(
I + 1

λ
∇2L̂i(φ)

)−1

∇Li(φ)‖ ≤
(λ/µ)B, and so it suffices to use a number of iterations that is bounded by:

2 log

(
2κ
‖x?‖
δ

)
≤ 2 log

(
4κ

(λ/µ)B

ε

)
,

which completes the proof.

Finally, we present a corollary of previous theorem that shows that iMAML finds approxi-
mate stationary points due to controllable error in gradient computation.

Corollary 5. (iMAML finds stationary points) Suppose the conditions of Theorem 3 hold
and that F (·) is an LF smooth function. Then the implicit MAML algorithm (Algorithm 5),
when the batch size is M (so that we are doing gradient descent), will find a point θ such
that ‖∇F (θ)‖ ≤ ε, in a number of calls to Implicit-Meta-Gradient that is at most
4MLf (F (0)−minθ F (θ))

ε2
. Furthermore, the total number of gradient computations (of ∇L̂i) is

at most Õ
(
M
√
κ
Lf (F (0)−minθ F (θ))

ε2
log
(

poly(κ,D,B,L,ρ,µ,λ)
ε

))
, and only Õ(Mem(∇L̂i)) memory

is required throughout.

D.6 Experiment Details

Here, we provide additional details of the experimental set-up for the experiments in Section 5.4.
All training runs were conducted on a single NVIDIA (Titan Xp) GPU.

D.6.1 Synthetic Experiments

For the synthetic experiments, we consider a linear regression problem. We consider parametric
models of the form hφ(x) = φTx, where x can either be the raw inputs or features (e.g.
Fourier features) of the input. For task Ti, we can equivalently write a quadratic objective
that represents the task loss as:

L̂i(φ) =
1

2
E(x,y)∼Dtr

i

[
‖hφ(x)− y‖2

]
=

1

2
φTAiφ+ φT bi,

where Ai = E(x,y)∼Dtr
i

[
xxT

]
and bi = E(x,y)∼Dtr

i

[
xTy

]
. Thus, the inner level objective and

corresponding minimizer can be written as:

Gi(φ
′,θ) =

1

2
φ′

T
Aiφ

′ + φ′
T
bi +

λ

2
(φ′ − θ)T (φ′ − θ)

Alg?i (θ) = (Ai + λI)−1 (λθ − bi)

142

Thus, the exact meta-gradient can be written as

dθLi(Alg?i (θ)) = λ(Ai + λI)−1∇φLi(θ) |φ=Alg?i (θ) .

We compare this gradient with the gradients computed by the iMAML and MAML algorithms.
We considered the case of x ∈ R50, y ∈ R, λ = 5.0, and κ = 50, for the presented results.

D.6.2 Omniglot and Mini-ImageNet experiments

We follow the standard training and evaluation protocol as in prior works [189, 190, 191].

Omniglot Experiments The GD version of iMAML uses 16 gradient steps for 5-way
1-shot and 5-way 5-shot settings, and 25 gradient steps for 20-way 1-shot and 20-way 5-shot
settings. A regularization strength of λ = 2.0 was used for both. 5 steps of conjugate
gradient was used to compute the meta-gradient for each task in the mini-batch, and the
meta-gradients were averaged before taking a step with the default parameters of Adam in
the outer loop.

The Hessian-free version of MAML proceeds by using Hessian-free or Newton-CG method
for solving the inner optimization problem (with respect to φ) with objective Gi(φ,θ). This
method proceeds by constructing a local quadratic approximation to the objective and
approximately computing the Newton direction with conjugate gradient. 5 CG steps are used
for this process in our experiments. This allows us to compute the search direction, following
which a step size has to be picked. We pick the step size through line-search. This procedure
of computing the approximate Newton direction and linesearch is repeated 3 times in our
experiments to solve the inner optimization problem well.

Mini-ImageNet For the GD version of iMAML, 10 GD steps were used with regularization
strength of λ = 0.5. Again, 5 CG steps are used to compute the meta-gradient. Similarly, in
the Hessian-Free variant, we again use 5 CG steps to compute the search direction followed
by line search. This process is repeated 3 times to solve the inner level optimization. Again,
to compute the meta-gradient, 5 steps of CG are used.

143

Appendix E

ONLINE META-LEARNING: THEORETICAL RESULTS

E.1 Linear Regression Example

Here, we present a simple example of optimizing a collection of quadratic objectives (equivalent
to linear regression on fixed set of features), where the solutions to joint training and the
meta-learning (MAML) problem are different. The purpose of this example is to primarily
illustrate that meta-learning can provide performance gains even in seemingly simple and
restrictive settings. Consider a collection of objective functions: {Li : φ ∈ Rd → R}Mi=1 which
can be described by quadratic forms. Specifically, each of these functions are of then form

Li(φ) =
1

2
φTAiφ+ φTbi.

