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With the increasing demands on artificial intelligence technology operating over sequential

data, represented by robotics and language processing, there has been a surge of interest

in interdisciplinary research spanning machine learning – a data-driven approach based on

statistics – and control or dynamical systems theory, which deals with dynamic environ-

ments. Because those streams of studies have evolved in a relatively separate manner under

different settings and formulations, their integration becomes an intricate task, requiring a

fresh look at the existing approach. This thesis primarily revolves around a discussion of

research endeavors in the intersection of machine learning and dynamical systems to exploit

the best of both worlds, and proposes some of the novel techniques and paradigms made

possible by bringing the unique perspectives and concepts from these domains creatively. I

initially provide a succinct overview of the state of the art in the related domains followed by

my contributions to the fields. First of all, this thesis begins with the work that synthesizes

control tools in a learning system to devise algorithms with control theoretic guarantees. In

this process, a novel control concept, limited-duration safety, is proposed with discussions

on its application within the context of transfer learning. Secondly, a novel model-based re-

inforcement learning (RL) algorithm is presented, leveraging a recent control theoretic tool



as an oracle embedded in the algorithm to provably ensure learning efficiency. With a novel

problem formulation with the Koopman operator, which is cast as a generalization of pole

assignments to nonlinear decision making, a diverse array of dynamic behaviors are realized.

Thirdly, as an additional highlight of exploration, I present the successful extension of RL

beyond its conventional reliance on the Bellman equation, encompassing dynamic program-

ming across entire paths. The new framework grounded in theoretical advancements of path

signatures has proven beneficial in addressing challenges related to path following. On the

other hand, merging machine learning, rooted in statistics, and dynamical systems raises

several challenges. In particular, fourthly, this thesis discusses a specific challenge of loss of

dynamic structure information that might be caused by concentrations of measures, which is

overcome by carefully adopting the asymptotic results of exponential sums. Lastly, a machine

learning algorithm itself can be seen as a dynamical system, and this perspective has theo-

retical and practical potential for handling complex machine learning domains. Especially

for a deep RL algorithm, the constructive approach is taken to analyze, in a retroductive

manner, the phenomena and performance separations observed in the systems of interest.

This thesis is also intended to open a novel direction of further research emerging out of

amalgamations of learning algorithms and dynamical systems perspectives, and is concluded

with a remark for the potential future work.
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1

NOMENCLATURE

Unless otherwise specified, the following notation is used throughout this thesis.

Symbol Meaning

R The set of the real numbers

R≥0 The set of the nonnegative real numbers

R>0 The set of the positive real numbers

N The set of the natural numbers ({0, 1, 2, . . .})

Z>0 The set of the positive integers

Q The set of the rational numbers

Q>0 The set of the positive rational numbers

C The set of the complex numbers

L(A;B) The set of bounded linear operators from A to B

C1(A) The class of continuously differentiable function defined over A

int(A), ∂A The interior set and the boundary of a set A, respectively

∆(A) The set of probability distributions over A

(·)⊤ Transposition

(·)† Adjoint

(·)+ (The Moore-Penrose) pseudo inverse

⟨·, ·⟩H The inner product in the Hilbert space H; ⟨x, y⟩Rd := x⊤y

∥x∥Rd , ∥x∥1
√
⟨x, x⟩, and

∑d
i=1 |xi| for x := [x1, . . . , xd]

⊤ ∈ Rd, respectively

∥A∥, ∥A∥HS The spectral and the Hilbert-Schmidt norms of A, respectively

∥f∥∞ The infinity norm of f ((real-valued) bounded function or vector)
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Symbol Meaning

[H] {0, 1, . . . , H − 1} for H ∈ Z>0

I (M), N (M) The image and the null spaces of M , respectively

⌊a⌋, ⌈a⌉ The floor and the ceiling of a real number a, respectively

lcm(L) The least common multiple of a set L of positive integers

gcd(L) The greatest common divisor of a set L of positive integers

Lf The Lie derivative along a function f

O(·) Big O notation providing an upper bound on the growth rate

Õ(·) An upper bound on the growth rate dropping logarithmic factor

E[·] Expectation

Pr[E ] Probability of an event E

⊗ Tensor product operation

T Either N (discrete-time) or R≥0 (continuous-time)

∅ The empty set

Re[·] The real part of a complex number

Im[·] The imaginary part of a complex number

tr[·] The trace of a linear operator (or square matrix)

• We use h or H as time indices for discrete-time settings in which case t and T may

denote episode; while, for continuous-time settings, we often use t and T for time points.

However, we also use t as a discrete-time index under non-episodic settings; this should

be clear in the context.



3

Chapter 1

INTRODUCTION

Departing from the rule-based paradigm of artificial intelligence, the domain of machine

learning (ML), deeply rooted in statistical foundations, has witnessed a remarkable trajectory

of advancements over the past decades. This evolution has been propelled by studies of cost

design, model selection, and optimization, coupled with the substantial acceleration made

possible by the confluence of vast computational resources and expansive datasets.

1.1 Motivation

In [174], ML is perceived as a study of computer programs that improve on the performance

with respect to some tasks through experience. On the other hand, [51] contrasts the study of

statistics and ML based on what they serve for, and states that ML focuses more on finding

generalizable predictive patterns. Therefore, it is naturally the case that optimization is

an essential aspect of ML aside from statistic and learning or improvement happens only

when there is a specific class of tasks in mind. This perspective also applies to controls

or optimal control in particular. As such, encapsulating ML and controls through the lens

of optimization could be a promising direction of research for advancing both domains.

Nevertheless, the challenges of dealing with nonstationary environments and confronting

problems that may not be easily dealt with by conventional cost optimization strategies

without indefinitely expanding the computational resource pose intrinsic hurdles within the

current paradigm. These hurdles echo the struggles encountered by the rule-based paradigm

of yore [170], known as the frame problem.

In terms of practical applications, recent research activities of ML within the domains

such as robotics, language processing, and AI-human collaborations highlight the needs of
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Figure 1.1: This thesis aims at bridging the fields of studies on dynamical systems/control
and statistical machine learning from several angles and methodologies.

sophisticated ML systems that robustly operate in a dynamic environment and data. Espe-

cially, dealing with dynamically changing environments, catching up with the ever updating

corpus, or ensuring smooth interactions of multiple agents including human users is an in-

tricate task partially due to the nature of data-driven approach rooted in statistics and

optimization (cf. [85, 107, 115, 87]). As biological phenomena are well-characterized as dy-

namical systems (e.g., universal biology [120] and applications of statistical physics [80]) such

as attractor dynamics and dissipative systems, it is natural to imagine that incorporating

the dynamical system viewpoint will enable constructions of simple yet robust AI systems.

In fact, an improvement or update of a system implicitly assumes some notion of time;

and ML system itself is inseparable from dynamics. Not only the output of ML such as

a control sequence, video stream, and a sequence of words, but the evolution of system

parameters (e.g., neural network parameters) and the neural network itself can be regarded

as dynamical systems. In lieu of this, it is insightful to recognize that the Turing machine,

the very bedrock of computer science, lends itself to a mathematical characterization as a

dynamical system (cf. [177]). This prompts us to contemplate the potential of reimagining

ML models, algorithms, and analytical approaches through the lens of dynamical systems.
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Because the studies of ML and dynamical systems (or control) have evolved in a relatively

separate manner, there naturally exist conceptual discrepancies when attempting to adopt

ideas from one to the other, requiring some creative leaps to alter the perspectives on the

existing approach; and this is the fundamental motivation behind this thesis.

1.2 Thesis statement and summary

This thesis revolves around the research on bridging dynamical systems and (statistical) ML

from several angles. In the course of my academic journey, particularly during my Ph.D.

program, I have made tangible contributions aimed at bridging the gap between them; and

this thesis presents the contributions from the following five angles (see fun picture in Figure

1.1):

• Control theoretic guarantees for ML algorithm

• Problem formulations through the lens of dynamical systems

• Trajectory-based optimization for control and learning tasks

• Algorithm design at the intersection of statistical ML and dynamical systems

• Constructive approach for analyzing complex ML algorithms as dynamical systems

Each of the above corresponds to a single chapter, constituting the main body of this thesis.

Before delving into their summaries below, I hereby make the following statement penetrating

the entire thesis.

1.2.1 Thesis Statement

Adoptions of concepts, unique problem formulations, control methods, methodologies, and

mathematical tools and results of dynamical systems to (statistical) machine learning lead to
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Figure 1.2: Some of the important concepts seen in control and ML. They exhibit attention
to various properties and concepts inherent within the system from different perspectives.

• creations of novel decision making and system identification paradigms with certain

guarantees, which help efficiently solve important control and identification problems

and produce novel concepts in both of the domains in a way, and further to

• a dynamical system perspective of learning algorithm itself that enables natural sci-

entific analysis of the system, and that possibly creates a novel paradigm of artificial

intelligence research in the future, including some revival of the aspects in the past.

1.2.2 Control Theoretic Guarantees for Machine Learning Algorithm

The realm of theoretical exploration in ML algorithms predominantly relies on statistical

analyses, with a primary emphasis on facets of learnability, including computational and

sample complexity analyses [219]. On the contrary, control theory, traditionally studied

from the perspectives of (asymptotic) stability, controllability, observability, invariance, and

adaptation, finds its footing in the domain of differential (or difference) equations, linear

algebra, and spectral theory [126] (see Figure 1.2). The recent surge of interest surrounding

ML algorithms in the context of robotics and control systems underscores the pivotal im-
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portance of not only ensuring learnability but also providing control theoretic guarantees for

the learning system that dynamically interacts with a controlled agent.

In Chapter 3, we especially consider the problem of ensuring state constraints, which we

regard as safety (see Figure 1.3 (left)), for controlled agents. Recent advancements of theory

and practical application of control barrier functions (cf. [16]) have enabled systematically

ensuring (forward) invariance of a given set of states through a constraint on the control

selection every time; which therefore reduces the long horizon state constraints to the con-

straint on instantaneous control selections. However, obtaining such a valid barrier function

for a given set of states is not straightforward or even hopeless if the agent is unstabilizable.

Figure 1.3: We consider safety as constraints on the state in this thesis; e.g., keeping the
pole staying straight up or ensuring that the car remains in a lane. A valid control barrier
function, if exists, can be employed to ensure safety. Also, within the context of transfer
learning, one could reduce the policy space of exploration when learning target task if some
constraints are shared between the source and target tasks.

To overcome this challenge, we will present our work [191] that studied the value function

induced by a cost adhering to particular conditions as a potential candidate for a control

barrier function. Because in most cases obtaining a (bounded) value function necessitates

the introduction of a discount factor, this work introduced a novel control theoretic concept,

namely, limited-duration safety. We have demonstrated that such a value function serves as
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Figure 1.4: Reinforcement learning (RL), a domain of research in ML, focuses on the interac-
tion of the agent and the environment. RL aims at finding a sequence of actions to influence
the environment to obtain a desirable outcome based on the sequentially available obser-
vations sampled from the environment. We consider embedding a state-of-the-art control
method into learning algorithms to design an efficient learner and reframing unique control
problems as learning problems by properly designing the loss.

a limited-duration control barrier function, which is used to ensure limited-duration safety.

This (relaxed) safety guarantee mechanism can be applied to transfer learning (cf. [194])

through reduction of the space to be explored for new tasks that share the same constraints

as the source (see Figure 1.3 (right)).

1.2.3 Problem Formulations through the Lens of Dynamical Systems

When the problem of interest deals with dynamical systems – encompassing domains such as

control, system identification, and future behavior prediction – ML algorithms often involve

seamless interaction with a dynamically shifting environment. The objective is to ensure con-

vergence toward a desired outcome under relatively benign assumptions. A prime illustration
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of this is found in reinforcement learning (RL) (cf. [7]), where the learning environment is

commonly characterized as a Markov Decision Process (cf. [36]), and dynamic programming

(cf. [35]) plays a key role (see Figure 1.4).

An RL algorithm is aimed at finding an optimal sequence of control actions to take to

achieve the highest value (the cumulative rewards along the trajectory) by interacting with

the environment; and efficient learning algorithm is typically demanded, where a sequence of

actions attaining sufficiently high value can be obtained with a small number of interactions

that generate data samples. This sample complexity of the algorithm should not depend on

the number of states or control actions for those having continuous or extremely large size

of state and action spaces, such as the ones in visual input based robot learning problems.

In particular, for robotics problem we consider (see Figure 1.5 for some of the environments

studied in this thesis), the algorithm is expected to work in the complex environment suffi-

ciently well in practice as well.

Figure 1.5: Some of the environments used for the control experiments. From the left,
they are a robot arm picking up a spherical object, a discrete maze (red circle indicates the
current agent’s position and the thickness of blue circles corresponds to the times the agent
has visited those states), limit cycle dynamics, a cart pole, and a walker.

In Chapter 4, we will present the work on a model-based RL [119] tailored for con-

tinuous controls, leveraging a recent control theoretic tool as an oracle to provably ensure

learning efficiency. By assuming and exploiting physical structure represented as the transi-

tion dynamics spanned by a known set of features, and by embedding the control tools as

an optimization oracle into the RL algorithm, the aforementioned requirements on sample
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Figure 1.6: Path signature is a mathematical concept developed in the rough path community
studying controlled differential equations (cf. [163]). Using the algebraic property called
Chen’s identity [57], we developed novel decision making framework of ML which is then
used to solve some of the important control problems.

complexity and on practicality are successfully met.

On the other hand, in the context of RL, the optimization objective is the cumulative

rewards along the agent’s trajectory; which resembles the principle of least action (cf. [84])

observed in the realm of physics. Our work [190] draws inspiration from classical eigen-

structure (or pole) assignment techniques (cf. [19]), widely explored within the purview of

linear control systems. It articulates the learning objective as the optimization not only of

the cumulative rewards but of eigenstructures of the so-called Koopman operator [136], a

linear operator that describes the evolution of observables. This approach enables dynamical

systems realizations that remain infeasible within a cumulative cost (or reward) framework,

embracing a broader spectrum of dynamic behaviors that evolve over stable manifolds, which

encompass nonlinear oscillators, closed loops, and smooth movements.

1.2.4 Trajectory-based Optimization for Control and Learning Tasks

Dynamical systems generate trajectories or time sequences; it is hence natural to ask learning

algorithms to operate on the space of trajectories, and in fact, the recent success on large
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language models (e.g., [47]) is highlighted by the capability of the Transformer model [252],

which deals with sequential data.

The difficulty of dealing with problems such as trajectory following is particularly pro-

nounced if an appropriate set of waypoints is unavailable. Within the current decision making

paradigm relying on either an estimate of value (i.e., cumulative rewards) or single-step dy-

namics used to plan the optimal sequence of control actions through search, well-designed

waypoints that are (almost) feasible to track along the target trajectory which could poten-

tially be very long are oftentimes indispensable to direct the agent’s behavior (cf. [198]).

Guided by the insights drawn from rough-path theory that considers controlled differential

equations (cf. [163]), in Chapter 5 presenting the work [188], we extend the decision making

framework based on the Bellman equation [35] to the domain of paths by leveraging the

path signatures (cf. [63, 162]). Path signature is a powerful representation capturing the

analytical and geometric traits of paths with remarkable efficiency, thanks to their algebraic

properties including fast concatenation of paths achieved through tensor products (cf. [57]).

This algebraic property is called Chen’s identity [57], and is exploited as a basis of dynamic

programming to build a novel decision making framework (see Figure 1.6).

Essentially, we establish connections between value functions and intriguing properties of

path signatures. This generalized framework naturally deals with varying and adaptive time

steps, propagating higher-level information more efficiently than traditional value function

updates, all while retaining its resilience in the face of dynamical system misspecification

over extended rollouts. The novel control method that stems from this framework, which

particularly shines when applied to trajectory following problems, stands as a generalization

of integral controls (cf. [126]), thereby exhibiting robustness against disturbance, and opens

an innovative ML paradigm.

1.2.5 Algorithm Design at the Intersection of Statistical ML and Dynamical Systems

Recent investigations into Neural Ordinary Differential Equations (NODEs) [58], learning

dynamics (e.g., [99]), and the associated analyses have reminded us that a composition of
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Figure 1.7: Illustration of loss of dynamic information through concentration of measure. The
left picture shows an example of the law of large numbers showing the sample mean of the
numbers given by throwing dice many times will converge towards the expected value, namely
3.5, as the number of throws increases. The right picture shows an intuitive understanding
of how the concentration of measures or process of averaging out the observations may erase
not only the noise effect but also the dynamic information; in this case, the dynamics on the
left side is a fixed point attractor and that on the right side is a limit cycle attractor.

transformations, and even ML algorithms themselves, fundamentally manifest as dynamical

systems, as they are inherently the Turing machines [248]. This fact naturally leads to an

intriguing research question: How might we reframe the ML paradigm through the language

of dynamical systems?

My initial foray in this direction focused on establishing links between statistical method-

ologies and dynamics, with a particular emphasis on a novel problem of dynamic structure

estimation from bandit feedback contaminated by sub-Gaussian noise (see [144] for a survey

of bandit algorithms). The process of estimating structural information under conditions

of noise contamination traditionally relies on leveraging the concentration of measures (cf.

[219]) to mitigate the noise’s impact. Yet, this approach bears the risk of erasing essential

structural information that underlies the dynamics (see Figure 1.7 for an intuitive under-

standing).

To surmount this challenge, Chapter 6 presents our work [189] that harnesses asymptotic

results for exponential sums, including those associated with the Weyl sum [260], studied

within the number theory community. These findings are instrumental in averting the era-
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Figure 1.8: Overview of how the exponential sum techniques are used in the work. For
(nearly) period estimation problem, it is an application of discrete Fourier transform in
our statistical settings, which ensures that the correct estimate remains while noise effect
or wrong estimates are properly suppressed. When the system follows linear dynamics in
addition to the (nearly) periodicity, our application of the Weyl sum, a variant of exponential
sums, preserves some set of the eigenstructure information.

sure of crucial information. In particular, the observations are not just averaged but are

processed by exponential sum techniques, which as a result produces an estimate that pre-

serves an important set of correct dynamic structural information while effectively suppresses

the noise’s influence (see Figure 1.8). As a byproduct, the work also offers novel dynamical

systems theoretic concepts, including nearly periodicity.

1.2.6 Constructive Approach for Analyzing Complex Machine Learning Algorithms as Dy-

namical Systems

A dynamical system perspective is not confined to theoretical studies alone but extends its

reach into practical domains, particularly when deep neural networks are integrated into

learning. Recent advancements of ML are highlighted by the use of large network models

together with massive compute and data; and it is nearly impossible to thoroughly analyze
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Figure 1.9: An illustration of the constructive approach. It is a bottom-up approach where
one abstracts the target environment in a certain way so that the logically predictable and
reproducible behaviors of the system and its resulting state help us infer what might be
happening for the target complex system. The abstract system design and how one observes
the target system in order to find a reasonable connection to the abstracted behaviors are
determined through trial and error. The abstraction may have multiple layers.

the entire behaviors or phenomena observed in, for example, large language models or deep

RL/imitation learning (IL) of large scale. In particular, with the existence of interactions of

multiple agents including human users, the behavior of such systems emerges as exceedingly

intricate, resisting facile reductionist approaches for precise description.

In Chapter 7, we aim at tackling this challenge by focusing on algorithmic behaviors

generated by the soft-actor-critic (SAC) algorithm [94], a widely-used model-free deep RL

algorithm, with three types of critic loss functions, namely, the mean-squared-error (MSE),

Huber [104], and quantile-Huber [72] loss functions.

The novelty of this work lies in the methodology we employ, a constructive approach (see

Figure 1.9) tailored to our problem. An illustrative example of constructive approach may

be seen in the Lorenz attractor [153]; this simplified abstract system is not meant to fully

capture the target dynamics of atmospheric convection and weather, but to show chaotic
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behavior (i.e., the sensitivity to the initial conditions) can even be observed in such a simple

system.

Our approach uses some observations to categorize the learning behaviors, and designs

a model that is sufficiently simple to analyze while involving essential components of the

target systems, from which we can at least identify the sufficient conditions for some class

of learning behaviors to emerge.

1.3 Summary of contributions

We list the contributions of thesis in this section which will be mentioned again in each

chapter.

In Chapter 3, we mathematically conceptualize the novel control notion of limited-

duration safety, present a way of learning valid control function that can be used to ensure

limited-duration safety, and present practical applications including a constraint-driven con-

trol problem and a transfer learning problem where the developed control function is adopted

to speed up the learning in the target tasks.

In Chapter 4, we design an algorithm (LC3) that works in practice for complex (and

continuous) robotics simulation environments under fairly general model assumptions, and

provide regret bounds for the algorithm. Further, we propose the Koopman spectrum cost

that complements the (cumulative) single-step cost for nonlinear control, which enables ef-

fective encoding/imitation of some desirable agent dynamics such as limit cycles, stable

loops, and smooth movements, and propose theoretical online learning algorithm (KS-LC3)

to provide a regret bound under structural assumptions by using our novel operator theoretic

arguments in addition to some of the results from the analysis of LC3.

Chapter 5 presents a novel framework based on path signatures for control problems

named signature control, and defines Chen equation, a dynamic programming based update

rule of signatures, to show how it reduces to the Bellman equation as a special instance.

Moreover, we propose its model predictive control algorithm that is shown to generalize

the classical integral control, and present several control and robotics applications. Those
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applications showcase the benefits of our framework and demonstrate the concepts that

inherit mathematical properties of the path signature. We also analyze some of the properties

of our framework both numerically and theoretically.

In Chapter 6, a recoverable set of periodic/eigenvalues information of a (nearly) periodic

dynamics when the observations are available in a form of bandit feedback is mathemati-

cally identified and defined (the feedback is contaminated by a sub-Gaussian noise, which is

more general than those usually considered in system identification work). In particular, we

present provably correct algorithms for efficiently estimating such information; this consti-

tutes the first attempt of adopting asymptotic results on the Weyl sum, and the algorithms

are implemented for toy examples to experimentally validate our claims.

Then, in Chapter 7, we take constructive approach to analyze the performance difference

among RL algorithms with different critic loss functions; in particular, after presenting the-

oretical analyses that expose some of the basic logic behind the behavior difference caused

by the choice of critic loss, we present behavior class to categorize the learning curves of

algorithms with different critic loss functions. Subsequently, we propose abstracted systems

whose learning behaviors fall into the proposed behavior classes and are logically predictable,

and propose a few metrics that help quantify the behaviors observed in more complex envi-

ronments. Finally, we also present an array of experimental results.
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Chapter 2

BACKGROUND

In this chapter, we discuss background of the work presented in this thesis, including a

succinct review of important mathematical concepts and related work.

2.1 Reviews of mathematical concepts

The work of this thesis rely on several mathematical frameworks; some of which will be

detailed in each chapter. In this section, we therefore review selected ones below.

2.1.1 Existence and uniqueness of the solutions of differential equation

Consider the following initial-value problem:

dx

dt
= f(t, x), x(t0) = x0 ∈ Rdx . (2.1.1)

We discuss the solutions of (2.1.1) over a time interval [t0, t1], i.e., a continuous function

x : [t0, t1] → Rdx such that dx/dt is defined and dx/dt = f(t, x(t)) for all t ∈ [t0, t1]. In

particular, we seek the conditions that ensure the solutions exist and that they are unique.

Theorem 2.1.1 (Local existence and uniqueness [126, Theorem 3.1]). Suppose f(t, x) is

piecewise continuous in t and that the following Lipschitz condition holds:

∀x, y ∈
{
x ∈ Rdx : ∥x− x0∥ ≤ r

}
,∀t ∈ [t0, t1],∃L ≥ 0 : ∥f(t, x)− f(t, y)∥Rdx ≤ L∥x− y∥Rdx ,

where r > 0. Then, there exists some δ > 0 such that (2.1.1) admits a unique solution over

the interval [t0, t0 + δ].

The above theorem only ensures the local existence and uniqueness of the solutions under

some conditions; below, we present the global existence and uniqueness result:
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Theorem 2.1.2 (Global existence and uniqueness [126, Theorem 3.2]). Suppose f(t, x) is

piecewise continuous in t and that the following Lipschitz condition holds:

∀x, y ∈ Rdx , ∀t ∈ [t0, t1], ∃L ≥ 0 : ∥f(t, x)− f(t, y)∥Rdx ≤ L∥x− y∥Rdx .

Then, (2.1.1) admits a unique solution over the interval [t0, t1].

2.1.2 Control barrier functions

We also briefly discuss the control barrier function for the system

dx

dt
= f(x(t)) + g(x(t))u(t), (2.1.2)

where x(t) ∈ D ⊂ Rdx and u(t) ∈ U ⊂ Rdu are the state and the instantaneous control input,

f : Rdx → Rdx , and g : Rdx → Rdx×du . We define extended class-K functions and forward

invariance:

Definition 2.1.1 (Extended class-K function [126, 270, 16]). A continuous function α : R→

R is said to belong to extended class-K∞ if it is strictly increasing and α(0) = 0.

Definition 2.1.2 (Forward invariance [126]). The set C is forward invariant with respect to

the system (2.1.2) if

x(0) ∈ C =⇒ x(t) ∈ C, ∀t ≥ 0.

Then, the control barrier functions are defined as below:

Definition 2.1.3 (Control barrier function [16, Definition 2]). Let C ⊂ D be the superlevel

set of a function B : D → R of class C1(D); then B is said to be a control barrier function if

there exists a function α of extended class-K∞ such that for the system (2.1.2), it holds that

∀x ∈ D : sup
u∈U
{LfB(x) + LgB(x)u} ≥ −α(B(x)).

Now, the following theorem combined with the existence and uniqueness results in Section

2.1.1 guarantees the safety, i.e., the forward invariance of set C:
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Theorem 2.1.3 (Safety guarantee by control barrier functions [16, Theorem 2]). Let C ⊂ Rdx

be the superlevel set of a function B : D → R of class C1(D). If B is a control barrier function

on D and ∂B
∂x

(x) ̸= 0 for all x ∈ ∂C, then any Lipschitz continuous controller u(x) satisfying,

for all x ∈ D,

LfB(x) + LgB(x)u(x) + α(B(x)) ≥ 0

for the system (2.1.2) renders the set C forward invariant.

2.1.3 Markov decision process

In this thesis, we sometimes rely on the convention of continuous control setups without

explicitly defining Markov Decision Process (MDP); however, as otherwise stated, an MDP

for discrete-time finite horizon case may be defined by a tuple (S,A, R, P, γ), where S is the

state space, A is the action space, R : S × S ×A× Ω→ R is the reward function (Ω is the

sample space), P : S × A → ∆(S) is the transition kernel, and γ ∈ [0, 1) is the discount

factor, respectively. For simplicity, by abuse of notation, we see R(s, s′, a) returns a random

variable (reward). Also, we define π : S → ∆(A) as the policy.

Let Qπ : S ×A → R be the action-value (or Q) function w.r.t. the policy π, defined by

Qπ(s, a) := EZπ(s, a) := E

[
H′−1∑
h=0

γhrh

∣∣∣∣ π, s0 = s, a0 = a

]
, rh = R(sh, sh+1, ah, ω),

where H ′ ∈ Z>0 is given by

H ′ := min

{
H, min

h∈Z>0

{
h

∣∣∣∣sh ∈ Se, s0 = s, a0 = a, π

}}
.

Here, H ∈ Z>0 is the maximum time steps, and Se ⊂ S denotes the set of exit states.

Distributional reinforcement learning

Although we consider the Q function described above in the classical reinforcement learning,

it may be sometimes beneficial to study the distribution of the return Zπ(s, a) through
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distributional Bellman equation [34]. For such cases, one keeps the distribution of return at

each pair of state and action while the policy may be updated by using its expected value

(i.e., the Q value). A reasonable approach is to use quantile regression; recall that, for a (real-

valued) random variable X, the value x ∈ R falls in the i/N -quantile for i ∈ {1, 2, . . . , N}

if

Pr[X ≤ x] ≤ i

N
.

For quantile regression, we use the quantile midpoints τi = 2i−1
2N

. Quantile regression mini-

mizes the following loss function for quantile τ :

ρτ (u) = u
(
τ − δ{u<0}

)
,

where δ{cond} is the indicator function returning 1 when cond is satisfied and 0 otherwise;

and we know that this optimization gives us x that falls in the quantile τ (see [134] for more

details).

2.1.4 Random dynamical systems

Let X ⊂ Rdx be the state space, and Π a set of parameters each of which corresponds to one

random dynamical system (RDS) as described below. Given a parameter π ∈ Π, let (Ωπ, Pπ)

be a probability space, where Ωπ is a measurable space and Pπ is a probability measure. Let

{µπ(r)}r∈T be a semi-group of measure preserving measurable maps, where µπ(r) : Ωπ → Ωπ,

(µπ(r))∗Pπ = Pπ, µπ(0) = idΩπ , and µπ(r) ◦ µπ(s) = µπ(r + s) for all s, r ∈ T. For each

parameter π ∈ Π, the corresponding nonlinear RDS is given by

Fπ : T× Ωπ ×X → X ,

that satisfies

Fπ(0, ω, x) = x, Fπ(r + s, ω, x) =Fπ(r, µπ(s)ω,Fπ(s, ω, x)), ∀r, s ∈ T, ω ∈ Ωπ, x ∈ X .

(2.1.3)
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The above definition of RDS is standard in the community studying dynamical systems (refer

to [24], for example). Roughly speaking, an RDS consists of the following two models:

• A model of the noise;

• A function representing the physical dynamics of the system.

RDSs subsume many practical systems including Markov chains, solutions to stochastic

differential equations, and additive-noise systems, i.e.,

xh+1 = f(xh) + ηh, x0 ∈ Rd, h ∈ [H],

where f : Rdx → Rdx represents the dynamics, and ηh ∈ Rdx is the zero-mean i.i.d. additive

noise vector. Intuitively, dynamical systems with an invariant noise-generating mechanism

could be described as RDSs by an appropriate translation.

2.1.5 Koopman operator

For the RDSs being defined above, we define the operator-valued map K below, using the

dynamical system model.

Definition 2.1.4 (Koopman operator). Let H be a function space on X over C and let

{Fπ}π∈Π be a dynamical system model. We define an operator-valued map K by K : Π→

L(H,H) such that for any π ∈ Π and g ∈ H,

[K (π)g](x) := EΩπ [g ◦ Fπ(1, ω, x)], x ∈ X .

We will choose a suitableH to define the map K , and K (π) is the Koopman operator for

Fπ. Essentially, the Koopman operator represents a nonlinear dynamics as a linear (infinite

dimensional) operator that describes the evolution of observables in a lifted space (see Figure

2.1 (left) for an illustration).

2.1.6 Reproducing kernel Hilbert spaces

Here, we review the reproducing kernel Hilbert spaces (RKHSs).
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Figure 2.1: Illustrations of the Koopman operator (left) and the path signatures (right).

Definition of the reproducing kernel

We give the definition of the reproducing kernel:

Definition 2.1.5 (Reproducing kernel [39, 25]). Let E be an nonempty set. A function

K : E × E → C

(s, t) 7→ K(s, t)

is a reproducing kernel of the Hilbert space H if and only if

1. ∀t ∈ E : K(·, t) ∈ H,

2. ∀t ∈ E, ∀φ ∈ H : ⟨φ,K(·, t)⟩H = φ(t) (a.k.a. reproducing property).

The following theorem gives the first characterization of RKHS.

Theorem 2.1.4 (Characterization of RKHS [39, Theorem 1]). A Hilbert space H of functions

on E over C has a reproducing kernel if and only if all the evaluation functionals et : H → C

(φ 7→ et(φ) = φ(t)), for all t ∈ E, are continuous on H.

RKHSs have several remarkable properties: (1) uniqueness of the reproducing kernel if it

exists, (2) any reproducing kernel is a positive type function (converse is also true), (3) all
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closed linear subspaces of RKHSs are again RKHSs, (4) restriction of an RKHS of functions

on E to E1 ⊂ E admits another RKHS with an adequate norm, (5) sum and product of

reproducing kernels become the reproducing kernels of properly defined Hilbert spaces, just

to name a few (see [39, 25]).

Function-valued RKHS

Function-valued RKHSs are defined below.

Definition 2.1.6 ([116]). A Hilbert space (HK , ⟨·, ·⟩HK
) of functions from Π to a Hilbert

space (H, ⟨·, ·⟩H) is called a reproducing kernel Hilbert space if there is a nonnegative

L(H;H)-valued kernel K on Π× Π such that:

1. π 7→ K(π′, π)ϕ belongs to HK for all π′ ∈ Π and ϕ ∈ H,

2. for every G ∈ HK , π ∈ Π and ϕ ∈ H, ⟨G , K(π, ·)ϕ⟩HK
= ⟨G (π), ϕ⟩H.

For function-valued RKHSs, the following proposition holds.

Proposition 2.1.5 (Feature map [45]). Let H′ be a Hilbert space and Ψ : Π → L(H;H′).

Then the operator W : H′ → HΠ defined by [Wψ](π) := Ψ(π)†ψ, ∀ψ ∈ H′ and ∀π ∈ Π, is

a partial isometry from H′ onto the reproducing kernel Hilbert space HK with a reproducing

kernel K(π2, π1) = Ψ(π2)
†Ψ(π1), ∀π1, π2 ∈ Π.

2.1.7 Path signature

Let X ⊂ Rdx be a state space and suppose a path (a continuous stream of states) is defined

over a compact time interval [s, t] for 0 ≤ s < t as an element of X [s,t]. The path signature

is a collection of infinitely many features (scalar coefficients) of a path with depth one to

infinite. Coefficients of each depth roughly correspond to the geometric characteristics of

paths, e.g., displacement and area surrounded by the path can be expressed by coefficients

of depths one and two.
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Tensor algebra

We present the definition of tensor algebra here. In the main text, we use some of the

notations, including T ((X )), defined below.

Definition 2.1.7 (Tensor algebra). Let X be a Banach space. The space of formal power

series over X is defined by

T ((X )) :=
∞∏
k=0

X⊗k,

where X⊗k is the tensor product of k vector spaces (X s). For A = (a0, a1, . . .), B =

(b0, b1, . . .) ∈ T ((X )), the addition + and multiplication ⊗ are defined by

A+B = (a0 + b0, a1 + b1, . . .), A⊗B = (c0, c1, . . .) , ck =
k∑
ℓ=0

aℓ ⊗ bk−ℓ.

Also, λA = (λa0, λa1, . . .) for any λ ∈ R. The truncated tensor algebra for a positive integer

m is defined by the quotient Tm(X )

Tm(X ) := T ((X ))/Tm,

where

Tm = {A = (a0, a1, . . .) ∈ T ((X )) : a0 = a1 = . . . = am = 0} .

Now, we give the definition of path signatures.

Definition of signature

The formal definition of path signatures is given below.

Definition 2.1.8 (Path signatures [163]). Let Σ ⊂ X [0,T ] be a certain space of paths. De-

fine a map on Σ over T ((X )) by S(σ) ∈ T ((X )) for a path σ ∈ Σ where its coefficient

corresponding to the basis ei ⊗ ej ⊗ . . .⊗ ek is given by

S(σ)i,j,...,k :=

∫
0<τk<T

. . .

∫
0<τj<τk

∫
0<τi<τj

dxτi,idxτj ,j . . . dxτk,k.

Here, xt,i is the ith coordinate of σ at time t.
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The space Σ is chosen so that the path signature S(σ) of σ ∈ Σ is well-defined. Given a

positive integer m, the truncated signature Sm(σ) is defined accordingly by a truncation of

S(σ) (as an element of the quotient Tm(X )).

We summarize the basic properties of path signatures that are exploited in this thesis

below (see [63, 163] as well):

• The signature of a path is invariant under a constant shift and time reparameteriza-

tions. Straightforward applications of signatures thus represent shape information of a

path irrespective of waypoints and/or absolute initial positions.

• A path is uniquely recovered from its signature up to tree-like equivalence (e.g., path

with detours) and the magnitudes of coefficients decay as depth increases. As such,

(truncated) path signatures contain sufficiently rich information about the state tra-

jectory, providing a valuable and compact representation of a path in several control

problems.

• Any real-valued continuous map on the certain space of paths can be approximated

to arbitrary accuracy by a linear map on the space of signatures. This universality

property enables us to construct a kernel operating over the space of trajectories,

which will be critical to derive our control framework in Chapter 5.

• The path signature has a useful algebraic property known as Chen’s identity [57],

stating that the signature of the concatenation of paths can be computed by the tensor

product of the signatures of the paths. Let X : [a, b]→ Rd and Y : [b, c]→ Rd be two

paths. Then,

S(X ∗ Y )a,c = S(X)a,b ⊗ S(Y )b,c,

where ∗ denotes the concatenation operation (we shift the starting time of path when

necessary).
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Signature kernel

We will use signature kernels for computing the metric (or cost) for control problems in

Chapter 5. A path signature is a collection of infinitely many real values, and in general, the

computations of inner product of a pair of signatures in the space of formal polynomials are

intractable. Although it is still not the exact computation in practice, the work [214] showed

that the signature kernel can be obtained as the solution of a Goursat PDE.

Definition 2.1.9 (Signature kernel [214]). Let X be a d-dimensional space with canonical

basis {e1, . . . , ed} equipped with an inner product ⟨·, ·⟩X . Let T (X ) :=
⊕∞

k=0X⊗k be the

space of formal polynomials endowed with the same operators + and ⊗ as T ((X )), and with

the inner product

⟨A,B⟩ :=
∞∑
k=0

⟨ak, bk⟩X⊗k ,

where ⟨·, ·⟩X⊗k is defined on basis elements {ei1 ⊗ . . .⊗ eik : (i1, . . . , ik) ∈ {1, . . . , d}k} as

⟨ei1 ⊗ . . .⊗ eik , ej1 ⊗ . . .⊗ ejk⟩X⊗k = ⟨ei1 , ej1⟩X . . . ⟨eik , ejk⟩X .

Let T (X ) be the completion of T (X ), and H := (T (X ), ⟨·, ·⟩) is a Hilbert space. The

signature kernel K : Σ× Σ→ R is defined by

K(X, Y ) := ⟨S(X), S(Y )⟩ ,

for X and Y such that S(X), S(Y ) ∈ T (X ).

2.1.8 Concentration inequality

Lastly, we briefly discuss concentration inequalities. As a basic statistical fact, we introduce

the strong law of large numbers. To this end, recall that the sequence of (real-valued) random

variables {Xn} is called pairwise independent if the joint cumulative distribution function

FXi,Xj
satisfies FXi,Xj

(x, y) = FXi
(x)FXj

(y) for any pair (i, j) such that i ̸= j and for all x, y.

Also, it is called identically distributed if FXi
(x) = FXj

(x) for all i, j, x.
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Theorem 2.1.6 (Strong law of large numbers (cf. [81])). Let {Xn} be a sequence of pairwise

independent, identically distributed random variables with E[|Xi|] < ∞. Let Sn =
∑n

i=1Xn.

Then,

lim
n→∞

Sn
n

= E[Xi] a.s.

Since the law of large numbers is an asymptotic result, it does not provide a bound of the

empirically estimated value for given samples of finite size. Concentration inequalities are

used to quantify this error bound; we only provide the most basic inequality called Markov’s

inequality here: Let X be a nonnegative random variable; then we have

(Markov′s inequality) ∀a ≥ 0 : Pr[X ≥ a] ≤ E[X]

a
.

Refer to [219] for concentration inequalities and for how they are exploited to provide sample

complexity guarantees in ML problems.
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2.2 Related work

Studies in the intersection of machine learning (ML) and dynamical systems span a variety

of fields including robotics, control, and reinforcement learning (RL), just to name a few.

This section reviews relevant work to this thesis in such fields of studies, namely, RL,

control theoretic guarantees for learning, operator theoretical and trajectory based study on

learning dynamics, bandit for nonstationary environments, exponential sums, and dynamical

system perspectives on ML.

2.2.1 Reinforcement learning

RL is a learning paradigm where the learner acts on an environment to receive observations

and rewards (or costs) over a horizon of certain length, which is aimed at eventually finding

an optimal sequence of actions that maximizes (or minimizes) the cumulative rewards (or

costs). Historically, RL has served as a bridge between ML and controls (see [233] for the

history of RL). RL research has traditionally been conducted within optimal control (based

on dynamic programming [35]) and psychology of animal learning (e.g., [224]), and their

interdisciplinary study has produced more quantitative and algorithmic research represented

by the invention of temporal-difference (TD) learning (cf. [235]). Recently, we have seen

success of (deep) RL methods categorized as model-based or model-free on a variety of domains

in addition to the extensive studies on the complexities of RL algorithms.

Model-free and model-based algorithms: Model-free approach typically relies on dy-

namic programming over the value which is to be learned through interactions, and value

function based methods are widely adopted in RL for control problems. However model-

free RL algorithms [112, 94, 175, 266] treat the state transition model as a black box and

access the state information exclusively through the scalar value, typically resulting in low

sample efficiency. Model-based RL methods alleviate this problem of value function based

approaches by using or learning the environment model of transition across the states to plan
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an optimal sequence of actions (cf. [231, 79, 258, 64]). In practical algorithms, however, even

a small amount of error on one-step dynamics could diverge along multiple time steps, which

hinders the performance (cf. [176]). To improve sample complexity and generalizability of

value function based methods, on the other hand, successor features (e.g., [31]) have been

developed for encoding representations of values for a diverse set of reward signals spanned

by the features. We mention the work [231] shows one way of defining what qualifies for the

model-based algorithm.

Sample complexity studies: Statistical complexity such as VC-theory plays a key role

in the sample complexity analysis of ML algorithms (cf. [219]) and it is oftentimes studied

within the framework of probably approximately correct (PAC) learnability [251]. Provably

efficient algorithms for RL have been studied in, for example, [193, 29, 155, 113, 8]. Efficient

learner for the special case of linear quadratic regulators (LQRs) has been studied as well [166,

65, 223]. As general frameworks permitting sample efficient RL under structural conditions,

some low rank structures have been proposed (e.g., the Bellman rank [112] and the Witness

rank [231]) which are shown to be the special cases of Bilinear class [79]. Although it is not

directly related to RL, there exist researches on sample complexity of system identification

problems as well. As those related to our work, partially observed linear system identification

methods include [247, 246, 142, 145, 97, 222, 146], under either controlled or autonomous

settings. Most of them consider additive Gaussian noise and make controllability and/or

observability assumptions (for autonomous case, transition with Gaussian noise with positive

definite covariance is required). While [173] considers nonlinear observation, it assumes

Gaussian noise and controllability.

Distributional RL: Distribution of returns within the context of RL has been studied in

[75, 180, 30, 143] for example. Followed by the work [34] showing improvements made by a

distributional RL over an expected RL for several environments, a variant of distributional

RL called quantile regression soft actor-critic (QRSAC) algorithm was proposed for training
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of the superhuman racing AI agent, Gran Turismo Sophy [266]. Theoretical analyses have

also been made (e.g., [237, 210, 158]); in particular, [158] proves that, with the squared

Cramér distance loss, distributional RL behaves exactly the same as expected RL for the

tabular and linear approximation settings, while the difference is pronounced in the nonlinear

approximation settings.

Analysis of deep RL algorithms: Analyzing the performance of deep RL algorithms is

an intricate task due to its complexity. There exist some attempts on analyzing the effects

of critic loss choice and of smoothness of the critic surface. The use of the Huber loss [104]

for critic is often preferred in practice, and its equivalence, namely, magnitude clipping on

TD errors has shown better learning stability on some problem instances [175]; on the other

hand, [55] shows that the Huber loss combined with RMSProp optimizer leads to inferior

performance than the MSE loss with Adam optimizer [129] for a wide variety of environ-

ments. Recently, the authors of the work [197] analyzed the convergence and performance of

algorithms with the Huber loss and the MSE loss w.r.t. the Bellman errors. They claim that

capacity constraints on approximators lead to distinct critic surfaces. Also, [78] proposes

the use of loss on the gradient of critic surface to facilitate its smoothness. Importance of

well-behaving critic surface has been studied in generative modeling, representation learning

and RL as discussed in [209]; which mentions that imposing smoothness constraints on critic

plays some important roles in generative adversarial networks (GANs) ([272, 92, 82, 21]), for

example.

2.2.2 Control theoretic guarantees for learning

Giving control theoretic guarantees to learning systems has been recently studied as an

attempt of exploiting the best of both worlds. While statistical ML places importance

on learnability, including computational and sample efficiency, control theory possesses an

accumulation of studies on (asymptotic) stability, controllability, observability, invariance,

and adaptation.
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Control Lyapunov and barrier functions: In particular, Lyapunov stability is an es-

sential control theoretic concept (cf. [126]). For controlled (affine) systems, constraining

the control inputs using control Lyapunov functions (CLFs; cf. [86]) ensures stability of the

system efficiently. Stability naturally implies (forward) invariance of certain set of states;

however, it is typically too conservative just to ensure invariance. Recently, control bar-

rier functions (CBFs; cf. [16, 270, 261, 90, 255, 17, 10]) have been proposed to enforce the

(forward) invariance of a given set of states.

Applications to safe learning: Safety is particularly pronounced in the domains such as

robotics, and the learning agent should be tasked to learn a desirable action strategy without

violating safety. There have been numerous solutions proposed [216, 12, 220, 18, 184, 4], and

Lyapunov stability is applied to safe learning of robotics (see one of the early work [38, 37]),

and later, barrier functions are employed in, for example, [256, 192, 157]. Lyapunov stability

may be utilized for goal-reaching behaviors while barrier functions guarantee safe maneuver

as well (e.g., [114]). Barrier functions may be learned from expert demonstrations (e.g.,

[206]). See, for example [74] for a survey of safe control with learned certificates.

Applications to neural network training: These control tools have recently been ap-

plied to ML problems as well; for example, Lyapunov stability is enforced when learning

neural network [135, 207, 121]. Also the work [267] proposes the use of CBFs in learning

NODEs; they propose the notion of invariant propagation and present an approach of forcing

NODEs to satisfy output specifications.

2.2.3 Operator theoretical and trajectory based study on learning dynamics

The evolution of the system is sometimes more effectively described by operators (e.g., a

matrix for linear systems), and learning from sequential data such as system trajectories

may require optimizing directly over the space of trajectories.
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Eigenstructure and pole assignment Classically, for linear systems where the system

evolution can be described by a matrix, the system behaviors such as stability or oscillation

have been extensively studied from linear algebra and spectral theoretical perspectives [126].

In particular, eigenstructure or pole assignment (cf. [19]) is aimed at designing the feedback

controller so that the resulting system dynamics has desirable eigenstructure. The purpose

of this control technique is distinct from that of optimal controls and hence is one of the

unique problems considered in the control community.

Linearly solvable MDPs: Linearization largely simplifies the problem; the work [242,

243] introduced a class of MDPs that enables closed-form computation of optimal policy

with respect to the optimal value function and that makes Bellman equation linear and

describable by a linear operator. As such, the class of optimal control problems is reduced

to a linear eigenvalue problem for this operator.

Koopman operator: Moreover, by lifting the state space into a space of observables, a

nonlinear system over the state space is represented by the linear operator in the lifted space.