This can represent linear regression problems as follows: let (xTi ,yTi) represent input-output
pairs corresponding to task Ti. Let the predictive model be h(x) = φTx. Here, we assume
that a constant scalar (say 1) is concatenated in x to subsume the constant offset term (as
common in practice). Then, the loss function can be written as:

Li(φ) =
1

2
E(x,y)∼Ti

[
||h(x)− y||2

]
which corresponds to Ai = Ex∼Ti [xx

T] and bi = E(x,y)∼Ti [x
Ty]. For these set of problems, we

are interested in studying the difference between joint training and meta-learning.

Joint training The first approach of interest is joint training which corresponds to the
optimization problem

min
φ∈Rd

F (φ) , where F (φ) =
1

M

M∑
i=1

Li(φ). (E.1)

Using the form of Li, we have

F (φ) =
1

2
φT

(
1

M

M∑
i=1

Ai

)
φ+ φT

(
1

M

M∑
i=1

bi

)
.

Let us define the following:

Ā :=
1

M

M∑
i=1

Ai and b̄ :=
1

M

M∑
i=1

bi.

144

The solution to the joint training optimization problem (Eq. E.1) is then given by

φ∗joint = −Ā−1b̄.

Meta learning (MAML) The second approach of interest is meta-learning, which as
mentioned in Section 6.2 corresponds to the optimization problem:

min
φ∈Rd

F̃ (φ) , where F̃ (φ) =
1

M

M∑
i=1

Li(Algi(φ)). (E.2)

Here, we specifically concentrate on the 1-step (exact) gradient update procedure: Algi(φ) =

φ− α∇Li(φ). In the case of the quadratic objectives, this leads to:

Li(Algi(φ)) =
1

2
(φ− αAiφ− αbi)TAi(φ− αAiφ− αbi)

+ (φ− αAiφ− αbi)Tbi
The corresponding gradient can be written as:

∇Li(Algi(φ)) =

(
I − αAi

)(
Ai

(
φ− αAiφ− αbi

)
+ bi

)
=
(
I − αAi

)
Ai

(
I − αAi

)
φ+

(
I − αAi

)2
bi

For notational convenience, we define:

A† :=
1

M

M∑
i=1

(
I − αAi

)2
Ai

b† :=
1

M

M∑
i=1

(
I − αAi

)2
bi.

Then, the solution to the MAML optimization problem (Eq. E.2) is given by

φ∗MAML = −A−1
† b†.

Remarks In general, φ∗joint 6= φ∗MAML based on our analysis. Note that A† is a weighed
average of different Ai, but the weights themselves are a function of Ai. The reason for the
difference between φ∗joint and φ∗MAML is the difference in moments of input distributions. The
two solutions, φ∗joint and φ∗MAML, coincide when Ai = A ∀i. Furthermore, since φ∗MAML was
optimized to explicitly minimize F̃ (·), it would lead to better performance after task-specific
adaptation. This analysis reveals that there is a clear separation in performance between
joint training and meta-learning even in the case of quadratic loss functions. Improved
performance with meta-learning approaches have been noted empirically with non-convex
loss landscapes induced by neural networks. Our example illustrates that meta learning can
provide non-trivial gains over joint training even in simple convex loss landscapes.

145

E.2 Theoretical Analysis

We first begin by reviewing some definitions and proving some helper lemmas before proving
the main theorem.

E.2.1 Notations, Definitions, and Some Properties

• For a vector u ∈ Rd, we use ‖u‖ to denote the L2 norm, i.e.
√
uTu.

• For a matrix A ∈ Rm×d, we use ‖A‖ to denote the matrix norm induced by the vector
norm,

‖A‖ = sup

{
‖Au‖
‖u‖

: u ∈ Rd with ‖u‖ 6= 0

}
We briefly review two properties of this norm that are useful for us

– ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

– ‖Au‖ ≤ ‖A‖‖u‖ (sub-multiplicative property)

Both can be seen easily by recognizing that an alternate equivalent definition of the
induced norm is ‖A‖ ≥ ‖Au‖

‖u‖ ∀u.

• For (symmetric) matrices A ∈ Rd×d, we use A � 0 to denote the positive semi-definite
nature of the matrix. Similarly, A � B implies that uT (A−B)u ≥ 0 ∀u.

Definition 9. A function f(·) is G−Lipschitz continuous iff:

‖L(u)− L(v)‖ ≤ G‖u− v‖ ∀ u,v

Definition 10. A differentiable function L(·) is β−smooth iff:

‖∇L(u)−∇L(v)‖ ≤ β‖u− v‖ ∀ u,v

Definition 11. A twice-differentiable function L(·) is ρ−Hessian Lipschitz iff:

‖∇2L(u)−∇2L(v)‖ ≤ ρ‖u− v‖ ∀ u,v

Definition 12. A twice-differentiable function L(·) is µ−strongly convex iff:

∇2L(u) � µI ∀ u

We also review some properties of convex functions that help with our analysis.

146

Lemma 9. (Elementery properties of convex functions; see e.g. Boyd and Vandenberghe
[300], Shalev-Shwartz [164])

1. If L(·) is differentiable, convex, and G−Lipschitz continuous, then

‖∇L(u)‖ ≤ G ∀ u.

2. If L(·) is twice-differentiable, convex, and β−smooth, then

∇2L(u) � βI ∀ u.

This is also equivalent to ‖∇2L(u)‖ ≤ β ∀ u. The strong convexity also implies that

‖L(u)− L(v)‖ ≥ µ‖u− v‖ ∀ u,v.

E.2.2 Descent Lemma

In this sub-section, we prove a useful lemma about the dynamics of gradient descent and
its contractive property. For this, we first consider a lemma that provides an inequality
analogous to that of mean-value theorem.

Lemma 10. (Fundamental theorem of line integrals) Let ϕ : Rd → R be a differentiable
function. Let u,v ∈ Rd be two arbitrary points, and let r(γ) be a curve from u to v,
parameterized by scalar γ. Then,

ϕ(v)− ϕ(u) =

∫
γ[u,v]

∇ϕ(r(γ))dr =

∫
γ[u,v]

∇ϕ(r(γ))r′(γ)dγ

Lemma 11. (Mean value inequality) Let ϕ : u ∈ Rd → Rm be a differentiable function. Let
∇ϕ be the function Jacobian, such that ∇ϕi,j = ∂ϕi

∂uj
. Let M = maxu∈Rd ‖∇ϕ(u)‖. Then, we

have
‖ϕ(u)−ϕ(v)‖ ≤M ‖u− v‖ ∀ u,v ∈ Rd

Proof. Let the line segment connecting u and v be parameterized as z(t) = v + t(u− v), t ∈
[0, 1]. Using Lemma 10 for each coordinate, we have that

ϕ(u)−ϕ(v) =

(∫ t=1

t=0

∇ϕ
(
z(t)

)
dt

)(
z(1)− z(0)

)
=

(∫ t=1

t=0

∇ϕ
(
z(t)

)
dt

)(
u− v

)

147

‖ϕ(u)−ϕ(v)‖ =

∥∥∥∥∫ t=1

t=0

∇ϕ
(
z(t)

)(
u− v

)
dt

∥∥∥∥
(a)

≤
∫ t=1

t=0

∥∥∇ϕ(z(t)
)(
u− v

)∥∥ dt
(b)

≤
∫ t=1

t=0

∥∥∇ϕ(z(t)
)∥∥ ∥∥(u− v

)∥∥ dt
(c)

≤
∫ t=1

t=0

M ‖u− v‖ dt

= M‖u− v‖
∫ t=1

t=0

dt = M‖u− v‖

Step (a) follows from the Cauchy-Schwartz inequality. Step (b) is a consequence of the
sub-multiplicative property. Finally, step (c) is based on the definition of M .

Lemma 12. (Contractive property of gradient descent) Let ϕ : Rd → R be an arbitrary
function that is G−Lipschitz, β−smooth, and µ−strongly convex. Let Alg(u) = u− α∇ϕ(u)

be the gradient descent update rule with α ≤ 1
β
. Then,

‖Alg(u)−Alg(v)‖ ≤ (1− αµ)‖u− v‖ ∀ u,v ∈ Rd.

Proof. Firstly, the Jacobian of Alg(·) is given by ∇Alg(u) = I − α∇2ϕ(u). Since µI �
∇2ϕ(u) � βI ∀u ∈ Rd, we can bound the Jacobian as

(1− αβ)I � ∇Alg(u) � (1− αµ)I ∀ u ∈ Rd

The upper bound also implies that ‖∇Alg(u)‖ ≤ (1 − αµ) ∀u. Using this and invoking
Lemma 11 on Alg(·), we get that

‖Alg(u)−Alg(v)‖ ≤ (1− αµ)‖u− v‖.