This idea of Koopman operator was first introduced in [136]; and, during the last two decades,

it has gained traction, leading to the developments of theory and algorithm (e.g., [70, 124,

167, 108, 109, 50, 132]) partially due to the surge of interest in data-driven approaches. The

analysis of nonlinear dynamical system with Koopman operator has been applied to control

(e.g., [137, 169, 118, 149, 138]) to design model predictive control (MPC) and LQR although

nonlinear controlled systems in general cannot be transformed to LQR problems even by

lifting to a feature space. For unknown systems, active learning of Koopman operator has

been proposed [3].

Transformer: On the other hand, it is sometimes more efficient to solve a learning task

with sequential data over the space of trajectories as it enables learning the relations among

each point in a trajectory through attention and through compact representations. As an
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representative example of neural network architectures dealing with time sequence data,

the Transformer model was proposed in [252] where the sequential data are processed in

nonsequential manner by self-attention and by positional embeddings. This is conceptually

different from the classical recurrent neural network (RNN) models (e.g., [101]) that process

data one by one in a sequential manner.

Path signature: Having an efficient (and compact) representation of trajectories or paths

helps learning; in particular, path signatures are mathematical tools developed in rough

path research [162, 57, 43]. For efficient computations of metrics over signatures, kernel

methods [102, 25] are employed [130, 214, 53, 214]. Signatures have been applied to various

applications, such as sound compression [164], time series data analysis and regression [93,

161, 147], action and text recognition [271, 268], and neural rough differential equations

[181]. Also, deep signature transform is proposed in [127] with applications to RL but is still

within the Bellman equation based paradigm. Theory and practice of path signatures in ML

are summarized in [63, 83].

2.2.4 Bandit for nonstationary environments

Another related example of research that falls into the intersection of ML and dynamics is

the bandit problems for nonstationary environments, represented by the adversarial bandit

problems (e.g., [48, 96]). Recently, some studies on nonstationary rewards have been made

(cf. [28, 40, 60, 62, 156, 211, 245, 265]) although they do not deal with periodically behaved

dynamical system properly (see discussions in [52] as well). For discrete action settings, [186]

proposed the periodic bandit, which aims at minimizing the total regret. Also, if the period

is known, Gaussian process bandit for periodic reward functions was proposed [52] under

Gaussian noise assumption. Refer to [144] for bandit algorithms that are not covered here,

and see, for example, [2, 27, 73, 1], for the work on stochastic linear bandit.
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2.2.5 Exponential sums

For reconstruction of dynamical system information, we adopt exponential sums in this

thesis. Exponential sums, also known as trigonometric sums, have developed as a significant

area of study in number theory, employing various methods from analytical and algebraic

number theory (see [23] for an overview). An exponential sum consists of a finite sum of

complex numbers, each with an absolute value of one, and its absolute value can trivially

be bounded by the number of terms in the sum. However, due to the cancellation among

terms, nontrivial upper and lower bounds can sometimes be established. Several classes of

exponential sums with such nontrivial bounds are known. In the mathematical community,

these bounds are valuable not only in themselves but also for applications in fields like

analysis within mathematics [123].

2.2.6 Dynamical system perspectives on machine learning

As ML algorithms or in general Turing machines [248] fundamentally manifest as dynamical

systems, where the symbols are updated over iterations or time, it is insightful to view

learning and prediction as dynamics.

Neural differential equations: One of the most notable inventions that has brought a

dynamical system view point to the modern ML is the work of neural differential equations

[58]. While dynamical system perspectives of neural network have been studied in the past

(e.g., RNN and Hopfield network [103]), the fresh perspective of NODEs combined with an

efficient use of ODE solver has provoked extensive research efforts in this field. There are

variants of NODEs, namely, neural stochastic differential equations (e.g., [151, 250]) and

neural controlled differential equations (e.g., [181, 128]), and a hybrid system extension has

also been proposed (e.g., [111]). On the other hand, the expressivity of neural network

has been studied through the lens of dynamics and has shown to be maximized when the

dynamics of network is on the edge of chaos (e.g., [200]).
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Besides, while we do not delve into the details, the work [225] introduced diffusion model

inspired by statistical physics as a generative model; and the work [100] further progressed

the research in this direction.

Learning dynamics: Since the training process described by an evolution of parameters

can be viewed as a dynamical system, analyzing the learning dynamics oftentimes clarifies

the mechanism behind training (e.g., [215, 5]). The work [201] provides a nonasymptotic

analysis of stochastic gradient Langevin dynamics (which can be viewed as a discretization

of Langevin diffusion process) for non-convex learning problems. Also, predicting the learning

dynamics could potentially speed up the later stage of learning (e.g., [77]).

In the context of RL, the temporal-difference algorithm is analyzed as a flow of learning

dynamics which gives a new insight into the behaviors of value function evolution [160, 159].
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Chapter 3

CONTROL THEORETIC GUARANTEES FOR MACHINE
LEARNING ALGORITHM

Chapter’s key takeaways� �
With a policy that is not stabilizing the controlled agent on the zero cost (or reward)

state may not produce a bounded value function, and we need a discount factor to remedy

this. This introduction of discount factor makes the value function invalid as a CBF,

necessitating a novel control concepts of limited-duration safety that can be ensured by

limited-duration CBFs. For some tasks, it is shown that the existence of limited-duration

CBFs is sufficient to ensure successful long-duration autonomy. Also, by reducing the

policy space effectively through the use of limited-duration CBFs obtained by learning

the source tasks, it becomes faster to learn the target tasks that share the same state

constraints as the source.� �

3.1 Introduction

When deploying autonomous agents in unstructured environments over sustained periods of

time, adaptability and robustness oftentimes outweigh optimality as a primary consideration.

In other words, safety and survivability constraints play a key role. In this chapter, safety

stands for the state constraint satisfaction over infinite time horizon.

To avoid the computational burden of fully solving constrained optimization problems for

control sequences over a sufficiently long horizon, which potentially results in a suboptimal

This chapter largely consists of the excerpts from the article “Constraint learning for control tasks
with limited duration barrier functions, Automatica, Volume 127, 2021, Ohnishi et al., Copyright Elsevier.
DOI: https://doi.org/10.1016/j.automatica.2021.109504” [191] with permissions from Elsevier.
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solution violating safety, we consider employing the recently developed control tool called

control barrier function (CBF; see Chapter 2). CBFs are used to ensure safety by only

constraining the instantaneous control at every time step (see Figure 3.1).

Figure 3.1: Safety is ensured by constraining the control selection at every time step using
a control barrier function for the given set of safe states.

However, since control policies that keep a dynamical agent within state constraints over

an infinite horizon are not always available, we relax safety to state constraint satisfaction

over some finite time horizon T > 0, which we refer to as limited-duration safety (see Figure

3.2). Consequently, value function learning employed in RL can be used to find limited-

duration safe policies, and this chapter presents a novel constraint-learning framework for

control tasks and discusses a control theoretic guarantee for ML algorithm for robotics prob-

lems from different angles than the existing approaches, within a context of transfer learning.

Contributions: The contributions of this chapter are three folds: (1) conceptualize the

novel control notion of limited-duration safety mathematically, (2) present a way of learning

valid control function that can be used to ensure limited-duration safety, (3) and present

applications to a constraint-driven control problem and to a transfer learning problem where

the developed control function is adopted to speed up the learning in the target tasks.
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Figure 3.2: An illustration of relaxation of safety (forward invariance) to limited-duration
safety. Limited-duration safety refers to the property where an agent stays in O for all
0 ≤ t < T whenever starting from inside the set CTLD ⊂ O.

3.2 Problem setups

In this chapter, we consider an agent with system dynamics described by an ordinary differ-

ential equation:

dx

dt
= f(x(t)) + g(x(t))u(t), (3.2.1)

where x(t) ∈ Rdx and u(t) ∈ U ⊂ Rdu are the state and the instantaneous control input of

dimensions dx, du ∈ Z>0, f : Rdx → Rdx , and g : Rdx → Rdx×du . Let D be the state space

which is an open connected subset of Rdx , and let X ⊂ D be its compact subset. We make

the following assumptions.

Assumption 3.2.1. For any locally Lipschitz continuous policy π : D → U , f +gπ is locally

Lipschitz over D.

With this setup, we present the main contribution.

3.3 Constraint learning for control tasks

In this section, we propose limited duration control barrier functions (LDCBFs), and present

their properties and a practical way to find an LDCBF.
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3.3.1 Limited duration control barrier functions

We start this section by the following definition.

Definition 3.3.1 (Limited-duration safety). Given an open set of safe states O ⊂ D, let

CTLD be a closed nonempty subset of O. The dynamical system (3.2.1) is said to be safe

up to time T , if there exists a policy π that ensures x(t) ∈ O for all 0 ≤ t < T whenever

x(0) ∈ CTLD.

Given BLD : D → R≥0 of class C1(D), let

O :=

{
x ∈ X : BLD(x) <

L

β

}
, L > 0, β > 0, (3.3.1)

CTLD =

{
x ∈ X : BLD(x) ≤ Le−βT

β

}
⊂ O, (3.3.2)

for some T > 0. Now, LDCBFs are defined by below.

Definition 3.3.2 (Limited duration control barrier function). A function BLD : D → R≥0

of class C1(D) is called a limited duration control barrier function (LDCBF) for O defined

by (3.3.1) and for T if the following conditions are met:

1. O ⊂ int(X ).

2. CTLD defined by (3.3.2) is nonempty and there exists a monotonically increasing locally

Lipschitz continuous function1 α : R→ R such that α(0) = 0 and

inf
u∈U
{LfBLD(x) + LgBLD(x)u} ≤ α

(
Le−βT

β
−BLD(x)

)
+ βBLD(x), ∀x ∈ O.

Given an LDCBF, the admissible control space STLD(x), x ∈ O, is defined by

STLD(x) :=

{
u ∈ U : LfBLD(x) + LgBLD(x)u ≤ α

(
Le−βT

β
−BLD(x)

)
+ βBLD(x)

}
.

If the initial state is taken in CTLD and an admissible control is employed, safety up to time

T is guaranteed.

1Note α is not necessarily an extended class-K function [126].
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Theorem 3.3.1. Suppose that a set of safe states O defined by (3.3.1) and an LDCBF BLD

defined on D are given. Suppose also that x(0) ∈ CTLD, where CTLD is defined by (3.3.2). Then,

under Assumption 3.2.1, any locally Lipschitz continuous policy π : D → U that satisfies

π(x) ∈ STLD(x), ∀x ∈ O, renders the dynamical system (3.2.1) safe up to time T .

Proof. Under Assumption 3.2.1, the trajectories x(t) with an initial condition x(0) ∈ CTLD ⊂

D exist and are unique over 0 ≤ t ≤ δ for some δ > 0. Let [0, T ∗), T ∗ > 0, be its maximum

interval of existence (T ∗ can be ∞), and let Te be the first time at which the trajectory x(t)

exits O, i.e.,

Te := inf{t ∈ [0, T ∗) : x(t) /∈ O}. (3.3.3)

Because BLD ∈ C1(D) and O ⊂ int(X ) imply O is open, it follows that Te > 0. If T ∗ is finite,

it must be the case that x(t∗) /∈ X for some t∗ ∈ [0, T ∗) which implies 0 ≤ t ≤ TX < T ∗,

where

TX := inf{t ∈ [0, T ∗) : x(t) ∈ ∂X}.

In this case, because O ⊂ int(X ), it follows that 0 < Te ≤ TX < T ∗. If, on the other hand,

T ∗ =∞, then Te can still be defined by (3.3.3), and either Te =∞ or Te < T ∗ hold. When

Te =∞, it is straightforward to prove the claim; therefore, we focus on the case where Te is

finite and Te < T ∗. Let Tp denote the last time at which the trajectory x(t) passes through

the boundary of CTLD from inside before first exiting O, i.e.,

Tp := sup
{
t ∈ [0, Te) : x(t) ∈ ∂CTLD

}
.

Because CTLD is closed subset of the open set O and because x(0) ∈ CTLD, by continuity of the

solution, it follows that 0 ≤ Tp < Te. Now, the solution to ṡ(t) = βs(t), where the initial

condition is given by s(Tp) = BLD(x(Tp)) = Le−βT

β
, is

s(t) = BLD(x(Tp))e
β(t−Tp), ∀t ≥ Tp.
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It thus follows that

s(Tp + T ) =
L

β
e−βT eβT =

L

β
,

and Tp + T is the first time at which the trajectory s(t), t ≥ Tp, reaches L
β

.

Because α(Le
−βT

β
− BLD(t)) ≤ 0, ∀t ∈ [Tp, Te), and π(x) ∈ STLD(x), ∀x ∈ O, we obtain,

by the Comparison Lemma [126], [141, Theorem 1.10.2] and by continuity of the solutions

over t ∈ [0, Te], that BLD(x(t)) ≤ s(t), ∀t ∈ [Tp, Te]. If we assume Te < Tp + T , it follows

that BLD(x(Te)) ≤ s(Te) < s(Tp + T ) = L
β

which is a contradiction because O ∈ int(X ) and

BLD ∈ C1(D) imply BLD(x(Te)) = L
β

. Hence, Te ≥ Tp + T , which proves the Theorem.

In practice, one can constrain the control input within the admissible control space

STLD(x), x ∈ O, via QPs in the same manner as CBFs and CLFs.

Remark 3.3.2. The conditions when the solution to such QPs satisfies local Lipschitz con-

tinuity have been investigated in the literature including the work [182].

Theorem 3.3.1 implies that, through LDCBFs, global property (i.e., limited-duration

safety) is ensured by constraining instantaneous control inputs. A benefit of relaxing the

safety to limited-duration safety and of considering LDCBFs is highlighted by the ease of

finding valid LDCBFs described below.

3.3.2 Finding a Limited Duration Control Barrier Function

We present one way of finding an LDCBF BLD for the set of safe states through value

function learning. Here, we mention that, to exploit value function learning in practice, one

may assume a nominal model or a simulator is available during training time, or otherwise

assume that getting outside of safe regions during training is not “fatal”.

Let ℓ : D → R≥0, be the immediate cost2, and suppose O ⊂ int(X ) where the set of safe

states O is given by

O := {x ∈ D : ℓ(x) < L} , L > 0.

2In this chapter, we consider the costs that do not depend on control inputs.
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Given a policy π : D → U , suppose that the system (3.2.1) is locally Lipschitz and that

the initial condition x(0) = x is in O. Then, following the first argument in the proof of

Theorem 3.3.1, x(t) can be uniquely defined by extending the solution until reaching ∂X .

Let Te(x) be the first time at which the trajectory x(t) exits O when x(0) = x ∈ O. Now,

we define the value function V π,β : D → R≥0 by

V π,β(x) :=


∫ Te(x)
0

e−βtℓ(x(t))dt+ Le−βTe(x)

β
(x ∈ O)

ℓ(x)
β

(x ∈ D \ O)

where β > 0 is the discount factor. When the restriction of V π,β to O, denoted by V π,β|O,

is of class C1(O), we obtain the continuous-time Bellman equation [148]:

βV π,β(x) = LfV
π,β(x) + LgV

π,β(x)π(x) + ℓ(x), ∀x ∈ O. (3.3.4)

Now, for V π,0(x) :=
∫∞
0
ℓ(x(t))dt, x ∈ O, to exist and to be a CLF that ensures controlled

invariance of its sublevel sets, one may at least assume that the policy π stabilizes the agent

in a state x∗ ∈ O where ℓ(x∗) = 0 and ℓ(x) > 0, ∀x ∈ O\{x∗}, which is restrictive. Instead,

one can use V π,β as an LDCBF when β > 0.

Let V̂ π,β : D → R≥0 of class C1(D) denote an approximation of V π,β. Since V π,β(x) ≥ L
β

for all x ∈ D \ O by definition, it follows that{
x ∈ D : V π,β(x) <

L

β

}
⊂ O ⊂ int(X ).

Therefore, we wish to use the approximation V̂ π,β as an LDCBF for the set O; however,

because it has an approximation error, we take the following steps to guarantee limited-

duration safety. Using (3.3.4), define the estimated immediate cost function ℓ̂ by

ℓ̂(x) = βV̂ π,β(x)− Lf V̂ π,β(x)−LgV̂ π,β(x)π(x), ∀x ∈ O.

Select c ≥ 0 so that ℓ̂c(x) := ℓ̂(x) + c ≥ 0 for all x ∈ O, and define the function V̂ π,β
c (x) :=

V̂ π,β(x) + c
β
.
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Theorem 3.3.3. Given T > 0, consider the set

ĈTLD =

{
x ∈ X : V̂ π,β

c (x) ≤ L̂e−βT

β

}
, (3.3.5)

where L̂ := infy ∈ X \ O βV̂
π,β
c (y). If ĈTLD is nonempty, then V̂ π,β

c (x) is an LDCBF for T

and for the set

Ô :=

{
x ∈ X : V̂ π,β

c (x) <
L̂

β

}
⊂ O.

Proof. Because, by definition,

V̂ π,β
c (x) ≥ L̂

β
, ∀x ∈ X \ O,

it follows that

Ô =

{
x ∈ X : V̂ π,β

c (x) <
L̂

β

}
⊂ O.

Because V̂ π,β
c ∈ C1(D) satisfies

Lf V̂
π,β
c (x) + LgV̂

π,β
c (x)π(x) = βV̂ π,β

c (x)− ℓ̂c(x), ∀x ∈ O,

and ℓ̂c(x) ≥ 0, ∀x ∈ O, it follows that

Lf V̂
π,β
c (x) + LgV̂

π,β
c (x)π(x) ≤ α

(
L̂e−βT

β
− V̂ π,β

c (x)

)
+ βV̂ π,β

c (x),

for all x ∈ O and for a monotonically increasing locally Lipschitz continuous function α such

that α(q) = 0, ∀q ≤ 0. Therefore, π(x) ∈ U , ∀x ∈ O ⊂ int(X ) and ĈTLD ̸= ∅ imply that V̂ π,β
c

is an LDCBF for the set Ô and for T .

Remark 3.3.4. The procedures above basically considers more conservative sets ĈTLD and Ô

so that the approximation error incurred by using V̂ π,β
c is taken into account. One can select

sufficiently large c and sufficiently small L̂ in practice to make the set of safe states more

conservative. To enlarge the set CTLD, the immediate cost ℓ(x) is preferred to be close to zero
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for x ∈ O, and L needs to be sufficiently large. Also, to make T as large as possible, the

given policy π should keep the system safe up to sufficiently long time (see also Definition

3.4.1 for good enough policy); given a policy, the larger T one selects the smaller the set CTLD
becomes. In addition, when ℓ(x) is almost zero inside O and when L ≫ 1, the choice of β

does not matter significantly to conservativeness of CTLD.

As our approach is set-theoretic rather than specifying a single optimal policy, it is also

compatible with the constraints-driven control and transfer learning.

3.4 Applications

In this section, we present two practical applications of LDCBFs, namely, long-duration

autonomy and transfer learning.

3.4.1 Applications to long-duration autonomy

In many applications, guaranteeing particular properties (e.g., forward invariance) over an

infinite-time horizon is difficult. Nevertheless, it is often sufficient to guarantee safety up to

certain finite time, and our proposed LDCBFs act as useful relaxations of CBFs. To see that

one can still achieve long-duration autonomy by using LDCBFs, we consider the settings of

work in [185].

Problem formulation

Suppose that the state x := [E, pT]T ∈ R3 has the information of energy level E ∈ R≥0 and

the position p ∈ R2 of an agent, and the dynamics is given by (3.2.1) for

f(x) = [F̂ (x), F (x)]T, g(x) = [Ĝ(x), G(x)]T,

where F̂ : R3 → R, F : R3 → R2, Ĝ : R3 → R2, and G : R3 → R2×2. Suppose also

that the minimum necessary energy level Emin and the maximum energy level Emax satisfy

0 < Emin < Emax, and that ρ(p) ≥ 0 (equality holds only when the agent is at a charging
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station) is the energy required to bring the agent to a charging station from p ∈ R2, where

ρ ∈ C1(R2). Define ∆E := Emax − Emin and

X := {x ∈ R3 : Emin ≤ E ≤ Emax ∧ 0 ≤ ρ(p) ≤ ∆E}.

Also, let U ⊂ R2 be a control space. The open connected set D ⊃ X is assumed to be

properly chosen. Then, for L := β ·∆E, β > 0, we define BLD : D → R≥0 by

BLD(x) := H̃ϵ(E) + ρ(p),

where ∆E
4
≫ ϵ > 0 and H̃ϵ(E) is defined to make O ⊂ int(X ) as below. For brevity, let

Ē := Emax − E and Ē2ϵ := E − Emax + 2ϵ. Then H̃ϵ(E) is defined by

H̃ϵ(E) :=


Ē (Ē2ϵ < −ϵ)

∆E
8ϵ2

(Ē2
2ϵ + 2ϵĒ2ϵ + ϵ2) + Ē (|Ē2ϵ| ≤ ϵ)

∆E
2ϵ
Ē2ϵ + Ē (ϵ < Ē2ϵ)

Note H̃ϵ(E) is continuously differentiable. It is straightforward to see that E = Emax =⇒

x /∈ O, which is necessary to make O ⊂ int(X ).

Given T > 0, we can define O and CTLD by (3.3.1) and (3.3.2). Note x ∈ O implies

E > Emin + ρ(p).

Assumption 3.4.1. The energy dynamics satisfies

∃Kd > 0,
dE

dt
= F̂ (x) + Ĝ(x)u ≥ −Kd, ∀x ∈ D, ∀u ∈ U ,

and is upper bounded by dE
dt
≤ 0, ∀x ∈ D \ Aρ(p)=0, ∀u ∈ U , where

Aρ(p)=0 := {x ∈ O : ρ(p) = 0}.

In addition, the set

S̃TLD(x) :=

{
u ∈ U : Lf̃BLD(x) + Lg̃BLD(x)u ≤ α

(
Le−βT

β
−BLD(x)

)
+ βBLD(x)

}
(3.4.1)

is nonempty for all x ∈ O \ (Aρ(p)=0 ∪AE), where f̃(x) = [−Kd, F (x)]T, g̃ = [0, G(x)]T, and

AE := {x ∈ O : E ≥ Emax − 4ϵ}.
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Remark 3.4.2. Suppose STLD(x) is nonempty for all x ∈ Aρ(p)=0 ∪ AE. Suppose also that

Assumption 3.4.1 holds, then BLD is an LDCBF for O and T s.t. CTLD is nonempty, because

S̃TLD(x) ⊂ STLD(x) for all x ∈ O \ (Aρ(p)=0 ∪ AE).

Assumption 3.4.1 implies that the least possible exit time T̂energy(E) of E > Emin being

below Emin is

T̂energy(E) =
(E − Emin)

Kd

.

Under these settings, the following proposition holds.

Proposition 3.4.3. Suppose Assumption 3.2.1 and Assumption 3.4.1 hold, and that T >

T̂energy(E0) for the initial energy level Emax− 4ϵ ≥ E0 > Emin. Suppose also that x(0) ∈ CTLD,

and that a locally Lipschitz continuous policy π : D → U satisfies π(x) ∈ S̃TLD(x) for all

x ∈ O \ (Aρ(p)=0 ∪ AE). Further, assume the maximum interval of existence of unique

solutions Et and ρt, namely, the trajectories of E and ρ(p), is given by [0, T ∗) for some

T ∗ > 0. Then,

Tρt=0 := inf{t ∈ [0, T ∗) : ρt = 0} ≤ Tenergy := inf{t ∈ [0, T ∗) : Et − Emin ≤ 0}.

Proof. Under Assumption 3.2.1, the trajectories x(t) with an initial condition x(0) ∈ CTLD,

and hence Et and ρt, exist and are unique over 0 ≤ t ≤ δ for some δ > 0. Let [0, T ∗) be

its maximum interval of existence (T ∗ can be ∞), which indeed exists. Following the same

argument as in the proof of Theorem 3.3.1, we only focus on the case where Te defined by

(3.3.3) is finite and 0 < Te < T ∗ (note Te = ∞ =⇒ Tenergy = ∞ and, in this case, the claim

is trivially validated.) Also, if Et − Emin > 0 for all t ∈ [0, T ∗), then Tenergy = inf ∅ = ∞,

and the claim is trivially validated again. Therefore, we assume that Tenergy < T ∗. Further,

define

T̂ := inf {t ∈ [0, T ∗) : ρt = 0 ∧ x(t) /∈ CTLD},

T̂e := min
{
Te, T̂

}
≤ Tenergy,

Tp := sup
{
t ∈ [0, Te) : x(t) ∈ ∂CTLD

}
.
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Following the same argument as in the proof of Theorem 3.3.1, we have 0 ≤ Tp < Te. Because

it must be the case that Et > Emin, ∀t ∈ [0, Tp], we should only consider the case where

ρt > 0, ∀t ∈ [0, Tp]. If we assume T̂e = T̂ , we obtain Tρt=0 ≤ T̂ ≤ Te ≤ Tenergy which proves

the claim. Therefore, we assume T̂e = Te.

Let Êt be the trajectory following the virtual battery dynamics dÊ/dt = −Kd with the

initial condition ÊTp = ETp , and let s(t) be the unique solution to

ṡ(t) = βs(t), t ≥ Tp,

where

s(Tp) = BLD(x(Tp)) = ∆Ee−βT .

Also, let

ϱ(t) = s(t) + Êt − Emax, t ≥ Tp.

Then, the time at which s(t) reaches ∆E is Tp + T because

s(T + Tp) = BLD(x(Tp))e
β(T+Tp−Tp) = ∆Ee−βT eβ(T+Tp−Tp) = ∆E.

Since we assumed xt /∈ Aρ(p)=0, ∀t ∈ [0, Tp], under Assumption 3.4.1, we have

T̂energy(ETp) ≤ T̂energy(E0) < T.

Further, we have

ϱ(t) = BLD(x(Tp))e
β(t−Tp) + ÊTp −Kd(t− Tp)− Emax.

Hence, we obtain

T̂0 := inf {t ≥ Tp : ϱ(t) = 0} ≤ Tp + T̂energy(ETp).

On the other hand, under Assumption 3.2.1, the actual battery dynamics can be written as

dE/dt = −Kd + ∆(x),
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where ∆(x) ≥ 0. Also, because E0 ≤ Emax − 4ϵ, it follows that

Et ≤ Emax − 4ϵ

for all t ∈ [0, T ∗) under Assumption 3.4.1, implying

BLD(x(t)) = Emax − Et + ρt, ∀t ∈ [0, T ∗).

Therefore,

π(x) ∈ S̃TLD(x), ∀x ∈ O \ (Aρ(p)=0 ∪ AE),

indicates

dBLD(x(t))

dt
≤ βBLD(x(t))−∆(x(t)), ∀t ∈ [Tp, Te).

Then, because

d (BLD(x(t))− s(t))
dt

≤ β (BLD(x(t))− s(t))−∆(x(t)) ≤ β (BLD(x(t))− s(t)) , ∀t ∈ [Tp, Te),

and β (BLD(x(Tp))− s(Tp)) = 0, we obtain

BLD(x(t))− s(t) ≤ −
∫ t

0

∆(x(t))dt, ∀t ∈ [Tp, Te).

Here, following the same arguments as the proof of Theorem 3.3.1, we have that Te ≥ Tp+T >

Tp + T̂energy(ETp). Further, it follows that

ρt − ϱ(t) = BLD(x(Tp))− s(t) + Et − Êt ≤ −
∫ t

0

∆(x(t))dt+

∫ t

0

∆(x(t))dt = 0, ∀t ∈ [Tp, Te),

which, by continuity of the solutions, leads to the inequality ρt ≤ ϱ(t), ∀t ∈ [Tp, Te]. Hence,

we conclude that

T̂ ≤ T̂0 ≤ Tp + T̂energy(ETp) < Te.

This is a contradiction to the assumption T̂e = Te, from which the proposition is proved.
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Remark 3.4.4. When a function BLD satisfying Assumption 3.4.1 and the set O are given,

one may consider more restrictive set than S̃TLD; and if it is still nonempty, the agent stays in

O longer than T if taking the control input in S̃TLD starting from inside CTLD, which is defined

for β.

Remark 3.4.5. Instead of assuming the set (3.4.1) is nonempty, one may learn an LDCBF

following the arguments in Section 3.3.2. In such a case, the immediate cost function ℓ(x)

may be defined so that 0 ≤ ℓ(x)≪ 1 for E ∈ (Emin, Emax) and that ℓ(x) ≥ 1 otherwise. Then,

one may learn the value function of some policy for the system where F̂ (x) = −Kd, ∀x ∈

O \ Aρ(p)=0, Ĝ(x) = 0, ∀x ∈ O, and ∃y ∈ Aρ(p)=0, ∃Ki > 0, F̂ (y) ≥ Ki. If ĈTLD defined by

(3.3.5) is nonempty for T > T̂energy(E0), then similar claims to Proposition 3.4.3 hold. Note

the policy does not have to stabilize the system around Aρ(p)=0 but can be anything as long

as ĈTLD becomes nonempty.

Simulated Experiment

Let the parameters be Emax = 1.0, Emin = 0.55, Kd = 0.01, β = 0.005 and T = 50.0 >

45.0 = ∆E/Kd. We consider six agents (robots) with single integrator dynamics. An agent

of the position pi := [xi, yi]
T is assigned a charging station of the position pcharge,i, where

x and y are the X position and the Y position, respectively. When the agent is close to

the station (i.e., ∥pi − pcharge,i∥R2 ≤ 0.05), it remains there until the battery is charged to

Ech = 0.92. Actual battery dynamics is given by dE/dt = −0.01E. The coverage control

task is encoded as Lloyd’s algorithm [67] aiming at converging to the Centroidal Voronoi

Tesselation, but with a soft margin so that the agent prioritizes the safety constraint. The

locational cost used for the coverage control task is given by the following [68]:

6∑
i=1

∫
Vi(p)

∥pi − p̂∥2 φ(p̂)dp̂,

where Vi(p) = {p̂ ∈ R2 : ∥pi − p̂∥ ≤ ∥pj − p̂∥ ,∀j ̸= i} is the Voronoi cell for the agent i. In

particular, we used φ([x̂, ŷ]T) = e−{(x̂−0.2)2+(ŷ−0.3)2}/0.06+0.5e−{(x̂+0.2)2+(ŷ+0.1)2}/0.03. In MAT-

LAB simulation (the simulator is provided on the Robotarium [199] website: www.robotarium.org),
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(a) (b)

Figure 3.3: (a) Screenshot of agents executing coverage controls. (b) Screenshot of agents
three of which are charging their batteries.

we used the random seed rng(5) for determining the initial states. Note, for every agent,

the energy level and the position are set so that it starts from inside the set CTLD. Note also

that battery information is local to each agent who has its own LDCBFs3; limited-duration

safety is thus enforced in a decentralized manner.

Figure 3.3 shows (a) an image of six agents executing coverage tasks and (b) an image of

the agents three of which are charging their batteries. Figure 3.4 shows the simulated battery

voltage data of the six agents, in which we can observe that LDCBFs worked effectively for

the swarm of agents to avoid depleting their batteries.

3.4.2 Applications to transfer learning

Another benefit of using LDCBFs is that, once a set of good enough policies that guarantee

limited-duration safety for sufficiently large T and for sufficiently large CTLD is obtained, one

can reuse them for different tasks.

Definition 3.4.1 (Good enough policy). Suppose a policy π guarantees safety up to time

T if the initial state is in CTLD ⊂ D. Suppose also that an initial state of a task T is always

3We are implicitly assuming that the conditions in Remark 3.4.2 are satisfied to make BLD an LDCBF.
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Figure 3.4: Battery levels of the six agents over time. Two black lines indicate the energy
level when charged (Ech = 0.92) and the minimum energy level (Emin = 0.55). All agents
successfully executed tasks without depleting their batteries.

taken in CTLD and that the task can be achieved within the time horizon T . Then, the policy

π is said to be good enough with respect to the task T .

We introduce the definition of transfer learning below.

Definition 3.4.2 (Transfer learning, [194, modified version of Definition 1]). Given a set of

training data DS for one task (i.e., source task) denoted by TS (e.g., an MDP) and a set of

training data DT for another task (i.e., target task) denoted by TT , transfer learning aims

to improve the learning of the target predictive function fT (i.e., a policy in our example) in

DT using the knowledge in DS and TS, where DS ̸= DT , or TS ̸= TT .

In our example, we assume we know that the target task TT shares some of the known

state constraints with a source task TS. If a set of training data DS is used to obtain a good

enough policy for the source task, one can learn an LDCBF with this policy. When this

policy is also good enough for the target task, then the learned LDCBF can be used to speed

up the learning of the target task.
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Illustrative example

For example, when learning a good enough policy for the balance task of the cart-pole

problem, one can simultaneously learn a set of limited-duration safe policies that keep the

pole from falling down up to certain time T > 0. The set of these limited-duration safe

policies is obviously useful for other tasks such as moving the cart to one direction without

letting the pole fall down.

We study some practical implementations. Given an LDCBF BLD, define the set ΠT of

admissible policies as

ΠT := {π ∈ Π : π(x) ∈ STLD(x), ∀x ∈ O},

where Π := {π : π(x) ∈ U , ∀x ∈ D}, and STLD(x) is the set of admissible control inputs

at x. If an optimal policy πTT for the target task TT is included in ΠT , one can conduct

learning for the target task within the policy space ΠT . If not, one can still consider ΠT as

a soft constraint and explore the policy space Π \ ΠT with a given probability or one may

just select the initial policy from ΠT .

In practice, a parameterized policy is usually considered; a policy πθ expressed by a

parameter θ ∈ Rdθ for dθ ∈ Z>0 is updated by policy gradient methods [234]. If the policy is

in the linear form with a fixed feature vector, the projected policy gradient method [239] can

be used. Suppose the policy π(x) is linear with respect to θ at each x ∈ D and that LDCBF

constraints are affine with respect to π(x) at each x ∈ D; in such a case, given a set of finite

data points D ⊂ X , Π̃T
θ := {θ ∈ Rdθ : πθ(x) ∈ STLD(x), ∀x ∈ D} is an intersection of finite

affine constraints, which is a polyhedron. Hence, the projected policy gradient method looks

like θ ← PΠ̃T
θ
[θ+λ∇θF

TT (θ)]. Here, PΠ̃T
θ

: Rdθ → Π̃T
θ projects a policy onto Π̃T

θ and F TT (θ) is

the objective function for the target task which is to be maximized. For the policy not in the

linear form, one may update policies based on LDCBFs by modifying the deep deterministic

policy gradient (DDPG) method [150]: because through LDCBFs, the global property (i.e.,

limited-duration safety) is ensured by constraining local control inputs, it suffices to add

penalty terms to the cost when updating a policy over a batch of samples. For example, one
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may employ the log-barrier extension proposed in [125], which is a smooth approximation of

the hard indicator function for inequality constraints but is not restricted to feasible inputs.

Simulated experiment

The simulation environment and the deep learning framework used in this simulated exper-

iment are Cartpole in DeepMind Control Suite [238] and PyTorch [195], respectively. We

take the following steps:

1. Learn a policy that balances the pole by using DDPG [150] over sufficiently long time

horizon.

2. Learn an LDCBF by using the obtained actor network.

3. Try a random policy with the learned LDCBF and a (locally) accurate model to see if

LDCBF works reasonably.

4. With and without the learned LDCBF, learn a policy that moves the cart to left

without letting the pole fall down, which we refer to as move-the-pole task.

The parameters used for this simulated experiment are summarized in Table 3.1. Here,

angle threshold stands for the threshold of cosψ where ψ is the angle of the pole from the

standing position, and position threshold is the threshold of the cart position p. The angle

threshold and the position threshold are used to terminate an episode. Note that the cart-

pole environment of MuJoCo [244] xml data in DeepMind Control Suite is modified so that

the cart can move between −3.8 and 3.8. We use prioritized experience replay when learning

an LDCBF. Specifically, we store the positive and the negative data, and sample 4 data

points from the positive one and the remaining 60 data points from the negative one. In this

simulated experiment, actor, critic and LDCBF networks use ReLU nonlinearities. The actor

network and the LDCBF network have two hidden layers of 300, 200 units, and the critic



54

network has two hidden layers of 400, 300 units. The control input vector is concatenated

to the state vector from the second critic layer.

Step1: The average duration (i.e., the first exit time, namely, the time when the pole first

falls down) out of 10 seconds (corresponding to 1000 time steps), over 10 trials for the policy

learned through the balance task by DDPG was 10 seconds.

Step2: Then, by using this successfully learned policy, an LDCBF is learned by assigning

the cost ℓ(x) = 1.0 for cosψ < 0.2 and ℓ(x) = 0.1 elsewhere. Also, because the LDCBF is

learned in a discrete-time form, we transform it to a continuous-time form via multiplying it

by ∆t = 0.01. When learning an LDCBF, we initialize each episode as follows: the angle ψ

is uniformly sampled within −1.5 ≤ ψ ≤ 1.5, the cart velocity ṗ is multiplied by 100 and the

angular velocity ψ̇ is multiplied by 200 after the initialization by DeepMind Control Suite.

The LDCBF learned by using this policy is illustrated in Figure 3.5, which agrees with our

intuitions. Note that L
β

in this case is 1.0
− log (0.999)/0.01

≈ 10.0.

Step3: To test this LDCBF, we use a uniformly random policy (π(x) takes the value between

−1 and 1) constrained by the LDCBF with the function α(q) = max {0.1q, 0} and with the

time constant T = 5.0. When imposing constraints, we use the (locally accurate) control-

affine model of the cart-pole in the work [32], where we replace the friction parameters by

zeros for simplicity. The average duration out of 10 seconds over 10 trials for this random

policy was 10 seconds, which indicates that the LDCBF worked sufficiently well. We also

tried this LDCBF with the function α(q) = max {3.0q, 0} and T = 5.0, which resulted in

the average duration of 5.58 seconds. Moreover, we tried the fixed policy π(x) = 1.0, with

the function α(q) = max {0.1q, 0} and T = 5.0, and the average duration was 4.73 seconds,

which was sufficiently close to T = 5.0.

Step4: For the move-the-pole task, we define the success by the situation where the cart po-

sition p, −3.8 ≤ p ≤ 3.8, ends up in the region of p ≤ −1.8 without letting the pole fall down.

The angle ψ is uniformly sampled within −0.5 ≤ ψ ≤ 0.5 and the rest follow the initialization

of DeepMind Control Suite. The reward is given by (1+cosψ)/2×(utils.rewards.tolerance(ṗ+

1.0, bounds = (−2.0, 0.0), margin = 0.5)), where utils.rewards.tolerance is the function de-
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Table 3.1: Summary of the parameter settings for the cart-pole problem. These parameters
are chosen so that a policy for the balance task can be obtained, an LDCBF can be learned,
and the move-the-pole task can be accomplished within 15 episodes when using an LDCBF.
We could not find parameters that make the move-the-pole task work without LDCBFs
within 15 episodes.

Parameters Balance task For Learning Move-the-pole task Move-the-pole task

an LDCBF with LDCBF without LDCBF

Discount β − log (0.99)/0.01 − log (0.999)/0.01 − log (0.999)/0.01 − log (0.999)/0.01

Angle threshold cosψthre 0.75 0.2 0.75 0.75

Position threshold pthre ±1.8 ±3.8 ±3.8 ±3.8

Soft-update µ 10−3 10−2 10−3 10−3

Step size for target NNs 10−4 10−2 10−4 10−4

Time steps per episode 300 50 300 300

Number of episodes 80 200 Up to 15 Up to 15

Minibatch size 64 64 64 64

Random seed 10 10 10 10

States x sinψ, 0.1ṗ, 0.1ψ̇ sinψ, ṗ, ψ̇ sinψ, ṗ, ψ̇ sinψ, ṗ, ψ̇

fined in [238]. In other words, we give high rewards when the cart velocity is negative and

the pole is standing up. To use the learned LDCBF for DDPG, we store matrices and vectors

used in linear constraints along with other variables such as control inputs and states, which

we use for experience replay. Then, the log-barrier extension cost proposed in [125] is added

when updating policies. Also, we try DDPG without using the LDCBF for the move-the-

pole task. Both approaches initialize the policy by the one obtained after the balance task.

The average success rates of the policies obtained after the numbers of episodes up to 15

over 10 trials are given in Table 3.2 for DDPG with the learned LDCBF and for DDPG

without LDCBFs. This result implies that our proposed approach successfully transferred

information from the source task to the target task.
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Figure 3.5: Illustration of the LDCBF for sinψ and ψ̇ at zero cart velocity. The center has
lower value. Also, unsafe regions have the values over L

β
= 1.0

− log (0.999)/0.01
≈ 10.0.

Table 3.2: Summary of the results for the move-the-pole task. Over 15 episodes, the success
rates over 10 trials are shown. DDPG with LDCBF uses learned LDCBF to constrain control
inputs when updating policies by DDPG, and DDPG without LDCBF does not use LDCBFs.
By using LDCBFs the move-the-pole task is shown to be easily learned.

Algorithm\Episode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DDPG with LDCBF 0.0 0.0 0.0 0.4 0.7 0.8 1.0 1.0 1.0 0.7 0.7 1.0 1.0 1.0 1.0

DDPG without LDCBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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3.5 Chapter summary and discussion

In this chapter, a novel control theoretic notion named limited-duration safety is presented

as a relaxation of forward invariance of a set of states. Then, limited-duration control bar-

rier functions are introduced to guarantee limited-duration safety. LDCBFs can be obtained

through value function learning. The properties of LDCBFs are analyzed and their applica-

tions to a persistent coverage control task and to a transfer learning problem by shrinking

the space of desirable policies are presented.

Efficient enforcement of limited-duration safety by LDCBFs is made possible when we

have access to a dynamical system model that is affine in control; although it is possible

to transform nonlinear control systems to this control-affine form by regarding the time

derivative of control as a new control input, we anyway need access to some knowledge on

the model. An advantage of our approach is highlighted by the fact that we only need

local information on the dynamics to enforce (limited-duration) safety, and combining our

technique with learning is hence efficient for long horizon decision making. As a future work,

incorporating model learning and discussing the role of model misspecification in detail will

be beneficial for some practical applications.

On the other hand, we did not explore sample complexities of our transfer learning

application. As we know how the control theoretic techniques can give some guarantees to

learning, it should also be beneficial to consider how it improves sample complexities from

the statistical point of view.
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Chapter 4

PROBLEM FORMULATIONS THROUGH THE LENS OF
DYNAMICAL SYSTEMS

Chapter’s key takeaways� �
By exploiting the continuity property of continuous control problems and by assuming the

transition dynamics is in a known reproducing kernel Hilbert space (RKHS), we design a

provably sample efficient RL algorithm that works for continuous control problems. The

key is to assume that a state-of-the-art optimal control technique produces an optimal

sequence of control actions under a known system model, and we embed it to our RL

algorithm as an oracle. By employing the simulators with different physics parameters

as the featurizers for the unknown transition dynamics, our algorithm works successfully

under a complex robotics simulation environment.

On the other hand, leaping from the classical MDP formulation, this chapter considers

the spectrum cost that is not subsumed by a classical single-step cost or an episodic cost,

which could be viewed as a generalization of eigenstructure / pole assignments to non-

linear decision making problems. The framework systematically deals with the shaping

of behavior. For online learning settings under unknown dynamics, the spectrum cost

is unobservable, which makes it differ from other types of costs such as a cumulative

single-step cost and a policy cost. As such, we need some specific structural assumptions

to obtain sample efficient (if not computationally efficient) algorithm. Proof techniques

include some operator theoretic arguments that are novel in this context.� �
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4.1 Introduction

RL is a prime example of machine learning for dynamical systems, and recent years have seen

a number of successes in demanding sequential decision making tasks ranging from robotic

hand manipulation [244, 14, 139, 241, 154, 13] to game playing [221, 33, 196, 49, 266].

Historically, provably correct methods have been actively studied within the RL literature

[212, 112, 231, 9]. However, tackling the continuous (nonlinear) control problems in practice

typically requires a specific problem setups which have not been researched in detail in

such studies; in fact, continuity properties inherent in continuous control problems with

respect to the underlying “disturbance” (often modeled as statistical additive noise) can,

if properly exploited, actually be useful for fast path planning algorithms [110, 262] for

example. Therefore, by leveraging such continuity properties, we propose a sample efficient

RL algorithm tailored for continuous control problems. Importantly, our algorithm requires

an optimal control oracle to theoretically ensure sample efficiency; which is reasonable given

the recent advancement of control methods that can produce (near) optimal sequence of

control actions for robotics problems in practice.

Subsequently, we reconsider the optimal control objective, which is oftentimes the long-

term costs resembling the principle of least action. The optimized motions are often ‘unnat-

ural’, representing, for example, behaviors with sudden accelerations that waste energy and

lack predictability. Intuitively, the motion specified by the task-oriented cumulative costs

formulation may ignore “how to” achieve the task unless careful design of the cumulative

cost is in place, necessitating a systematic approach that effectively regularizes or constrains

the dynamics to guarantee predictable global property such as stability. In this chapter,

we present a novel paradigm of controlling nonlinear systems via the minimization of the

Koopman spectrum cost: a cost over the Koopman operator of the controlled dynamics.

This induces a broader class of dynamical behaviors that evolve over stable manifolds such

as nonlinear oscillators, closed loops, and smooth movements. We demonstrate that some

dynamics characterizations that are not possible with a cumulative cost optimization are
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feasible in this paradigm. Moreover, we present a sample efficient (theoretical) online learn-

ing algorithm for our problem that enjoys a sub-linear regret bound under some structural

assumptions.

Contributions: The contributions of this chapter are four folds: (1) design an algorithm

(LC3) that works in practice for complex robotics simulation environments under fairly

general model assumptions, (2) provide regret bounds for the algorithm, (3) propose the

Koopman spectrum cost that complements the (cumulative) single-step cost for nonlinear

control, which enables to effectively encode/imitate some desirable agent dynamics such

as limit cycles, stable loops, and smooth movements, (4) and propose theoretical online

algorithm (KS-LC3) to provide regret bounds under structural assumptions by using some

of the results from the analysis of LC3 with novel operator theoretic arguments.

4.2 Model-based RL with an optimal control oracle embedded

In the first half of this chapter, we present our model-based RL algorithm for continuous

(nonlinear) control problems with sample complexity analysis.

4.2.1 Problem setups

In particular, we consider the following nonlinear control problem, where the transition

dynamics are described, for h ∈ [H], by

xh+1 = f(xh, uh) + ϵ, where ϵ ∼ N (0, σ2I)

where the state xh ∈ Rdx ; the control uh ∈ U where U may be an arbitrary set (not necessarily

a vector space); f : X ×U → X is assumed to live within a known RKHS; the additive noise

is assumed to be independent across time steps. Specifically, the model considered in this

work was introduced in [165], which we refer to as the kernelized nonlinear regulator (KNR)

for the infinite dimensional extension. Equivalently, the primal version of this assumption is
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that:

f(x, u) = W ⋆ϕ(x, u)

for some known function ϕ : X×U → H whereH is a Hilbert space (either finite or countably

infinite dimensional) and whereW ⋆ is a linear mapping. Given an instantaneous cost function

c : X ×U → R≥0, the KNR problem can be described by the following optimization problem:

min
π∈Π

Jπ(x0; c) where Jπ(x0; c) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0]

where x0 is a given starting state; Π is some set of feasible controllers; and where a controller

(or a policy) is a mapping π : X × [H]→ U . We denote the best-in-class cumulative cost as

J⋆(x0; c) = minπ∈Π J
π(x0; c). Given any model parameterization W , we denote Jπ(x0; c,W )

as the expected total cost of π under the dynamics Wϕ(x, u) + ϵ.