148

E.2.3 Main Theorem

Using the previous lemmas, we can prove our main theorem. We restate the assumptions and
statement of the theorem and then present the proof.
Assumption 1. (C2-smoothness) Suppose that L(·) is twice differentiable and

• L(·) is G−Lipschitz in function value.

• L(·) is β−smooth, or has β−Lipschitz gradients.

• L(·) has ρ−Lipschitz hessian.

Assumption 2. (Strong convexity) Suppose that L(·) is convex. Further suppose that it is
µ−strongly convex.
Theorem 1. Suppose L and L̂ : Rd → R satisfy assumptions 1 and 2. Let L̃ be the function
evaluated after a one step gradient update procedure, i.e.

L̃(φ) := L
(
φ− α∇L̂(φ)

)
.

If the step size is selected as α ≤ min{ 1
2β
, µ

8ρG
}, then L̃ is convex. Furthermore, it is also

β̃ = 9β/8 smooth and µ̃ = µ/8 strongly convex.

Proof. Consider two arbitrary points u,v ∈ Rd. Using the chain rule and our shorthand of
ũ ≡ Alg(u), ṽ ≡ Alg(u), we have

∇L̃(u)−∇L̃(v) = ∇Alg(u)∇L(ũ)−∇Alg(v)∇L(ṽ)

= (∇Alg(u)−∇Alg(v))∇L(ũ) +∇Alg(v) (∇L(ũ)−∇L(ṽ)) .

We first show the smoothness of the function. Taking the norm on both sides, for the specified
α, we have:

‖∇L̃(u)−∇L̃(v)‖ = ‖ (∇Alg(u)−∇Alg(v))∇L(ũ) +∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖
≤ ‖ (∇Alg(u)−∇Alg(v))∇L(ũ)‖+ ‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖

due to triangle inequality. We now bound both the terms on the right hand side. We have

‖ (∇Alg(u)−∇Alg(v))∇L(ũ)‖
(a)

≤ ‖∇Alg(u)−∇Alg(v)‖‖∇L(ũ)‖

= ‖
(
I − α∇2L̂(u)

)
−
(
I − α∇2L̂(v)

)
‖‖∇L(ũ)‖

= α‖∇2L̂(u)−∇2L̂(v)‖‖∇L(ũ)‖
(b)

≤ αρ‖u− v‖‖∇L(ũ)‖
(c)

≤ αρG‖u− v‖

149

where (a) is due to the sub-multiplicative property of norms (Cauchy-Schwarz inequality), (b)
is due to the Hessian Lipschitz property, and (c) is due to the Lipschitz property in function
value. Similarly, we can bound the second term as

‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖ =
∥∥∥(I − α∇2L̂(v)

)(
∇L(ũ)−∇L(ṽ)

)∥∥∥
(a)

≤ (1− αµ)‖∇L(ũ)−∇L(ṽ)‖
(b)

≤ (1− αµ)β‖ũ− ṽ‖
(c)
= (1− αµ)β‖Alg(u)−Alg(v)‖
(d)

≤ (1− αµ)β(1− αµ)‖u− v‖
= (1− αµ)2β‖u− v‖

Here, (a) is due to I − α∇2L̂(v) being symmetric, PSD, and λmax

(
I − α∇2L̂(v)

)
≤ 1− αµ.

Step (b) is due to smoothness of L(·). Step (c) is simply using our shorthand of ũ ≡
Alg(u), ṽ ≡ Alg(u). Finally, step (d) is due to Lemma 12 on Alg(·). Putting the previous
pieces together, when α ≤ min

{
1

2β
, µ

8ρG

}
, we have that

‖∇L̃(u)−∇L̃(v)‖ ≤ ‖ (∇Alg(u)−∇Alg(v))∇L(ũ)‖+ ‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖
≤ αρG‖u− v‖+ (1− αµ)2β‖u− v‖

≤
(
µ

8
+ β

)
‖u− v‖

≤ 9β

8
‖u− v‖

and thus L̃(·) is β̃ = 9β
8

smooth. Similarly, for the lower bound, we have

‖∇L̃(u)−∇L̃(v)‖ = ‖ (∇Alg(u)−∇Alg(v))∇L(ũ) +∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖
≥ ‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖ − ‖ (∇Alg(u)−∇Alg(v))∇L(ũ)‖

using the triangle inequality. We now again proceed to bound each term. We already derived
an upper bound for the second term on the right side, and we require a lower bound for the
first term.