We consider an online version of this KNR problem: in each episode t, we observe an

instantaneous cost function ct; we choose a policy πt; we execute πt and observe a sampled

trajectory x0, u0, . . . , xH−1, uH−1; we incur the cumulative cost under ct. Our goal is to

minimize the sum of our costs over T episodes, and we employ cumulative regret as our

performance metric defined by:

RegretT =
T−1∑
t=0

H−1∑
h=0

ct(xth, u
t
h)−

T−1∑
t=0

min
π∈Π

Jπ(x0; c
t)

where {xth} is the observed states and {uth} is the observed sequence of controls. A desirable

asymptotic property of an algorithm is to be no-regret, i.e. the time averaged version of the

regret goes to 0 as T tends to infinity.

4.2.2 The Lower Confidence-based Continuous Control algorithm

The Lower Confidence-based Continuous Control algorithm (LC3) is based on “optimism in

the face of uncertainty”, which is described in Algorithm 1. At episode t, we use all previous

experience to define an uncertainty region (an ellipse). The center of this region, W
t
, is the
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Algorithm 1 Lower Confidence-based Continuous Control (LC3)

Require: Policy class Π; regularizer λ; confidence parameter C1 (see (4.2.3)).

1: Initialize Ball0 to be any set containing W ⋆.

2: for t = 0 . . . T do

3: πt = arg minπ∈Π minW∈Ballt J
π(x0; c

t,W )

4: Execute πt to sample a trajectory τ t := {xth, uth, cth, xth+1}H−1
h=0

5: Update Ballt+1 (as specified in (4.2.2)).

6: end for

solution of the following regularized least squares problem:

W
t

= arg min
W

t−1∑
τ=0

H−1∑
h=0

∥Wϕ(xτh, u
τ
h)− xτh+1∥2Rdx + λ∥W∥2HS, (4.2.1)

where λ is a parameter, and the shape of the region is defined through the feature covariance:

Σt = λI +
t−1∑
τ=0

H−1∑
h=0

ϕ(xτh, u
τ
h)(ϕ(xτh, u

τ
h))

⊤, with Σ0 = λI.

The uncertainty region, or confidence ball, is defined as:

Ballt =

{
W :

∥∥∥(W −W t
) (

Σt
)1/2∥∥∥2 ≤ βt

}
, (4.2.2)

where

βt := C1

(
λσ2 + σ2

(
dx + log

(
t det(Σt)/ det(Σ0)

) ))
, (4.2.3)

with C1 being a parameter of the algorithm.

At episode t, the LC3 algorithm will choose an optimistic policy in Line 3 of Algorithm 1.

Solving this optimistic planning problem in general is NP-hard [73]. Given this computational

hardness, we focus on the statistical complexity and explicitly assume access to the following

computational oracle:

Assumption 4.2.1 (Black-box computation oracle). We assume access to an oracle that

implements Line 3 of Algorithm 1.
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Recent advancement of control heuristics through gradient based methods such as DDP

[110], iLQG [236] and CIO [179], or sampling based methods, such as MPPI [262] and DMD-

MPC [254], makes it reasonable to assume the oracle in practice. In particular, these planning

algorithms are natural to use in conjunction with Thompson sampling [240, 193] in practice,

i.e. we sample W t from N (W
t
, (Σt)−1) and then compute and execute the corresponding

optimal policy πt = arg minπ∈Π J
π(x0; c

t,W t) using a planning oracle.

4.2.3 Information theoretic regret bounds

We analyze the regret of Algorithm 1. Following [228], let us define the (expected) Maximum

Information Gain by:

γT (λ) := max
A

EA

[
log
(

det
(
ΣT
)
/det

(
Σ0)
) )]

= max
A

EA

[
log det

(
I +

1

λ

T−1∑
t=0

H−1∑
h=0

ϕ(xth, u
τ
h)(ϕ(xth, u

τ
h))

⊤

)]
,

where the max is over algorithms A, (an algorithm is a mapping from the history before

episode t to the next policy πt ∈ Π).

Remark 4.2.2. (Finite dimensional RKHS) If ϕ ∈ Rdϕ , with ∥ϕ(x, u)∥ ≤ B ∈ R≥0 for

all (x, u), then γT (λ) will be O(dϕ log(1 + THB2/λ) (see Lemma C.3.4). Furthermore, it

may be the case that γT (λ) ≪ dϕ if the eigenspectrum of the covariance matrices tends to

concentrate in a lower dimensional subspace. See [228] for details and for how γT (λ) scales

for a number of kernels.

Now, we make the following assumption which avoids requiring bounded costs.

Assumption 4.2.3. (Bounded second moments at x0) Assume that ct is a nonnegative

function for all t and that the realized cumulative cost, when starting from x0, has uniformly

bounded second moments, over all policies and cost functions ct. Precisely, suppose for every

ct,

sup
π∈Π

E

(H−1∑
h=0

ct(xh, uh)

)2 ∣∣∣∣ x0, π
 ≤ Vmax.
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With these preparations in place, we give the main regret bound theorem.

Theorem 4.2.4 (LC3 regret bound). Suppose Assumptions 4.2.1 and 4.2.3 hold. Set λ =

σ2

∥W ⋆∥2 and define

d̃ 2
T := γT (λ) ·

(
γT (λ) + dx + log(T ) +H

)
.

There exist constants C1, C2 ≤ 20 such that if LC3 (Algorithm 1) is run with input parameters

λ and C1 (in (4.2.3)), then following regret bound holds for all T ,

ELC3 [RegretT ] ≤ C2 d̃T
√
VmaxHT.

While the above regret bound is applicable to the infinite dimensional RKHS setting

and does not require uniformly bounded features ϕ, it is informative to specialize the regret

bound to the finite dimensional case with bounded features.

Corollary 4.2.5 (LC3 Regret for finite dimensional, bounded features). Suppose that As-

sumptions 4.2.1 and 4.2.3 hold; dϕ is finite; and that ϕ is uniformly bounded, with ∥ϕ(x, u)∥ ≤

B. Under the same parameter choices as in Theorem 4.2.4, we have, for all T ,

ELC3 [RegretT ] ≤ C2

√
dϕ

(
dϕ + dx + log(T ) +H

)
VmaxHT · log

(
1 +

B2∥W ⋆∥2

σ2

TH

d

)
.

The above immediately follows from a bound on the finite dimensional information gain

(see Lemma C.3.4).

Remark 4.2.6 (Logarithmic parameter dependencies). It is worthwhile noting that our

regret bound has only logarithmic dependencies in ∥W ⋆∥ and σ2.

Remark 4.2.7 (Linear Quadratic Regulators (LQRs) as special cases). Our model gener-

alizes the Linear Quadratic Regulator (LQR). Specifically, we can set ϕ(x, u) = [x⊤, u⊤]⊤,

c(x, u) = x⊤Qx + u⊤Ru with Q and R being some positive semi-definite matrices. We can

consider a policy class to be a (subset) of all linear controls, i.e., Π = {π : π(x) = Kx,K ∈

Rdu×dx}.
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Proof Techniques

While our proof techniques utilize methods developed for the analysis of linear bandits

[73, 1] and Gaussian process bandits [228], there are a number of new technical challenges

to be addressed with regards to the multi-step extension to RL. A key technical, “self-

bounding” lemma bounds the difference in cost under two different models, i.e. Jπ(x; c,W ⋆)−

Jπ(x; c,W ), in terms of the second moment of the cumulative cost itself. The proof involves

the construction of a certain stopping time martingale along with a novel way to handle

Gaussian smoothing through the chi-squared distance function between two distributions.

4.2.4 Experiments

We evaluate LC3 on three domains: a set of continuous control tasks, a maze environment

that requires exploration, and a dexterous manipulation task. Throughout these experi-

ments, we use model predictive path integral control (MPPI) [262] for planning, and poste-

rior reshaping [56] (i.e., scaling of posterior covariance) for Thompson sampling – we are not

implementing LC3 as analyzed, but rather a Thompson sampling variation. The algorithms

are implemented in the Lyceum framework under the Julia programming language [230, 41].

Comparison algorithms are provided by [257, 258]. Note these experiments use reward (neg-

ative cost) for evaluations. Further details of the experiments in this section can be found

in Appendix A.1.

Benchmark tasks with random features

We use some common benchmark tasks, including MuJoCo [244] environments from OpenAI

Gym [46]. We use Random Fourier Features (RFF) [202] to represent ϕ. Figure 4.1 plots

the learning curves against Ground-Truth-MPPI and the best model-based RL (MBRL)

algorithm reported in [258]. It is observed that LC3 with RFFs quickly increased reward

in early stages, indicating low sample complexities empirically. Table 4.1 shows the final

performances (at 200k time steps) of LC3 with RFFs for six environments, and includes
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Figure 4.1: Performance curves of LC3 with RFFs for different Gym environments. Note the
reward (negative cost) ranges of those plots are made different. The final mean performances
of GT-MPPI and the best MBRL algorithm reported in [258] are also shown for reference.
The algorithm is run for 200,000 time steps and with four random seeds. The curves are
averaged over the four random seeds and over a window size of 5,000 time steps.

its ranking compared to the benchmarks results from [258]. We find that LC3 consistently

performs well on simple continuous control tasks, and it works well even without posterior

sampling. However, when the dynamical complexity increases, such as with the contact-rich

Hopper model, our method’s performance suffers due to insufficient approximation capabil-

ities of a finite set of RFFs. This suggests that more interesting scenarios require different

feature representation.
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InvertedPendulum Acrobot CartPole Mountain Car Reacher Hopper

LC3 −0.0± 0.0 95.4± 52.5 199.7± 0.4 27.3± 8.1 −4.1± 1.6 −1016.5± 607.4

(Ranking) 1/11 1/11 2/11 2/11 1/11 7/11

GT-MPPI −0.0± 0.0 177.8± 25.0 199.8± 0.1 24.9± 2.9 −2.4± 0.1 2995.7± 215.3

PETS-CEM −20.5± 28.9 12.5± 29.0 199.5± 3.0 −57.9± 3.6 −12.3± 5.2 1125.0± 679.6

PILCO −194.5± 0.8 −394.4± 1.4 −1.9± 155.9 −59.0± 4.6 −13.2± 5.9 −1729.9± 1611.1

Table 4.1: Final performances for six Gym environments. Algorithms are run under the same
conditions of [258]. The performances of PETS-CEM and PILCO are copied for reference,
and the performance of ground-truth MPPI (GT-MPPI) that has access to the true model
is also shown. The results are averaged over four random seeds and a window size of 5,000
time steps.

Exploring the maze

We construct a maze environment to study the exploration capability of LC3 (see Fig. 4.2

(left)). State and control take values in [−1, 1]2 ⊂ R2 and in [−1, 1] ⊂ R, respectively.

The task is to bring an agent to the goal state being guided by the negative cost (reward)

−c(xh, uh) = 8− ∥xh − [1, 1]⊤∥2R2 . We use a one-hot vector of states and actions as features.

We compare the performances, over 50 episodes with task trajectory length 30, of LC3

(with different scale parameters for posterior reshaping) to random walk and PETS-CEM

[64]. Fig. 4.2 (right) plots the means and standard deviations, across four random seeds,

of the number of state-action pairs visited over episodes. We observe that LC3’s strategic

exploration better modeled the setting for higher rate of success.

Practical application

As we might consider learning model dynamics for the real world in applications such as

robotics, we need sufficiently complex features – without resorting to large scale data collec-

tion for feature learning. One solution to this problem is creating an ensemble of parametric

models, such as found in [241, 178] (see Figure 4.3). We take the perspective that most

model parameters of a robotic system will be known, such as kinematic lengths, actuator
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Figure 4.2: Left: An illustration of the maze environment. Start and End states are [−1,−1]⊤

and [1, 1]⊤, respectively. Dark lines are “walls”. Right: The means and standard deviations,
across four random seeds, of the number of state-action pairs already explored over episodes.
Covariance scale is the posterior reshaping constant of Thompson sampling. Random walk
takes actions uniformly sampled within [−1, 1]. PETS-CEM is a representative model-based
RL which uses uncertainty of dynamics but without exploration. The agent always reaches
the goal within 50 episodes under the best setting of LC3 and the average number of episodes
required for the first success is 25.0, while random walk and PETS-CEM never bring the
agent to the goal within 50 episodes.

specifications, and inertial configurations. Since we would like robots to operate in the wild,

some dynamical properties may be unknown: in our case, it is going to be the manipulated

object’s dynamical properties. Said another way, the robot knows about itself, but only a

little about the object.

In this experiment, we demonstrate our model learning algorithm on a robotics inspired,

dexterous manipulation task. An arm and hand system (see Fig. 4.4) must pick up a spher-

ical object with unknown dynamical properties, and hold it at a target position. The entire

system has 33 degrees of freedom, and an optimal trajectory would involve numerous discon-

tinuous contacts; the system dynamics are not well captured by random features and such

features are not easily learned. We instead use the predictive output of an ensemble of six

MuJoCo models as our features ϕ, each with randomized parameters for the object. Using
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Figure 4.3: Using simulators with different physics parameters as featurizers for practical
applications to complex domains.

a single model from the ensemble with the planner is unable to perform the task.

Fig. 4.4 plots the learning curves of LC3 with different features. We observe that, within

10 attempts at the task, LC3 with ensemble features is successful, while the same method

with RFF features makes no progress. Additionally, we use LC3 with the top layers of a

neural network – trained on a data set of 30 optimized trajectories with the correct model –

as our features. It also makes little progress.

We clarify the setting in which this approach may be relevant as follows. Complex dy-

namics, such as that in the real world, are difficult to represent with function approximation

like neural networks or random features. Rather than collect inordinate amounts of data

to mimic the combination of features and model, we instead use structured representations

of the real world, such as dynamics simulators, to produce features, and use the method in

this work to learn the model. Since dynamics simulators represent the current distillation

of physics into a computational form and accurate measurement of engineered systems is

paramount for the modern world, this instantiation of this method is reasonable.
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Figure 4.4: Left: An illustration of Armhand environment. Right: Performance curves
averaged across 12 random seeds. For reference, we include the average reward of MPPI
using a random model from the ensemble. Its score represents the system moving the hand
to the object, but unable to grasp and lift it: exactly what we would expect for randomized
object dynamics parameters.

4.3 Reframing and generalizing a unique control problem as ML

So far, we have considered an instantaneous (single-step) cost (reward) that accumulates

over a certain time horizon as the objective for decision making. In fact, such objectives

characterize the most modern RL problems modeled as Markov decision processes to encode

tasks of interest. Meanwhile, many dynamic phenomena found in nature are known to be

represented as simple trajectories, such as nonlinear oscillators, on low-dimensional manifolds

embedded in high-dimensional spaces that we observe [229]. Its mathematical concept is

known as phase reduction [263, 183], and recently its connection to the Koopman operator

has been attracted much attention in response to the growing abundance of measurement

data and the lack of known governing equations for many systems of interest [136, 172, 140].

In the latter half of this chapter, a novel paradigm of controlling nonlinear systems based

on the spectrum of the Koopman operator is presented. The Koopman operator is used to

extract global properties of the dynamics such as its dominating modes and eigenspectrum
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through spectral decomposition; as such, we propose the Koopman spectrum cost as the cost

over the Koopman operator of controlled dynamics, defining a preference of the dynamical

system in the reduced phase space. Working in the spectrum (or frequency) domain has been

standard in the control community (e.g., [19, 98]), and this chapter reframes and generalizes

the problem through the adoption of the Koopman operator to create a novel decision making

framework within the context of ML as well.

Below, we present our regulator (control) framework, KSNR, with several illustrative

numerical examples based on population based policy search, followed by an introduction of

its example online learning algorithm (Section 4.3.2) with its theoretical insights on sample

complexity and on reduction of the model to that of eigenstructure assignments problem as

a special case.

4.3.1 Koopman Spectrum Nonlinear Regulator

In this section, we propose our decision making framework based on the Koopman spectrum

regularization followed by simulation examples.

Problem setups

We assume the random dynamical system (RDS) model described in Section 2.1.4, where we

focus on the case T = N, i.e., the discrete-time scenario.

Fix a set X0 := {(x0,0, H0), (x0,1, H1), . . . , (x0,N−1, HN−1)} ⊂ X × Z>0, for N ∈ Z>0,

and define c : X → R≥0 be a cost function. The Koopman Spectrum Nonlinear Regulator

(KSNR), which we propose, is the following optimization problem:

Find π⋆ ∈ arg min
π∈Π

{Λ[K (π)] + Jπ(X0; c)} , (4.3.1)

where Λ : L(H;H) → R≥0 is a mapping that takes a Koopman operator as an input and

returns its cost; and

Jπ(X0; c) :=
N−1∑
n=0

EΩπ

[
Hn−1∑
h=0

c(xh,n)
∣∣∣π, x0,n] ,
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where xh,n(ω) := Fπ(h, ω, x0,n).

Example 4.3.1 (Examples of Λ). Some of the examples of Λ are:

1. Λ[A ] = max {1, ρ (A )}, where ρ(A ) is the spectral radius of A , prefers stable dynam-

ics.

2. Λ[A ] = ℓA ⋆(A ) can be used for imitation learning, where ℓA ⋆(A ) : L(H;H) → R≥0

is a loss function measuring the gap between A and the given A ⋆ ∈ L(H;H).

3. Λ[A ] =
∑

i |λi (A )|, prefers agent behaviors described by fewer dominating modes.

Here, {λi}i∈Z>0 is the set of eigenvalues of the operator A (assuming that the operator

has discrete spectrum).

Remark 4.3.1 (Remarks on the Koopman spectrum cost). If the Koopman operator over

H fully represents the dynamics in the sense that it can reproduce the dynamical system

over the state space, the spectrum cost is viewed as a cost that directly takes the dynamical

system itself as an input. On the other hand, depending on the choice of H, it is often the

case that the Koopman operator does not uniquely reproduce the dynamics (e.g., the extreme

case is a one-dimension space spanned by a constant function). For such cases, the cost only

acts as a regularizer. Compared to the MDP formulation, which aims at representing the

dynamics by the cumulative cost incurred on local trajectories, which resembles the principle

of least action, our KSNR considers global property of the dynamics (i.e., spectrum). We

will see more details below.

Useful properties of the Koopman spectrum cost

Since the domain of the Koopman spectrum cost is a set of linear operators that represents

global properties of corresponding dynamical system, it is advantageous to employ this cost

Λ over sums of single-step costs c(x) when encoding the properties such as stability of the

system. To illustrate this perspective, we remark the following.
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Figure 4.5: Comparisons of several costs for decision making problems. The Koopman
spectrum cost is the cost over the global properties of the dynamical system itself which is
typically unknown for learning problems, and is unobservable.

Let X = R, υ ∈ (0, 1], and let c : X → R≥0 be nonconstant cost function. We consider

the following loss function for an RDS F : N× Ω×X → X :

ℓ(F , x) := EΩ

∞∑
h=0

υhc (F(h, ω, x0)) .

Now consider the dynamical system F(1, ω, x) = −x, ∀x ∈ X , ∀ω ∈ Ω, for example. Then,

it holds that, for any choice of υ and c, there exists another RDS G satisfying that for all

x ∈ X ,

ℓ(G, x) < ℓ(F , x).

This fact indicates that there exists a dynamical system that cannot be described by a

solution to the above optimization. However, note that, given any deterministic map f ⋆ :

X → X , if one employs a (different form of) cost c : X × X → R≥0, where c(x, y) evaluates

to 0 only if y = f ⋆(x) and otherwise evaluates to 1, it is straightforward to see that the

dynamics f ⋆ is the one that simultaneously optimizes c(x, y) for any x ∈ X . In other words,

this form of single-step cost uniquely identifies the (deterministic) dynamics by defining its

evaluation at each state.

In contrast, when one wishes to constrain or regularize the dynamics in the (spatio-

temporal) spectrum domain, to obtain the set of stable dynamics for example, single-step
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costs become powerless. To see this, we give the following proposition.

Proposition 4.3.2. Let X = R. Consider the set Sf of dynamics converging to some point

in X . Then, for any choice of υ ∈ (0, 1], set-valued map S : X → 2X \ ∅, and cost c of the

form

c(x, y) =

0 (y ∈ S (x)),

1 (otherwise),

we have {F} ̸= Sf . Here, {F} are given by

⋂
x0∈X

{
arg min
F :r.d.s.

EΩ

∞∑
h=0

υhc (F(h, ω, x0),F(h+ 1, ω, x0))

}
.

Proof. Assume there exist υ, a set-valued map S , and c such that the set {Fπ} = Sf .

Then, because Sf is strictly smaller than the set of arbitrary dynamics, it must be the case

that ∃x0 ∈ X , ∃y0 ∈ X , y0 /∈ S (x0). However, the dynamics f ⋆, where f ⋆(x0) = y0 and

f ⋆(x) = x, ∀x ∈ X \ {x0}, is an element of Sf . Therefore, the proposition is proved.

Remark 4.3.3 (Interpretation of Proposition 4.3.2). Proposition 4.3.2 intuitively says that

the set of “stable dynamics” cannot be determined by specifying every single transition.

This is because, the dynamics that does not follow any pre-specified transition can always

be made “stable”.

Although aforementioned facts are simple, they give us some insights on the limitation

of the use of (cumulative) single-step cost for characterizing dynamical systems. We also

illustrate how the spectrum cost differs from other types of costs used in decision making

problems in Figure 4.5. The cost is not incurred on a single-step or on one trajectory

(episode), but is over a (part of) the global properties of the dynamical system model. It

typically corresponds to a policy, but a policy regularization cost used in, for example [94],

is computable for the current policy while the spectrum cost is unobservable if the dynamics

is unknown (and hence is not directly computable).
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Figure 4.6: Left: We minimize solely for Koopman spectrum cost Λ(A ) = ∥m −m⋆∥1 to
imitate the top mode of a reference spectrum to recover a desired limit cycle behavior for
the single-integrator system. Right: By regularizing the spectral radius of Cartpole with a
cumulative cost that favors high velocity, the cartpole performs a stable oscillation rather
than moving off to infinity.

Simulated experiments

We illustrate how one can use the costs in Example 4.3.1. See Appendix A.2 for detailed

descriptions and results of the experiments. Throughout, we used Julia language [41] based

robotics control package, Lyceum [230], for simulations and visualizations. Also, we use

Cross-entropy method (CEM) based policy search ([133]).

Imitating target behaviors through the Koopman operators: We consider the limit

cycle dynamics

ṙ = r(1− r2), θ̇ = 1,

described by the polar coordinates, and find the Koopman operator for this dynamics by

sampling transitions, assuming H is the span of Random Fourier Features (RFFs) [202].

With Π, a space of RFF policies that determine ṙ and θ̇ as a single-integrator model, we

solve KSNR for the spectrum cost Λ(A ) = ∥m−m⋆∥1, where m ∈ Cdϕ is the top mode (i.e.,

eigenvector of A corresponding to the largest absolute eigenvalue) and m⋆ is the top mode

of the target Koopman operator found previously. Figure 4.6 (left) plots the trajectory (of
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Figure 4.7: The joint angle trajectories generated by a combination of linear and RFF poli-
cies. Left: When only cumulative reward is maximized. Right: When both the cumulative

cost and the spectrum cost Λ(A ) = 5
∑dϕ

i=1 |λi(A )| are used, where the factor 5 is multiplied
to balance between the spectrum cost and the cumulative cost.

the Cartesian coordinates) generated by RFF policies that minimize this cost; it is observed

that the agent successfully converged to the desired limit cycle of radius one by imitating

the dominating mode of the target spectrum.

Generating stable loops (Cartpole): We consider Cartpole environment (where the

rail length is extended from the original model). The single-step reward (negative cost) is

10−3|v| where v is the velocity of the cart, plus the penalty −1 when the pole falls down

(i.e., directing downward). The additional spectrum cost considered in this experiment is

Λ(A ) = 104 max(1, ρ(A )), which highly penalizes spectral radius larger than one. Figure 4.6

(right) plots the cart velocity trajectories generated by RFF policies that (approximately)

solve KSNR with/without the spectrum cost. It is observed that spectral regularization led

to a back-and-forth motion while the non-regularized policy preferred accelerating to one

direction to solely maximize velocity. When the spectrum cost was used, the cumulative

rewards were 0.072 and the spectral radius was 0.990, while they were 0.212 and 1.003 when

the spectrum cost was not used; limiting the spectral radius prevents the ever increasing

change in position.
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Generating smooth movements (Walker): We use the Walker2d environment and

compare movements with/without the spectrum cost. The single-step reward (negative cost)

is given by v− 0.001∥a∥2R6 , where v is the velocity and a is the action vector of dimension 6.

The spectrum cost is given by Λ(A ) = 5
∑dϕ

i=1 |λi(A )|, where the factor 5 is multiplied to

balance between the spectrum and cumulative cost. Figure 4.7 plots typical joint angles along

a trajectory generated by a combination of linear and RFF policies that (approximately)

solves KSNR with/without the spectrum cost. It is observed that the spectrum cost led

to simpler (i.e., some joint positions converge) and smoother dynamics while doing the

task sufficiently well. With the spectrum cost, the cumulative rewards and the spectrum

costs averaged across four random seeds (plus-minus standard deviation) were 584±112 and

196±8.13. Without the spectrum cost, they were 698±231 and 310±38.6. We observe that,

as expected, the spectrum cost is lower for KSNR while the classical cumulative reward is

higher for the behavior generated by the optimization without spectrum cost. We emphasize

that we are not competing against the MDP counterparts in terms of the cumulative reward,

but rather showing an effect of additional spectrum cost. Please also refer to Appendix A.2

for detailed results.

Computation: Throughout, we used the following version of Julia; for each experiment,

the running time was less than around 10 minutes.

Julia Version 1.5.3

Platform Info:

OS: Linux (x86_64-pc-linux-gnu)

CPU: AMD Ryzen Threadripper 3990X 64-Core Processor

WORD_SIZE: 64

LIBM: libopenlibm

LLVM: libLLVM-9.0.1 (ORCJIT, znver2)

Environment:

JULIA_NUM_THREADS = 12
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4.3.2 Theoretical algorithm of online KSNR and its insights on the complexity

Next, we present a (theoretical) learning algorithm for online KSNR. Although the KSNR

itself is a general regulator framework, we need some structural assumptions to the problem

in order to devise a sample efficient (if not computation efficient) algorithm. Despite the un-

observability of the spectrum cost, KSNR admits a sample efficient model-based algorithm

through operator theoretic arguments under those assumptions. The learning goal is to

find a parameter π⋆t that satisfies (4.3.1) at each episode t ∈ [T ]. We employ episodic

learning, and let πt be a parameter employed at the t-th episode. Adversary chooses

X t
0 := {(xt0,0, H t

0), (x
t
0,1, H

t
1), . . . , (x

t
0,Nt−1, H

t
Nt−1)} ⊂ X × Z>0, where N t ∈ Z>0, and the

cost function ct at the beginning of each episode. Let cth,n := ct(xth,n). ω ∈ Ωπt is chosen

according to Pπt .

Algorithm evaluation. We employ the following cumulative regret as the performance

metric:

RegretT :=
T−1∑
t=0

Λ[K (πt)] +
Nt−1∑
n=0

Ht
n−1∑
h=0

cth,n

− T−1∑
t=0

min
π∈Π

(
Λ[K (π)] + Jπ(X t

0; c
t)
)
.

Below, we present model assumptions and an algorithm with a regret bound.

Models and algorithms

We make the following modeling assumptions.

Assumption 4.3.4. Let K (π) be the Koopman operator corresponding to a parameter π.

Then, assume that there exists a finite dimensional subspace H0 on X over R and its basis

ϕ1, . . . , ϕdϕ such that the RDS (2.1.3) satisfies the following:

∀π ∈ Π, ∀x ∈ X : ϕi(Fπ(1, ω, x)) = [K (π)ϕi](x) + ϵi(ω),

where the additive noise ϵi(ω) ∼ N (0, σ2) is assumed to be independent across time steps,

parameters π, and indices i.
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Remark 4.3.5 (On Assumption 4.3.4). Although the added noise term is expected to deal

with stochasticity and misspecification to some extent in practice, Assumption 4.3.4 is strong

to ask for; in fact, claiming existence of the Koopman operator over a useful RKHS (e.g., with

Gaussian kernel) is not trivial for most of the practical problems. Studying misspecified case

with small error margin is an important future direction of research; however, as our regulator

problem is novel, we believe this work guides the future attempts of further algorithmic

research.

Assumption 4.3.6 (Function-valued RKHS (see Section 2.1.6 for details)). K (·)ϕ for ϕ ∈

H is assumed to live in a known function valued RKHS with the operator-valued reproducing

kernel K(·, ·) : Π × Π → L(H;H), or equivalently, there exists a known map Ψ : Π →

L(H;H′) for a specific Hilbert space H′ satisfying for any ϕ ∈ H, there exists ψ ∈ H′ such

that

K (·)ϕ = Ψ(·)†ψ. (4.3.2)

Remark 4.3.7 (On Assumption 4.3.6). In practice, one can use decomposable kernel [45];

when the kernel K is given by K(π1, π2) = k(π1, π2)A for some scalar-valued kernel k(π1, π2)

and for positive semi-definite operator A ∈ L(H,H), the kernel K is called decomposable

kernel. For an RKHS of a decomposable kernel K, (4.3.2) becomes

K (π)ϕ = (ζ(π)† ⊗B)ψ,

where ζ : Π → H′′ is known (H′′ is some Hilbert space), and A = BB†. Further, to use

RFFs, one considers a shift-invariant kernel k(π1, π2).

When Assumption 4.3.6 holds, we obtain the following claim which is critical for our

learning framework.

Lemma 4.3.8. Suppose Assumption 4.3.6 holds. Then, there exists a linear operator M⋆ :

H → H′ such that

K (π) = Ψ(π)† ◦M⋆.
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Proof. It is easy to see that one can define a map M0 so that it satisfies M0(ϕ) = ψ such

that Assumption 4.3.6 holds. Define

M⋆ := PprojM0,

where Pproj is the orthogonal projection operator onto the sum space of the orthogonal

complement of the null space of Ψ(π)† for all π ∈ Π, namely,∑
π∈Π

ker(Ψ(π)†)⊥.

Also, define Pproj,π by the orthogonal projection onto

ker(Ψ(π)†)⊥.

Then, for any π ∈ Π, we obtain

Pproj,πM0 = Ψ(π)†
+
K (π),

where A + is the pseudoinverse of the operator A , and Pproj,πM0 is linear. Let a, b ∈ R and

ϕ1, ϕ2 ∈ H, and define ψ̃ by

ψ̃ := PprojM0(aϕ1 + bϕ2)− aPprojM0(ϕ1)− bPprojM0(ϕ2).

Because Pproj,πPprojM0 = Pproj,πM0, it follows that Pproj,πψ̃ = 0 for all π ∈ Π, which implies

ψ̃ ∈
⋂
π∈Π

kerPproj,π =
⋂
π∈Π

ker(Ψ(π)†).

On the other hand, we have

ψ̃ ∈
∑
π∈Π

ker(Ψ(π)†)⊥.

Therefore, it follows that ψ̃ = 0, which proves that M⋆ is linear.

In the reminder of this chapter, we work on the invariant subspace H0 in Assumption

4.3.4 and thus we regard H = H0
∼= Rdϕ , L(H;H) ∼= Rdϕ×dϕ , and, by abuse of notations, we

view K (π) as the realization of the operator over Rdϕ , i.e.,

ϕFπ(1,ω,x) = K (π)ϕx + ϵ(ω) = [Ψ(π)† ◦M⋆]ϕx + ϵ(ω),
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where ϕx := [ϕ1(x), ϕ2(x), . . . , ϕdϕ(x)]⊤ ∈ Rdϕ , and ϵ(ω) := [ϵ1(ω), ϵ2(ω), . . . , ϵdϕ(ω)]⊤ ∈ Rdϕ .

Finally, we assume the following.

Assumption 4.3.9 (Realizability of costs). For all t, the single-step cost ct is known and

satisfies ct(x) = wt(ϕx) for some known map wt : Rdϕ → R≥0.

For later use, we define, for all t ∈ [T ], n ∈ [N t], and h ∈ [H t
n]; A t

h,n ∈ L (L(H;H′);H)

and Bt ∈ L (L(H;H′);L(H;H)) by

A t
h,n(M) =

[
Ψ(πt)† ◦M

] (
ϕxth,n

)
, Bt(M) = Ψ(πt)† ◦M.

Remark 4.3.10 (Hilbert-Schmidt operators). Both A t
h,n and Bt are Hilbert-Schmidt oper-

ators because the ranges H and L(H;H) are of finite dimension. Note, in case H′ is finite,

we obtain

ϕFπ(1,ω,x) = Ψ(π)†M⋆ϕx + ϵ(ω) = (ϕ†
x ⊗Ψ(π)†)vec(M⋆) + ϵ(ω), (4.3.3)

where vec is the vectorization of matrix.

With these preparations in mind, our proposed information theoretic algorithm, which is

an extension of LC3 to KSNR problem (estimating the true operator M⋆) is summarized in

Algorithm 2.1 This algorithm assumes the following oracle.

Definition 4.3.1 (Optimal parameter oracle). Define the oracle, OptDynamics, that com-

putes the minimization problem (4.3.1) for any K , X0, Λ and ct satisfying Assumption

4.3.9.

Information theoretic regret bounds

Here, we present the regret bound analysis. To this end, we make the following assumptions.

1See Appendix B.2.1 for the definitions of the values in this algorithm.
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Algorithm 2 Koopman-Spectrum LC3 (KS-LC3)

Require: Parameter set Π; regularizer λ

1: Initialize Ball0M to be a set containing M⋆.

2: for t = 0 . . . T − 1 do

3: Adversary chooses X t
0.

4: πt, M̂t = arg minπ∈Π, M∈BalltM
Λ[Ψ(π)† ◦M ] + Jπ(X t

0;M ; ct)

5: Under the dynamics Fπt
, sample transition data τ t := {τ tn}N

t−1
n=0 , where τ tn :=

{xth,n}
Ht

n
h=0

6: Update Ballt+1
M .

7: end for

Assumption 4.3.11. The operator Λ satisfies the following (modified) Hölder condition:

∃L ∈ R≥0, ∃α ∈ (0, 1], ∀A ∈ L (H,H) , ∀π ∈ Π,

|Λ[A ]− Λ[K (π)]| ≤ L ·max
{
∥A −K (π)∥2 , ∥A −K (π)∥α

}
.

Further, we assume there exists a constant Λmax ≥ 0 such that, for any π ∈ Π and for any

M ∈ Ball0M , ∣∣Λ[Ψ(π)† ◦M ]
∣∣ ≤ Λmax.

For example, for spectral radius ρ, the following proposition holds using the result from

[227, Corollary 2.3].

Proposition 4.3.12. Assume there exists a constant Λmax ≥ 0 such that, for any π ∈ Π

and for any M ∈ Ball0M , ρ(Ψ(π)† ◦M) ≤ Λmax. Let the Jordan condition number of K (π)

be the following:

κ := sup
π∈Π

inf
Q(π)

{
∥Q(π)∥∥Q(π)−1∥ : Q(π)−1K (π)Q(π) = J (π)

}
,

where J (π) is a Jordan canonical form of K (π) transformed by a nonsingular matrix Q(π).

Also, let m be the order of the largest Jordan block. Then, if κ <∞, the cost Λ(A ) = ρ(A )
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satisfies the Assumption 4.3.11 for

L := (1 + κ)d2ϕ(1 +
√
dϕ − 1), α =

1

m
.

Proof. Fix π ∈ Π and suppose that the eigenvalues λi (i ∈ I := {1, 2, . . . , dϕ}) of K (π) are

in descending order according to their absolute values, i.e., |λ1| ≥ |λ2| ≥ . . . ≥ |λdϕ |. Given

A ∈ L(H;H), suppose also that the eigenvalues νi (i ∈ I) of A are in descending order

according to their absolute values. Let

κπ := inf
Q(π)

{
∥Q(π)∥∥Q(π)−1∥ : Q(π)−1K (π)Q(π) = J (π)

}
.

Also, let

κπ := max
m∈{1,...,dϕ}

{
κ

1
m
π

}
.

Then, by [227, Corollary 2.3], we have

||νi| − |λi|| ≤ |νi − λi| ≤
∑
i

|νi − λi| ≤
∑
i

|νς(i) − λi|

≤ dϕ
√
dϕ(1 +

√
dϕ − p) max

{
κπ
√
dϕ∥A −K (π)∥, (κπ

√
dϕ)

1
m∥A −K (π)∥

1
m

}
,

for any i ∈ I and for some permutation ς, where p ∈ {1, 2, . . . , dϕ} is the number of the

Jordan block of Q(π)−1K (π)Q(π) and m ∈ {1, 2, . . . , dϕ} is the order of the largest Jordan

block. Because
√
dϕ − p ≤

√
dϕ − 1 for any p ∈ {1, 2, . . . , dϕ}, and because

max
m∈{1,...,dϕ}

[√
dϕ ·max{

√
dϕ, (

√
dϕ)

1
m} ·max

{
κπ, κ

1
m
π

}]
≤ dϕκπ,

it follows that

|ρ(A )− ρ(K (π))| = ||ν1| − |λ1||

≤ κπd
2
ϕ(1 +

√
dϕ − 1) max

{
∥A −K (π)∥, ∥A −K (π)∥

1
m

}
.

Since κπ < 1 + κ, simple computations complete the proof.
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Note when K (π) is diagonalizable for all π, α = 1.

Assumption 4.3.13. For every t, adversary chooses N t trajectories such that {ϕxt0,n
} sat-

isfies that the smallest eigenvalue of
∑Nt−1

n=0 ϕxt0,n
ϕ†
xt0,n

is bounded below by some constant

C > 0. Also, there exists a constant H ∈ Z>0 such that for every t,
∑Nt−1

n=0 H t
n ≤ H.

Remark 4.3.14 (On Assumption 4.3.13). In practice, user may wait to end an episode until

a sufficient number of trajectories is collected in order for the assumption to hold. Note, this

assumption does not preclude the necessity of exploration because the smallest eigenvalue of∑Nt−1
n=0

∑Ht
n−1

h=0 A t
h,n

†A t
h,n is in general not bounded below by a positive constant. We hope

that this assumption can be relaxed by assuming the bounds on the norms of ϕx0,n and

K (π) and by using matrix Bernstein inequality under additive Gaussian noise assumption.

Lastly, the following assumption is the modified version of Assumption 4.2.3.

Assumption 4.3.15. [Modified version of Assumption 4.2.3] Assume there exists a constant

Vmax > 0 such that, for every t,

sup
π∈Π

Nt−1∑
n=0

EΩπ

Ht
n−1∑
h=0

ct(xth,n)

2 ∣∣∣∣ π, xt0,n
 ≤ Vmax.

Theorem 4.3.16. Suppose Assumption 4.3.4 to 4.3.15 hold. Set λ = σ2

∥M⋆∥2 . Then, there

exists an absolute constant C1 such that, for all T , KS-LC3 (Algorithm 2) using OptDynamics

enjoys the following regret bound:

EKS−LC3 [RegretT ] ≤ C1(d̃T,1 + d̃T,2)T
1−α

2 ,

where

d̃2T,1 := (1 + γT,B)
[
L2(1 + C−1)2β̃2,T + (L2 + ΛmaxL)(1 + C−1)β̃1,T + Λ2

max + L2
]
,

d̃2T,2 := γT,AHVmax (γT,A + dϕ + log(T ) +H) ,

β̃1,T := σ2(dϕ + log(T ) + γT,A ),

β̃2,T := σ4((dϕ + log(T ) + γT,A )2 + γ2,T,A ).
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Here, γT,A , γ2,T,A , and γT,B are the expected maximum information gains that scale (poly-

)logarithmically with T under practical settings (see Appendix B.2.1 for details).

Remark 4.3.17. We note that, when α = 1, we obtain the order of Õ(
√
T ).

The proof techniques include our positive operator norm bounding lemma (see Lemma

B.2.2 in Appendix B.2), which is another crucial operator theoretic lemma in addition to

Lemma 4.3.8.

4.3.3 Relations to the kernelized nonlinear regulator and to eigenstructure assignments

As mentioned in Remark 4.3.5, for a given dynamics described by the system model studied

in the KNR (i.e., the transition map from the current state and control to the next state is

in a known RKHS), the existence of a useful (finite dimensional) space H0 in Assumption

4.3.4 is in general not guaranteed. As such, the system model considered in this section is

no more general than that of the KNR (although our spectrum cost formulation is indeed a

generalization of that of the KNR). Now, we consider the finite dimensional description (see

(4.3.3)) for simplicity. The equation (4.3.3) can be rewritten by

ϕFπ(1,ω,x) =
(
I ⊗ vec(M⋆)⊤

)
vec
[(
ϕ†
x ⊗Ψ(π)†

)⊤]
+ ϵ(ω),

and is a special case of the system model of the KNR.

We see that the model associated with our spectrum cost formulation reduces to the

eigenstructure assignment problem for the linear systems described by

xh+1 = Axh +Buh + ϵ, A ∈ Rdx×dx , B ∈ Rdx×du , ϵ ∼ N (0, σ2I),

where u ∈ Rdu is a control input. In particular, considering the feedback policy in the form

of uh = Kxh where K ∈ Rdu×dx (or π = K in this case), the system becomes xh+1 =

(A + BK)xh + ϵ. To see how our system model studied in (4.3.3) reduces to linear system

case, take Rdx as H0 with the canonical basis (i.e., ϕx = x) and let

Φ(π) = [Idx ⊗ k⊤1 , Idx ⊗ k⊤2 , . . . , Idx ⊗ k⊤dx , Idx ]⊤,
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where the feedback matrix is given by K := [k1, k2, . . . , kdx ], and let

M∗ =
[
[b1, a1]

⊤, . . . , [bdx , adx ]⊤
]
,

where the entries of the row vector bi are all zero except for the entries from the index

(i− 1)dxdu + 1 to the index idxdu given by vec
(
B⊤), and A = [a⊤1 , a

⊤
2 , . . . , a

⊤
dx

].

The spectrum cost may be designed not only to constrain the eigenstructure but also to

balance with the cumulative single-step cost in our framework as well.

4.4 Chapter summary and discussion

This chapter first introduced our MBRL algorithm LC3 tailored for continuous control prob-

lems. LC3 attains O(
√
T ) regret bounds, where we utilize a continuity property of control

problems, an optimal control oracle, and number of analysis concepts from RL.

We did not discuss the role of model misspecification; in fact, for complicated (discontin-

uous) systems such as contact-rich dynamics, our model assumptions may fail. Especially,

Gaussian smoothing was one of the key technical novelties in the regret analysis of LC3;

and it is unclear if more general distributions of noise still admit sublinear regret with some

conditions and algorithms.

Moreover, in this chapter we assumed the RKHS is known; however, it is usually the case

that we have no access to reasonable feature representations in practice and incorporating

representation learning is practically important.

The latter half of this chapter proposed a novel paradigm of regulating dynamical systems,

which we refer to as Koopman Spectrum Nonlinear Regulator, and presented an information

theoretic algorithm that achieves a sublinear regret bound under model assumptions. We

showed that behaviors such as limit cycles of interest, stable motion, and smooth movements

are effectively realized within our framework, which is an effective generalization of classical

eigenstructure (pole) assignments.

When the dynamical systems of interest do not meet certain conditions, Koopman op-

erators might not be well defined over functional spaces that can be practically managed



87

(e.g., RKHSs). Studying such conditions is an on-going research topic. KS-LC3 also requires

several assumptions for tractable regret analysis. It is again somewhat strong to assume

that one can find a Koopman invariant space H. Further, noise effects should in practice

be exaggerated by lifting to a space of observables, which implies the necessity of studying

robustness. To solve KSNR on the other hand, one needs heuristic approximations when the

(policy) space or the state space is continuous; therefore, a better heuristic algorithm that

is suited to our problem in order to scale the methodology to more complicated domains

should be studied.
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Chapter 5

TRAJECTORY-BASED OPTIMIZATION FOR CONTROL
AND LEARNING TASKS

Chapter’s key takeaways� �
This chapter proposes a dynamic programming based novel decision making framework

that exploits the algebraic property of the path signatures, which are the powerful rep-

resentation (infinite collection of coefficients) of paths that efficiently capture the paths’

analytic and geometric characteristics. The resulting update rule, which we refer to as

Chen equation, maintains S-function that returns the (truncated) signature of the future

path (path-to-go) w.r.t. the current policy and action input. Chen equation subsumes

the update of value (i.e., the classical Bellman update), and its application to control

problems through minimization of the cost over signatures effectively generalizes integral

controls and hence is robust against an unknown disturbance. Our signature control is

applied to trajectory following problems in robotics simulation showing better tracking

accuracy and robustness even when waypoint information is unavailable.� �
5.1 Introduction

Path tracking has been a central problem for autonomous vehicles (e.g., [217, 11]), imitation

learning, learning from demonstrations (cf. [106, 22]), character animations (with mocap

systems; e.g., [198]), robot manipulation for executing plans returned by a solver (cf. [117,

89]), and for flying drones (e.g., [273]), just to name a few.

Typically, path tracking is dealt with by using reference dynamics or is formulated as a

control problem with a sequence of goals to follow using optimal controls based on dynamic

programming (DP) over cumulative costs (rewards) or value [35]. However, for path tracking
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where reference dynamics or appropriate waypoints are unavailable, both model-based and

value-based (model-free) approaches become inapplicable without introducing heuristic or

ad hoc techniques to the problems, hindering systematic procedures.

In this chapter, we adopt a rough-path theoretical approach in DP; specifically, we ex-

ploit path signatures (cf. [63, 162]), which have recently attracted the attention of the ML

community (e.g., [63, 127, 214, 181, 147, 83]). Our decision making framework predicated

on signatures, named signature control, describes an evolution of signatures over an agent’s

trajectory through DP (see Figure 5.1). By demonstrating how it reduces to the Bellman

equation as a special case, we show that the S-function representing the signatures of the

future path (we call it path-to-go in this thesis) is cast as an effective generalization of value

function. In addition, since an S-function naturally encodes information of a long trajectory,

it is robust against misspecification of dynamics. Our signature control inherits some of the

properties of signatures (cf. [163, 43]); as such, when applied to tracking problems, there is

no need to specify waypoints.

Figure 5.1: Left: Chen’s identity, i.e., the signature of the entire path is expressed by the
tensor product of the signature of its subpath and that of the rest. Right: Illustration of
path-to-go formulation as an analogy to value-to-go in the classical settings.

Contributions: The contributions of this chapter are five folds: (1) devise a novel frame-

work based on path signatures for control problems named signature control, (2) define Chen
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equation, a DP based update rule of signatures, and show how it reduces to the Bellman

equation as a special instance, (3) propose its model predictive control algorithm and discuss

the relation to classical integral control, (4) present several control and robotics applica-

tions showcasing the benefits of our framework and demonstrating the concepts that inherit

mathematical properties of the path signature, (5) and analyze some of the properties of our

framework.