150

‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖ =
∥∥∥(I − α∇2L̂(v)

)(
∇L(ũ)−∇L(ṽ)

)∥∥∥
(a)

≥ (1− αβ)‖∇L(ũ)−∇L(ṽ)‖
(b)

≥ (1− αβ)µ‖ũ− ṽ‖
= (1− αβ)µ‖u− α∇L̂(u)− v + α∇L̂(v)‖

≥ µ(1− αβ)
(
‖u− v‖ − α‖∇L̂(u)−∇L̂(v)‖

)
(c)

≥ µ(1− αβ)
(
‖u− v‖ − αβ‖u− v‖

)
≥ µ(1− αβ)2‖u− v‖

≥ µ

4
‖u− v‖

Here (a) is due to λmin

(
I − α∇2L̂(v)

)
≥ 1− αβ, (b) is due to strong convexity, and (c) is

due to smoothness of L̂(·). Using both the terms, we have that

‖∇L̃(u)−∇L̃(v)‖ ≥ ‖∇Alg(v) (∇L(ũ)−∇L(ṽ)) ‖ − ‖ (∇Alg(u)−∇Alg(v))∇L(ũ)‖

≥
(µ

4
− µ

8

)
‖u− v‖ ≥ µ

8
‖u− v‖

Thus the function L̃(·) is µ̃ = µ
8
strongly convex.

E.3 Additional Experimental Details

For all experiments, we trained our FTML method with 5 inner batch gradient descent steps
with step size α = 0.1. We use an inner batch size of 10 examples for MNIST and pose
prediction and 25 datapoints for CIFAR. Except for the CIFAR NML experiments, we train
the convolutional networks using the Adam optimizer with default hyperparameters [203].
We found Adam to be unstable on the CIFAR setting for NML and instead used SGD with
momentum, with a momentum parameter of 0.9 and a learning rate of 0.01 for the first 5

thousand iterations, followed by a learning rate of 0.001 for the rest of learning.
For the MNIST and CIFAR experiments, we use the cross entropy loss, using label

smoothing with ε = 0.1 as proposed by Szegedy et al. [301]. We also use this loss for the
inner loss in the FTML objective.

In the MNIST and CIFAR experiments, we use a convolutional neural network model
with 5 convolution layers with 32 3× 3 filters interleaved with batch normalization and ReLU
nonlinearities. The output of the convolution layers is flattened and followed by a linear layer
and a softmax, feeding into the output. In the pose prediction experiment, all models use

151

a convolutional neural network with 4 convolution layers each with 16 5 × 5 filters. After
the convolution layers, we use a spatial soft-argmax to extract learned feature points, an
architecture that has previously been shown to be effective for spatial tasks [302, 303]. We
then pass the feature points through 2 fully connected layers with 200 hidden units and a
linear layer to the output. All layers use batch normalization and ReLU nonlinearities.

	Introduction
	Thesis Contributions and Outline

	Simulation to Reality Transfer
	Introduction
	Problem Formulation
	Learning protocol and EPOpt algorithm
	Experiments
	Relationship to Prior Work
	Hardware Case Study: Non-Prehensile Manipulation with EPOpt
	Chapter Summary

	Offline Reinforcement Learning
	Introduction
	Related Work
	Problem Formulation
	Algorithmic Framework
	Theoretical Results
	Practical Implementation Of MOReL
	Experiments
	Model-Based Offline RL from Vision
	Chapter Summary

	A Game Theoretic Framework for Model-Based RL
	Introduction
	Background and Notations
	Model Based RL as a Two Player Game
	Algorithms
	Experiments
	Related Work
	Summary and Conclusion

	Meta Learning with Implicit Gradients
	Introduction
	Problem Formulation
	The Implicit MAML Algorithm
	Experimental Results and Discussion
	Related Work
	Chapter Summary

	Meta Learning Under Non-Stationarity
	Introduction
	Foundations
	The Online Meta-Learning Problem
	Algorithm and Analysis
	Practical Online Meta-Learning Algorithm
	Experimental Evaluation
	Connections to Related Work
	Discussions and Conclusion

	Conclusion
	EPOpt: Additional Ablations and Experiments
	Hyperparameter and model details
	Robustness results
	Different settings for
	Importance of the baseline for policy gradient

	MOReL: Proofs and Additional Experiment Details
	Theoretical Results: Proofs For Section 3.5
	Additional Experimental Details And Results

	Game-MBRL: Proofs and Experiment Details
	Theoretical Results
	Algorithm Implementation Details and Experiments

	Implicit MAML: Proofs and Experiment Details
	Relationship between iMAML and Prior Algorithms
	Optimization Preliminaries
	Review: Time and Space Complexity of Hessian-Vector Products
	Additional Discussion About Compute and Memory Complexity
	Theoretical Results and Proofs
	Experiment Details

	Online Meta-Learning: Theoretical Results
	Linear Regression Example
	Theoretical Analysis
	Additional Experimental Details