5.2 Problem setups

Since we are interested in cost definitions over the entire path and not limited to the form of

the cumulative cost over a trajectory with fixed time interval (or integral along continuous

time), MDPs are no longer the most suitable representation. Instead, we assume that the

system dynamics of an agent is described by an RDS Fπ defined by a policy parameter π ∈ Π

(it does not have to be a map from a state to an action). For simplicity, we assume in this

chapter that the RDS generated by a policy π ∈ Π shares the same sample space Ω (Ωπ = Ω

for all π). Roughly speaking, this means that the noise mechanism of RDSs is the same for

all policies (not necessarily the same probability distribution). Also, the action a ∈ A is for

constraining the event of downstream trajectories of RDS to be of some subset of Ω, which

we define Ωa ⊂ Ω. Further, we suppose that
⊔
a∈A Ωa = Ω.

Our main problem of interest is path tracking which we formally define below:

Definition 5.2.1 (Path tracking). Let Γ : Σ× Σ→ R≥0 be a cost function on the product

of the spaces of paths over the nonnegative real number, satisfying:

∀σ ∈ Σ : Γ(σ, σ) = 0; ∀σ∗ ∈ Σ, ∀σ ∈ Σ s.t. σ ̸≡σ σ∗ : Γ(σ, σ∗) > 0,

where ≡σ is any equivalence relation of path in Σ. Given a reference path σ∗ ∈ Σ and a cost,

the goal of path tracking is to find a policy π∗ ∈ Π such that a path σπ∗ generated by the

RDS Fπ∗
satisfies

Γ(σπ∗ , σ∗) = min
π∈Π

Γ(σπ, σ
∗).
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In particular, we define σπ carefully below. Let T ∈ T be a time horizon, and define the

map σπ,F : X × [0, T ]× Ω→ X [0,T ] by

[σπ,F (x0, T, ω)] (t)

=

F
π(t, ω, x0) (∀t ∈ T ∩ [0, T ])

[F (Fπ(⌊t⌋, ω, x0),Fπ(⌊t⌋+ 1, ω, x0))] (t− ⌊t⌋) (∀t ∈ [0, T ] \ T)

,

where F : X × X → X [0,1] is an interpolation between two given points.

Also, let practical partition D = {0 = t0 < t1 < . . . < tk−1 = T} of the time interval

[0, T ] be such that there exists a sequence of actions {a1, a2, . . .} over that partition, i.e., t0,

t1, t2... represent 0, ta1 , ta1 + ta2 ,....

Now, let T : X [0,T ] → Σ be some (possibly nonlinear) transformation such that, for any

practical partition D of the time interval [0, T ], for any j ∈ [k − 2], a pair of feasible paths

σ1 ∈ X [tj ,tj+1], σ2 ∈ X [tj+1,tj+2] satisfies

σ ≡σ σ1 ∗ σ2 =⇒ T (σ) ≡σ T (σ1) ∗ T (σ2),

where ∗ denotes the concatenation of paths (defined by shifting the starting time and the

state) and ≡σ is the tree-like equivalence relation. The interpolation F and the transforma-

tion T are illustrated in Figure 5.2.

With these definitions in place, we propose our control framework, signature control.

5.3 Signature control

The signature-based optimal control problem reads

Problem 5.3.1.

Find π∗ s.t. π∗ ∈ arg min
π∈Π

c
(
EΩ

[
S
(
σT
π,F (x0, T, ω)

)])
,

where c : T ((X )) → R≥0 is a cost function on the space of formal power series, and

σT
π,F := T ◦ σπ,F ; we use, for simplicity, σπ instead of σT

π,F when F and T are clear in the

contexts.
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Figure 5.2: Top (discrete-time): Interpolation for pairs of points will produce a path and
one may possibly transform them. Down (continuous-time): A path generated by an RDS
may include discontinuity or unbounded variation. Transformation makes it to be a path for
which the signatures are defined. Discontinuous points may be interpolated (a path is defined
over a compact interval), and unbounded variations may be overcome by down-sampling over
points of any practical partition.

Remark 5.3.2 (Remark on Problem 5.3.1). This problem subsumes the MDP as we shall

see in Section 5.3.1. The given formulation covers both discrete-time and continuous-time

cases through interpolation over time. Given a reference σ∗, when c(S(σ)) = Γ(σ, σ∗) and

≡σ denotes tree-like equivalence, signature control becomes the path tracking Problem 5.2.1.

To effectively solve it we exploit DP.

5.3.1 Dynamic programming over signatures

Path-to-go

Let a ∈ A be an action which basically constrains the realizations of path up to time ta

(actions studied in MDPs constrain the one-step dynamics from a given state). Let the



93

projection on A × B over A is denoted by PA : (a, b) 7→ a. Without loss of generality, we

assume that X = Y × O, and that PO[Fπ(t, ω, x)] is known when PY [x], t, and ω are given

(i.e., O is the space of observations). Given T ∈ T, define the path-to-go function Pπ on

Y × T over ΣΩ by

Pπ(y, t)(ω) = σπ(x, T − t, ω), ∀t ∈ [0, T ].

We use the following Markov property.

Assumption 5.3.3 (Markov property [24]). For each action a ∈ A, there exists ta ≥ 0 such

that the RDS Fπ satisfies the Markov property, i.e., for each B ∈ 2X , a ∈ A, and s ≥ 0,

Pr [Fπ(ta + s, ω, z) ∈ B|Fπ(ta, ω, z) = x, ω ∈ Ωa] = Pr [ω|Fπ(s, ω, x) ∈ B] . (5.3.1)

Remark 5.3.4. When µ(Ωa) = 0, we can still assign the probability of the right hand side

of (5.3.1) to its left hand side; however, one can define arbitrarily the probability of a future

path conditioned on ω ∈ Ωa and it does not harm the current arguments for now.

Now, the path-to-go formulation is expressed by

Pπ(y, t)(ω) = Pπa (y, t)(ω) ∗ Pπ(y+, t+ ta)(θtaω),

where

Pπa (y, t)(ω) := σπ(x,min{T − t, ta}, ω), y+ = PYFπ(ta, ω, x).

To express this in the signature form, we exploit the Chen’s identity, and define the signature-

to-go function (or in short S-function):

Sπ(a, y, t) := E [S(Pπ(y, t)(ω))|a] . (5.3.2)

Then, we obtain the following update rule:
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Theorem 5.3.5 (Signature Dynamic Programming for Decision Making). Let the function

S be defined by (5.3.2). Under the Markov assumption 5.3.3, it follows that

Sπ(a, y, t) = E
[
S(Pπa (y, t)(ω))⊗ ESπ(y+, t+ ta)|a

]
where the expected S-function ESπ : Y × T→ T ((X )) is defined by

ESπ(y, t) := EΩ [Sπ(b(ω), y, t)] ,

and b : Ω→ A is defined by b(ω) = a for ω ∈ Ωa.

Proof. Using the Chen’s identity (first equality), tower rule (second equality), Assumption

5.3.3 (third and forth equalities), and the properties of tensor product and the transformation

(first and third equalities) we obtain

Sπ(a, y, t)

= E [S(Pπa (y, t)(ω))⊗ A|ω ∈ Ωa] = E [E [S(Pπa (y, t)(ω))⊗ A|Pπa (y, t)(ω), ω ∈ Ωa] |ω ∈ Ωa]

= E [S(Pπa (y, t)(ω))⊗ E [A|Pπa (y, t)(ω)] |ω ∈ Ωa]

= E
[
S(Pπa (y, t)(ω))⊗ ESπ(y+, t+ ta)|ω ∈ Ωa

]
where

A := S(Pπ(y+, t+ ta)(θtaω)).

Throughout, we call the above update rule as Chen (expectation) equation.

Optimality: Next, we briefly cover optimality; i.e., we present Chen optimality equation.

Optimality is tricky for Chen formulation because some relation between policy and action

is required in addition to the Markov assumption. To obtain our Chen optimality, we make

the following assumption.
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Assumption 5.3.6 (Relations between policy and action). For any policy π ∈ Π, state

x ∈ X , time t ∈ T ∩ (0, T ], and an action a ∈ A, there exists a policy π′ ∈ Π such that

EΩ

[
Sπ′

(b(ω), PY(x0), 0)
]

= EΩ

[
Sπ(b(ω), PY(x0), 0)

∣∣ (Fπ(t, ω, x0) = x) =⇒ (θtω ∈ Ωa)
]
.

Also, there exists a ∈ A such that π′ = π.

Given a cost function c : T ((X ))→ R≥0, suppose π∗ satisfies

c
(
ESπ∗

(PY(x0), 0)
)

= inf
π∈Π

c (ESπ(PY(x0), 0)) .

Then, under Assumption 5.3.6, Chen optimality reads

c
(
EΩ

[
Sπ∗

(b(ω), PY(x0), 0)
])

= min
a∈A

c
(
EΩ

[
Sπ∗

(b(ω), PY(x0), 0)
∣∣ (Fπ∗

(t, ω, x0) = x
)

=⇒ (θtω ∈ Ωa)
])
, (5.3.3)

when the right hand side is defined.

Infinite time horizon extension of Chen formulation: Extending Chen equation to

infinite time interval requires an argument of the extended real line. Let [0,∞] ⊂ R be the

subset of the extended real line R. Now, we make the following assumption:

Assumption 5.3.7. For any policy π ∈ Π, initial state x0 ∈ X , and realization ω ∈ Ω, the

limit

lim
τ→∞

σT
π,F (x0, τ, ω)(τ)

exists and the path σT
π,F can be continuously extended to [0,∞]. In addition, there exists a

homeomorphism ψ : [0,∞]→ [0, T ] for some T > 0 such the path σπ : X ×Ω→ Σ is properly

defined by

σπ(x0, ω)(t) =
[

lim
τ→∞

σT
π,F (x0, τ, ω)

]
(ψ−1(t)), ∀x0 ∈ X , ω ∈ Ω, t ∈ [0, T ],

to be an element of Σ.
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Now, we redefine (for avoiding introducing more notations)

Pπ(y)(ω) = σπ(x, ω),

and Pπa (y, 0) by taking T →∞; and we effectively drop off the dependence on t for Sπ and

ESπ. Chen equation becomes

Sπ(a, y)

= E [S(Pπa (y, 0)(ω))⊗ A|ω ∈ Ωa] = E [E [S(Pπa (y, 0)(ω))⊗ A|Pπa (y, 0)(ω), ω ∈ Ωa] |ω ∈ Ωa]

= E [S(Pπa (y, 0)(ω))⊗ E [A|Pπa (y, 0)(ω)] |ω ∈ Ωa]

= E
[
S(Pπa (y, 0)(ω))⊗ ESπ(y+)|ω ∈ Ωa

]
where A is redefined by

A := S(Pπ(y+)(θtaω)).

Truncated signature formulation

For the mth-depth truncated signature (note that m =∞ for signature with no truncation),

we obtain,

(S(X)⊗ S(Y ))m = (S(X)m ⊗ S(Y )m)m =: S(X)m ⊗m S(Y )m. (5.3.4)

This is immediate from the definition of the multiplication ⊗ of the formal power series (see

Section 2.1.7), implying that S(X) ⊗ S(Y ) up to depth m only depends on the signatures

of X and Y up to depth m. Therefore, when the cost only depends on the first mth-depth

signatures, keeping track of the first mth-depth S-function Sπm(a, y, t) suffices, and the cost

function c can be efficiently computed as

c(Sπm(a, y, t)) = c
(
E
[
Sm(Pπa (y, t)(ω))⊗m ESπm(y+, t+ ta)|a

])
.
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Reduction to the Bellman equation

Recall that the Bellman expectation equation w.r.t. action-value function or Q-function is

given by

Qπ(a, z, t) = EΩ

[
r(a, z, ω) + γV π(z+, t+ 1)

∣∣ω ∈ Ωa

]
, (5.3.5)

where V π(z, t) = E[Qπ(a, z, t)] for all t ∈ N, where γ ∈ (0, 1] is a discount factor. We carefully

show how Chen equation reduces to the Bellman expectation equation (see Figure 5.3 (left)).

We suppose X := Z × R≥0 × R≥0 ⊂ Rd, for d > 2, is the state space augmented by the

instantaneous reward and time, and suppose ta = 1 for all a ∈ A. And note Z ×R≥0 which

is the original state and time is now the space Y . Let m = 2. We define the interpolation

F , the transformation T , and the cost function c so that

∀x,w ∈ X s.t. xd−1:d = [rx, tx], wd−1:d = [rw, tx + 1] :

F (x,w)(τ)d−1:d =

[rx + 2τ · (rw − rx), tx] (τ ∈ [0, 0.5])

[rw, tx + 2(τ − 0.5)] (τ ∈ (0.5, 1])

,

∀σ : [0, t]→ X s.t. t ∈ Z>0 :

T (σ)(τ + s) =



[
2τγ[σ(τ)]d [σ(τ)]d−1, [σ(τ)]d

]
, (τ ∈ [0, 0.5])[

γξ1(τ)[σ(τ)]d−1, [σ(τ)]d
]
, (τ ∈ [0.5, t− 0.5))[

γ⌊[σ(τ)]d⌋[σ(τ)]d−1, ξ2(τ)
]
, (τ ∈ [t− 0.5, t− 0.25))[

4(t− τ)γ[σ(t)]d−1[σ(t)]d−1, [σ(t)]d
]
, (τ ∈ [t− 0.25, t])

c(s) = −s1,2,

where

ξ1(τ) =

 2(τ − ⌊τ⌋) + ⌊[σ(τ)]d⌋ − 1, (τ − ⌊τ⌋ ≤ 0.5)

⌊[σ(τ)]d⌋, (τ − ⌊τ⌋ > 0.5),

and ξ2(τ) = 2[σ(τ)]d − ⌊[σ(τ)]d⌋.
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Then Chen equation reduces to the Bellman equation (5.3.5) by

c(Sπ2 (a, y, t)) = c
(
E
[
S2(Pπa (y, t)(ω))⊗2 ESπ2 (y+, t+ 1)|ω ∈ Ωa

])
= E

[
−S1,2(Pπa (y, t)(ω)) + c

(
ESπ2 (y+, t+ 1)

)
|ω ∈ Ωa

]
and

c (Sπ2 (a, y, t)) = −γtQπ(a, z, t), c (ESπ2 (y, t)) = −γtV π(z, t), S1,2(Pπa (y, t)(ω)) = γtr(a, z, ω),

where y = [z; t], and it reduces to the Bellman expectation equation.

Infinite horizon case: To see how infinite horizon Chen equation reduces to infintie hori-

zon Bellman expectation equation, note that one cannot consider time axis now because it

diverges and signatures are no longer defined. Therefore, instead we consider Y involving

the space of discount factor and O to be the space of discounted cumulative reward, i.e., Y

involves 1, γ, γ2, . . . and O is given by r0, r0 + γr1, r0 + γr1 + γ2r2, . . .. Extracting the path

over discounted cumulative reward, and transforming it so that it starts from 0, a first depth

signature (displacement) corresponds to the value-to-go. Here, because the extracted signa-

ture term only depends on 1, γ, γ2, . . . in a simple way, we could safely store the S function

that has no dependence on this discount factor variable. We omit the details but we mention

that the value function is again captured by signatures.

5.4 Signature MPC

We discuss an effective cost formulation over signatures for flexible and robust MPC, followed

by additional numerical properties of signatures that benefit signature control.

Signature model predictive control: We present an application of Chen equation to

MPC control– an iterative, finite-horizon optimization framework for control. In our sig-

nature MPC formulation, the optimization cost is defined for the signature of the full path

being tracked, i.e., the previous path seen so far and the future path generated by the op-

timized control inputs (e.g., distance from the reference path signature for path tracking
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Figure 5.3: Left: Illustrations of how a cumulative (discounted) reward is represented by
our path formulation by an interpolation for representing the value as surface and by a
transportation for discounting and concatenations of paths. Right: An error of approximated
one-step dynamics propagates through time steps; while an error on signature has less effect
over long horizon.

Algorithm 3 Signature MPC

Input: initial state x0; signature depthm; initial signature of past path s0 = 1; # actions

for rollout N ; surrogate cost ℓ and regularizer ℓreg; terminal S-function T Sm; simulation

model F̂

1: while not task finished do

2: Observe the current state xt

3: Update the signature of past path: st = st−1⊗mSm(σ(xt−1, xt)), where Sm(σ(xt−1, xt))

is the signature transform of the subpath traversed since the last update from t− 1 to t

4: Compute the N optimal future actions a∗ := (a0, a1, . . . , aN−1) using a simulation

model F̂ that minimize the cost of the signature of the entire path (See Equation (5.4.1)).

5: Run the first action a0 for the associated duration ta0

6: end while

problem). Our algorithm, given in Algorithm 3, works in the receding-horizon manner and

computes a fixed number of actions (the execution time for the full path can vary as each

action may have a different time scale; i.e., each action is taken effect up to optimized (or

fixed) time ta ∈ T).
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Given the signature st of transformed past path (depth m) and the current state xt at

time t, the actions are selected by minimizing a two-part objective which is the sum of the

surrogate cost ℓ and some regularizer ℓreg:

J =


ℓ

(
st ⊗m E [Sm(σa(xt))⊗m T Sm(x0, st, σa(xt))]

)
surrogate cost

+ ℓreg

(
E [T Sm(x0, st, σa(xt))]

)
regularizer

(5.4.1)

where the path σa(xt) is traced by the optimization variable a := (a0, a1, . . . aN−1), and

T Sm : X ×Tm(X )×Σ→ Tm(X ) is the terminal S-function that may be defined arbitrarily

(as an analogy to terminal value in Bellman equation based MPC; see Appendix A.3.1).

Terminal S-function returns the signature of the terminal path-to-go. For the tracking

problems studied in this work, we define the terminal subpath (path-to-go) as the final

portion of the reference path starting from the closest point to the end-point of roll-out.

This choice optimizes for actions up until the horizon anticipating that the reference path

can be tracked afterward. We observed that this choice worked the best for simple classical

examples analyzed in this work.

Error explosion along time steps: We consider robustness against misspecification of

dynamics. Figure 5.3 (right) shows an example where the dashed red line is the ground truth

trajectory with the true dynamics. When there is an approximation error on the one-step

dynamics being modeled, the trajectory deviates significantly (black dashed line). On the

other hand, when the same amount of error is added to each term of signature, the recovered

path (blue solid line) is less erroneous. This is because signatures capture the entire (future)

trajectory globally.

Computations of signatures: We compute the signatures through the kernel computa-

tions using an approach in [214]. We emphasize that the discrete points we use for computing

the signatures of (past/future) trajectories are not regarded as waypoints, and their place-

ment has negligible effects on the signatures as long as they sufficiently maintain the “shape”
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of the trajectories.

5.5 Experimental results

We conduct experiments on both simple classical examples and simulated robotic tasks (see

Figure 5.6). We also present the relation of a specific instance of signature control to the

classical integral control to show its robustness against disturbance. For more experiment

details, see Appendix A.3.2.

Simple point-mass: We use double-integrator point-mass as a simple example to demon-

strate our approach. In this task, a point-mass is controlled to reach a goal position while

avoiding the obstacle in the scene. We first generate a collision-free path via RRT* [122]

which is suboptimal in terms of tracking speed (taking 72 seconds). We then employ our

signature MPC to follow this reference by producing the actions (i.e. accelerations).

Specifically, define X := [0, 100]× [0, 100]× [0, 5]× [0, 5]. The dynamics is approximated

by the Euler approximation:

[pt+1, vt+1] = PX [pt + vt∆t, vt + at∆t] ,

where p is the 2D position and v is the 2D velocity and PX : R4 → X is the orthogonal

projection.

A feasible reference path for the obstacle avoidance goal reaching task is generated by

RRT* with local CEM planner (wiring of nodes is done through CEM planning with some

margin). The generated reference path is shown in Figure 5.4 (left).

The reference path is then splined by using natural cubic spline (illustrated in Fig-

ure 5.5; using package (https://github.com/patrick-kidger/torchcubicspline)); using

only the path over positions (2D path), we run signature MPC. The time duration of each

action is also optimized at the same time. For comparison we also run an MPC with zero

terminal S-function case. Note we are using RBF kernel for signature kernels, which makes

this terminal S-function choice less unfavorable.
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Figure 5.4: Left: Suboptimal feasible path generated by RRT* with local CEM planner.
Middle: Signature MPC with zero terminal S-function. Purple one is the splined reference
path and the green one is the executed one. Right: Signature MPC with the best choice of
terminal S-function.

Figure 5.4 (middle) shows the zero terminal S-function case; which tracks well but with

slight deviation. Figure (right) shows that of the best choice of terminal S-function.

We see that the adoption of signature control results in a better tracking speed (taking

around 30 seconds) while matching the trajectory shape.

Two-mass, spring, damper system: To view the integral control [126] within the scope

of our proposed signature control formulation, recall a second depth signature term corre-

sponding to the surface surrounded by the time axis, each of the state dimension, and the

path, represents each dimension of the integrated error. In addition, a first depth signa-

ture term with the initial state x0 represents the immediate error, and the cost c may be a

weighted sum of these two. To test this, we consider two-mass, spring, damper system; the

disturbance is assumed zero for planning, but is 0.03 for executions.

Our continuous-time system of two-mass, spring, damper system is given by

v̇1 = −(k1 + k2)p1
m1

− (b1 + b2)v1
m1

+
k2p2
m1

+
b2v2
m1

+
a1
m1

+ w1,

v̇2 =
k2p1
m2

+
b2v1
m2

− k2p2
m2

− b2v2
m2

+
a2
m1

+ w2,
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Figure 5.5: Illustrations of natural cubic spline. We down-sampled the reference path with
skip number 10. Then, with weight w = 0.5, step size 0.01, using Adam optimizer, we
optimized the path to obtain a spline with iteration number 150. Note S here indicates
spline, not signatures.

Table 5.1: Parameters for two-mass, spring, damper system.

k1 = 2.0 b1 = 0.05 m1 = 1.0

k2 = 1.0 b2 = 0.05 m2 = 2.0

where u1, u2 ∈ [−1, 1] are control inputs, and ws are disturbances. The actual parameters

are listed in Table 5.1. We augment the state with time that obviously follows ṫ = 1.

We compare signature MPC where the cost is the squared Euclidean distance between

the signatures of the reference and the generated paths with truncation up to the first and

the second depth.

On the other hand, to test traditional P and PI controls, we obtain an approximation of

the time derivative of signatures by

∂S2(σt)

∂t
≈ S2(σt ∗ σt,t+∆t)− S2(σt)

∆t
,
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Figure 5.6: (Left two; Ant) Tracking behaviors of signature control (left) and baseline MPC
(right) for the same reaching time, where green lines are the executed trajectories. (Right
two; Robotic arm): Tracking behaviors of signature control (left) and baseline MPC (right)
under disturbance −30.

where σt is the path from time 0 to t, and σt,t+∆t is the linear path between the current

state and the next state (after ∆t), and ∆t = 0.1 is the discrete time interval. By further

augmenting the state with signature S2(σt), we compute the linearized dynamics around the

point p = v = 02 and the unit signature.

P control (the state includes velocities, so it might be viewed as PD control) is obtained

by computing the optimal gain for the system over p and v by using the cost p⊤p + v⊤v +

0.01u⊤u. For PI control, we use the linearized system over p, v and s2,5, s2,15 (corresponding

to integrated errors for p1 and p2), and the cost is p⊤p + v⊤v + s22,5 + s22,15 + 0.01u⊤u.

We added −0.0001I to the linearized system to ensure that the python control package

(https://github.com/python-control/python-control) returns a stabilizing solution.

The unknown constant disturbance is assumed zero for planning, but is 0.03 (on both

acceleration terms) for executions; the plots are given in Figure 5.7. Our signature MPC re-

flects the well-known behaviors of P control and PI control. As expected, the black line (first

depth) does not converge to zero error state while the blue line (second depth) does. If we

further include other signature terms, signature control effectively becomes a generalization

of integral controls, which we will see for robotic arm experiments later.
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Ant path tracking: In this task, an Ant robot is controlled to follow a “2”-shape reference

path. The action being optimized is the torque applied to each joint actuator. We test the

tracking performances of signature control and baseline standard MPC on this problem.

Also, we run soft actor-critic (SAC) [94] RL algorithm where the state is augmented with

time index to manage waypoints and the reward (negative cost) is the same as that of the

baseline MPC. For the baseline MPC and SAC, we equally distribute 880 waypoints to be

tracked along the path; here time stamp is determined by equally dividing the total tracking

time achieved by signature control. Table 5.2 compares the mean/variance of deviation

(measured by distance in meter) from the closest of 2000 points over the reference, and

Figure 5.6 (left) shows the resulting behaviors of MPCs, showing significant advantages of

our method in terms of tracking accuracy. The performance of SAC RL is insufficient as we

have no access to sophisticated waypoints over joints (see [198] for the discussion). When

more time steps are used, baseline MPC becomes a bit better. Note our method can tune

the trade-off between accuracy and progress through regularizer.

Robotic manipulator path tracking: In this task, a robotic manipulator is controlled

to track an end-effector reference path. Similar to the Ant task, 270 waypoints are equally

sampled along the reference path for the baseline MPC method and SAC RL to track. To

show robustness of signature control against unknown disturbance (torque: N ·m), we test

different scales of disturbance force applied to each joint of the arm. The means/variances

of the tracking deviation of the three approaches are reported in Table 5.3 and the tracking

paths are visualized in Figure 5.6 (right). For all cases, our signature control outperforms

the baseline MPC and SAC RL, especially the difference becomes much clearer when the

disturbance becomes larger. This is because the signature MPC is insensitive to waypoint

designs but rather depends on the “distance” between the target and the rollout paths in

the signature space, making the tracking speed adaptive.

Computation: For all of the experiments, we used the computer with
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Table 5.2: Results on path following with an ant robot model. Comparing signature control,
and baseline MPC and SAC RL with equally assigned waypoints. “Slow” means it uses more
time steps than our signature control for reaching the goal.

Deviation (distance) from reference

Mean (10−2m) Variance (10−2m) # waypoints goal

signature control 21.266 6.568 N/A success

baseline MPC 102.877 182.988 880 fail

SAC RL 446.242 281.412 880 fail

baseline MPC (slow) 10.718 5.616 1500 success

baseline MPC (slower) 1.866 0.026 2500 success

• Ubuntu 20.04.3 LTS

• Intel(R) Core(TM) i7-6850K CPU 3.60GHz (max core 12)

• RAM 64 GB/ 1 TB SSD

• GTX 1080 Ti (max 4; we used the same GPU for all of the experiments)

• GPU RAM 11 GB / CUDA 10.1

The computation time for each (seed) run for any of the numerical experiments was around

30 mins to 1− 2 hours (MPC problems). For small analysis experiments, it took less than a

few minutes for each one.
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5.6 Chapter summary and discussion

This work presented signature control, a novel framework that generalizes value-based dy-

namic programming to reason over entire paths through Chen equation. There are many

promising avenues for future work (which are relevant to the current limitations of our work),

such as developing a more complete theoretical understanding of guarantees provided by the

signature control framework, and developing additional RL algorithms that inherit the ben-

efits of our framework.

In fact, we did not provide an analogue of policy/value iteration algorithms in our sig-

nature control framework; and a set of conditions required to apply similar arguments (i.e.,

contraction mapping and fixed point arguments) used in value iteration to our generalized

framework or otherwise a novel technical approach to show convergence to certain suboptimal

solutions with error bounds has not yet been addressed.

Furthermore, when studying Itô diffusion models of dynamical systems, the Hamilton-

Jacobi-Bellman-Isaacs (HJBI) equation is typically employed to tackle stochastic optimal

control problems. As our Chen equation relies on path signatures that may not be properly

defined for a path of unbounded variation, connecting Chen equation to the HJBI equation

would require additional insights and technical innovations.

Finally, although the MPC algorithms we proposed to use in this chapter for both signa-

ture control and for the traditional Bellman-based (waypoint-based) control have exhibited

almost the same computational run time, we did not test them in the real robotics systems.

Devising real-time MPC algorithm tailored to signature control is required to lift our work

to the level of practical significance.
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Figure 5.7: Two-mass spring, damper system. Solid lines are for the position and velocity of
the first mass, and dashed lines are for the second mass. Black lines are without the second
depth signatures, and the blue lines are with the elements of the second depth signatures
corresponding to the integrated errors. Top: P control and PI control under no disturbance.
Middle: Signature MPCs using signatures up to depth 1 and 2 under no disturbance case;
both converge to the zero state well. Down: Signature MPCs under unknown disturbances;
the one up to depth 2 converges to zero state while the one up to depth 1 does not because
the depth 2 signature terms correspond to the integrated errors to mimic PI controls.



109

Table 5.3: Results on path tracking with a robotic manipulator end-effector. Comparing
signature control, and baseline MPC and SAC RL with equally assigned waypoints under
unknown fixed disturbance.

Deviation (distance) from reference

Disturbance (N ·m) Mean (10−2m) Variance (10−2m)

+30 1.674 0.002

+20 1.022 0.002

+10 0.615 0.001

signature control ±0 0.458 0.001

−10 0.605 0.001

−20 0.900 0.001

−30 1.255 0.002

+30 2.648 0.015

+20 1.513 0.010

+10 0.828 0.005

baseline MPC ±0 0.612 0.007

−10 1.407 0.013

−20 3.408 0.078

−30 5.803 0.209

+30 15.669 0.405

+20 10.912 0.224

+10 6.252 0.102

SAC RL ±0 3.853 0.052

−10 6.626 0.243

−20 12.100 0.557

−30 16.019 0.743
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Chapter 6

ALGORITHM DESIGN AT THE INTERSECTION OF
STATISTICAL ML AND DYNAMICAL SYSTEMS

Chapter’s key takeaways� �
This chapter presents the dynamic structure estimation problems for periodically be-

haved discrete dynamical system in the Euclidean space. The observations become se-

quentially available in a form of bandit feedback contaminated by a sub-Gaussian noise.

To avoid losing the periodic structural information through concentration of measures,

asymptotic lower bound results of exponential sums are applied to devise an estimation

algorithm with statistical sample complexity guarantees. When the dynamics is linear,

the Weyl sum, a variant of exponential sums studied in number theory community, is

adopted. In this process, mathematical concepts, nearly period, and (θ, k)-distinct eigen-

values, are proposed out of necessity. Our algorithms are shown to correctly work in

practical simulations.� �
6.1 Introduction

System identification has been of great interest in controls, economics, and statistical machine

learning (cf. [247, 246, 142, 145, 119, 190, 165, 223, 71, 97, 222, 146]). In particular,

estimations of periodic information, including eigenstructures for linear systems, under noisy

and partially observable environments, are essential to a variety of applications such as

biological data analysis (e.g., [105, 226, 274]; also see [88] for how gene oscillation affects

differentiation of cells), earthquake analysis (e.g., [204, 213, 264]; see [15] for the connections

of the frequencies and magnitude of earthquakes), chemical/asteroseismic analysis (e.g., [6]),

and communication and information systems (e.g., [69, 76]), just to name a few.
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Specifically, providing statistical guarantees for extractions of periodic information un-

der perturbations following a general distribution is quite fundamental as it is connected to

the information theory of communication capacities. Indeed, there has been an interest of

studying novel paradigms for coding, transmitting, and processing information sent through

optical communication systems [249]. When signals are coded digitally, erroneous signal

transmission is no longer modeled with a simple Gaussian distribution. In fact, if the ob-

servation is contaminated by a noise following a more general distribution, a concentration

of measures should be adopted (cf. [219]); and this approach suffers from a risk of making

structural information of the underlying dynamics vanish as well.

In this chapter, we tackle this periodic structure estimation problem for nearly period-

ically behaved discrete dynamical systems (cf. [24]; we allow systems that are not exactly

periodic) with sequentially available bandit feedback. Due to the presence of noise and

partial observability, our problem setups do not permit the recovery of the full set of pe-

riod/eigenvalues information in general; as such we ask the following question: what subset

of information on dynamic structures can be statistically efficiently estimated? This chapter

successfully answers this question by identifying and mathematically defining recoverable

information, and proposes algorithms for efficiently extracting such information.

The technical novelty of our approach is highlighted by the careful adoption of the asymp-

totic bounds on the exponential sums that effectively cancel out noise effects while preserving

the information to be estimated. When the dynamics is driven by a linear system, the use

of the Weyl sum [260], a variant of exponential sums, enables us to extract more detailed

information. To our knowledge, this is the first attempt of employing asymptotic results of

the Weyl sum for statistical estimation problems, and further studies on the relations be-

tween statistical estimation theory and exponential sums (or even other number theoretical

results) are of independent interests.

Contributions. The contributions of this work are three folds: (1) mathematically iden-

tify and define a recoverable set of periodic/eigenvalues information when the observations
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are available in a form of bandit feedback (the feedback is contaminated by a sub-Gaussian

noise, which is more general than those usually considered in system identification work), (2)

present provably correct algorithms for efficiently estimating such information; this consti-

tutes the first attempt of adopting asymptotic results on the Weyl sum, (3) and implement

our algorithms for toy examples to experimentally validate our claims.

6.2 Problem setups

In this section, we present our dynamical system model followed by some definitions on the

properties of dynamical system and our problem setups.

6.2.1 Dynamic structure in bandit feedback

We define D ⊂ Rd as a (finite or infinite) collection of arms to be pulled. Let (ηt)
∞
t=1 be a

noise sequence. Let Θ ⊂ Rd be a set of latent parameters. We assume that there exists a

dynamical system f on Θ, equivalently, a map f : Θ→ Θ. At each time step t ∈ {1, 2, . . .},

a learner pulls an arm xt ∈ D and observes a reward

rt(xt) := f t(θ)⊤xt + ηt,

for some θ ∈ Θ. In other words, the hidden parameters for the rewards may vary over time

but follow only a rule f with initial value θ. The function rt could be viewed as the specific

instance of partial observation (cf. [152]).

6.2.2 Nearly periodic sequence

Before delving into the setups, we define a general notion of nearly periodic sequence:

Definition 6.2.1 (Nearly periodic sequence). Let (X , d) be a metric space. Let µ ≥ 0 and

let L ∈ Z>0. We say a sequence (yt)
∞
t=1 ⊂ X is µ-nearly periodic of length L if d(ys+Lt, ys) < µ

for any s, t ∈ Z>0. We also call L the length of the µ-nearly period.
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Figure 6.1: Illustration of nearly periodic sequence; it is of L = 3.

Intuitively, there exist L balls of diameter µ in X and the sequence y1, y2, . . . moves in

the balls in order if (yt)
∞
t=1 is µ-nearly periodic of length L (see Figure 6.1). Obviously, nearly

periodic sequence of length L is also nearly periodic sequence of length mL for any m ∈ Z>0.

We say a sequence is periodic if it is 0-nearly periodic. We introduce a notion of aliquot

nearly period to treat estimation problems of period:

Definition 6.2.2 (Aliquot nearly period). Let (X , d) be a metric space. Let ρ > 0 and

λ ≥ 1. Assume a sequence {yt}∞t=1 ⊂ X is µ-nearly periodic of length L for some µ ≥ 0 and

L ∈ Z>0. A positive integer ℓ is a (ρ, λ)-aliquot nearly period ((ρ, λ)-anp) of (yt)
∞
t=1 if ℓ|L

and the sequence (yt)
∞
t=1 is (ρ+ 2λµ)-nearly periodic.

We may identify the (ρ, λ)-anp with a 2λµ-nearly period under an error margin ρ. When

we estimate the length L of the nearly period of unknown sequence (yt)t, we sometimes

cannot determine the L itself, but an aliquot nearly period.

Example 6.2.1. A trajectory of finite dynamical system is always periodic and it is the

most simple but important example of (nearly) periodic sequence. We also emphasize that

if we know the upper bound of the number of underlying space, the period is bounded above

by the upper bound as well. These facts are summarized in Proposition 6.2.1. The cellular

automata on finite cells is a specific example of finite dynamical systems. We will treat

LifeGame [66], a special cellular automata, in our simulation experiment (see Section 6.4).
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Proposition 6.2.1. Let f : Θ→ Θ be a map on a set Θ. If |Θ| <∞, then for any t ≥ |Θ|

and θ ∈ Θ, f t+L(θ) = f t(θ) for some 1 ≤ L ≤ |Θ|.

Proof. Since |{θ, f(θ), . . . , f |Θ|(θ)}| > |Θ|, there exist 0 ≤ i < j ≤ |Θ| such that f i(θ) = f j(θ)

by the pigeon hole principal. Thus, f t(θ) = f j−i+t(θ) for all t ≥ |Θ|.

If a linear dynamical system generates a nearly periodic sequence, we can show the linear

system has a specific structure as follows:

Proposition 6.2.2. Let M : Rd → Rd be a linear map. Let Cd = ⊕αVα be the decomposition

via generalized eigenspaces ofM , where α runs over the eigenvalues ofM and Vα := N ((αI−

M)d). Assume that there exists µ ≥ 0, for any θ ∈ Rd, (M tθ)∞t=t0 is µ-nearly periodic for

some t0 ∈ N. Let θ =
∑

α θα ∈ ⊕αVα. Then, each eigenvalue α such that θα ̸= 0 satisfies

|α| ≤ 1, in addition, if |α| = 1 and θα ̸= 0, Mθα = αθα.

Proof. We note that {M tv}t≥0 is bounded for any v ∈ Rd by the assumption on M . Thus,

M cannot have an eigenvalue of magnitude greater than 1. We show that α is in the form of

α = ei2πq for some q ∈ Q if |α| = 1. Suppose that α = ei2πγ for an irrational number γ ∈ R.

Then, for an eigenvector w for θα with ∥w∥Rd > µ, {M tw}t>t0 cannot become a µ-periodic

sequence. Thus, we conclude α = ei2πq for some q ∈ Q. Next, we show Mθα = αθα if |α| = 1

and θα ̸= 0. Suppose (M − αI)θα ̸= 0. Since (M − αI)dθα = 0, there exists 1 ≤ d′ < d such

that (M − αI)d
′+1θα = 0 but (M − αI)d

′
θα ̸= 0. Let w′ := (M − αI)d

′−1θα. Then, we see

that (M − αI)2w′ = 0 but (M − αI)w′ ̸= 0. By direct computation, we see that

∥M tw′∥Rd = ∥(M − αI + αI)tw′∥Rd ≥ t∥(M − αI)w′∥Rd − ∥w′∥Rd .

Thus, we have ∥M tw′∥Rd → ∞ as t → ∞, which contradicts the fact that {M tw′}t≥0 is a

bounded sequence. The last statement is obvious.

Let W be a linear subspace of Cd generated by the trajectory {Mθ,M2θ, . . . } and denote

dim(W ) by d0. Note that restriction of M to W induces a linear map from W to W . We

denote by Mθ the induced linear map from W to W . Let W = ⊕α∈ΛWα be the decomposition
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via the generalized eigenspaces of Mθ, where Λ is the set of eigenvalues of Mθ and Wα :=

N ((αI −Mθ)
d0). We define

W=1 := ⊕|α|=1Wα,

W<1 := ⊕|α|<1Wα.

Then, we have the following statement as a corollary of Proposition 6.2.2:

Corollary 6.2.3. There exist linear maps M1,M<1 : W → W such that

1. Mθ = M1 +M<1,

2. M1M<1 = M<1M1 = O,

3. M1 is diagonalizable and any eigenvalue of M1 is of magnitude 1, and

4. any eigenvalue of M<1 is of magnitude smaller than 1.

Proof. Let p : W → W=1 be the projection and let i : W=1 → W be the inclusion map. We

define M1 := iMθp. We can construct M<1 in the similar manner and these matrices are

desired ones.

Example 6.2.2. Let G be a finite group and let ρ be a finite dimensional representation of

G, namely, a group homomorphism ρ : G → GLm(C), where GLm(C) is the set of complex

regular matrices of size m. Fix g ∈ G. Let B ∈ Cn×n be a matrix whose eigenvalues have

magnitudes smaller than 1. We define a matrix of size m+ n by

M :=

 ρ(g) 0

0 B

 .
Then, (M tx)∞t=t0 is a µ-nearly periodic sequence for any µ > 0, x ∈ Cm, and sufficiently

large t0. Moreover, we know that the length of the nearly period is |G|. We treat the

permutation of variables in Rd in the simulation experiment (see Section 6.4), namely the

case where G is the symmetric group Sd and ρ is a homomorphism from G to GLd(C) defined

by ρ(g)((xj)
d
j=1) := (xg(j))

d
j=1, which is the permutation of variable via g.
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6.2.3 Problem setting

Here, we state our problem settings. We use the notation introduced in the previous sections.

First, we summarize our technical assumptions as follows:

Assumption 6.2.4 (Conditions on arms). The set of arms D contains the unit hypersphere.

Assumption 6.2.5 (Assumptions on noise). The noise sequence {ηt}∞t=1 is conditionally

R-sub-Gaussian (R ∈ R≥0), i.e., given t,

∀λ ∈ R, E
[
eληt |Ft−1

]
≤ e

λ2R2

2 ,

and E[ηt|Ft−1] = 0, Var[ηt|Ft−1] ≤ R2, where {Fτ}τ∈N is an ascending family and we assume

that x1, . . . , xτ+1, η1, . . . , ητ are measurable with respect to Fτ .

Assumption 6.2.6 (Assumptions on dynamical systems). There exists µ > 0 such that for

any θ ∈ Θ, the sequence (f t(θ))∞t=t0 is µ-nearly periodic of length L for some t0 ∈ N. We

denote by Bθ the radius of the smallest ball containing {f t(θ)}∞t=0.

Remark 6.2.7. Assumption 6.2.4 excludes the lower bound arguments of the minimally

required samples for this proposed work since taking sufficiently large vector (arm) makes

the noise effect negligible. Considering more restrictive conditions for discussing lower bounds

is out of scope of this chapter.

Then, our questions are described as follows:

• Can we estimate the length L from the collection of rewards (rt(xt))
T
t=1 efficiently ?

• If we assume the dynamical system is linear, can we further obtain the eigenvalues of

f from a collection of rewards ?

• How many samples do we need to provably estimate the length L or eigenvalues of f ?

We will answer these questions in the following sections and via simulation experiments.
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6.3 Algorithms and theory

With the above settings in place, we present a (computationally efficient) algorithm for each

presented problem, and show its sample complexity for estimating certain information.

6.3.1 Period estimation

Here, we describe an algorithm for period estimation followed by its theoretical analysis.

The overall procedure is summarized in Algorithm 4. To analyze the sample complexity of

this estimation algorithm, we first introduce an exponential sum that plays a key role:

Definition 6.3.1. For a positive rational number q ∈ Q>0 and T complex numbers a1, . . . , aT ∈

C, we define

R
(
(at)

T
t=1; q) :=

1

T

T∑
j=1

aje
i2πqj.

For a µ-nearly periodic sequence a := (at)
∞
t=1 of length L, we define the supremum of the

standard deviations of the L sequential data of a:

σL(a) := sup
t0≥1

√√√√ 1

L

t0+L−1∑
t=t0

∣∣∣∣∣at − 1

L

t0+L−1∑
j=t0

aj

∣∣∣∣∣
2

.

The exponential sum R(·; ·) can extract a divisor of the nearly period of a µ-nearly periodic

sequence if µ is “sufficiently smaller” than the variance of the sequence even when the

sequence is contaminated by noise; more precisely, we have the following lemma:

Lemma 6.3.1. Let a := (aj)
∞
j=1 be a µ-nearly periodic sequence of length L. Then, we have

the following statements:

1. if L > 1, then there exists s ∈ Z>0 with s < L such that

∣∣R ((aj)Tj=1; s/L
)∣∣ >√σ2 − 2µσ

L
− µ−

L supt≥1 |at|
T

, (6.3.1)
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Algorithm 4 Period estimation (DFT)

Input: Current time t0 ∈ Z>0; Tp; ϵ > 0; Lmax > 1; orthogonal basis {u1, . . . ,ud} of Rd

Output: Estimated length L̂

1: ℓ← 1; β ← 1

2: for m = 1, . . . , d do

3: for t = t0, t0 + 1, . . . , t0 + Tp − 1 do

4: Sample arm um and observe rt(um)

5: end for

6: while ℓ · β ≤ Lmax do

7: ℓ← ℓ+ 1

8: for (s, b) = (0, 1), (0, 2), . . . , (0, ℓ− 1), (1, 1), (1, 2), . . . , (β − 1, ℓ− 1) do

9: if
∣∣∣R((rt0+s+βt(um))

⌊Tp/β⌋
t=1 ; b/ℓ

)
}
∣∣∣2 > ϵ then

10: β ← βℓ

11: ℓ← 1

12: Break

13: end if

14: end for

15: end while

16: t0 ← t0 + Tp

17: end for

18: L̂← β

2. if β is not a divisor of L, then for any α ∈ Z>0,∣∣R ((aj)Tj=1;α/β
)∣∣ < µ+

L2C0(µ+ supt≥1 |at|)
T

, (6.3.2)

where C0 := 1 + 2/
√

2π(3/4)π
2/6 = 1.72257196806914....

Proof. As (at)
∞
t=1 is µ-almost periodic, there exist (bt)

∞
t=1 of period L and (ct)

∞
t=1 with

supt≥1 |ct| < µ such that at = bt + ct.
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First, we prove (6.3.1). Let

b̃ :=
1

L

L∑
t=1

bt, b̂q :=
1

L

L∑
t=1

bte
i2πtq, (q ∈ Q).

We claim that

L · sup{|b̂s/L|2}L−1
s=1 >

L−1∑
s=1

|b̂s/L|2 =
1

L

L∑
t=1

|bt − b̃|2 ≥ σ2 − 2µσ. (6.3.3)

In fact, the first inequality is obvious. The equality follows from the Plancherel formula for

a finite abelian group (see, for example, [218, Excercise 6.2]). As for the last inequality, take

arbitrary t0 ∈ Z>0 and define ã = L−1
∑t0+L−1

t=t0
at and c̃ = L−1

∑t0+L−1
t=t0

ct. Then, we have

1

L

L∑
t=1

|bt − b̃|2 ≥
1

L

t0+L−1∑
t=t0

|at − ã|2 +
1

L

t0+L−1∑
t=t0

|ct − c̃|2 −
2

L

t0+L−1∑
t=t0

|at − ã| · |ct − c̃|

≥ 1

L

t0+L−1∑
t=t0

|at − ã|2 +
1

L

t0+L−1∑
t=t0

|ct − c̃|2

− 2

√√√√ 1

L

t0+L−1∑
t=t0

|at − ã|2 ·

√√√√ 1

L

t0+L−1∑
t=t0

|ct − c̃|2

≥ 1

L

t0+L−1∑
t=t0

|at − ã|2 − 2µσ.

Here, we used the Cauchy-Schwartz inequality in the second inequality. Since t0 is arbitrary,

we have (6.3.3). Let s ∈ argmaxs=1,...,L−1|b̂s/L|2 and let q := s/L. Let T = LT ′ + γ for some

T ′, γ ∈ N with 0 ≤ γ < L. Then, we have

∣∣R ((aj)Tj=1; q
)∣∣ ≥ ∣∣∣∣∣ 1

T ′

T ′−1∑
t=0

[
1

L

L∑
s=1

aLt+se
i2πqs

]∣∣∣∣∣− L supt≥1 |at|
T

> |b̂q| − µ−
L supt≥1 |at|

T

≥
√
σ2 − 2µσ

L
− µ−

L supt≥1 |at|
T

.
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Next, we prove (6.3.2). As in the same computation as above, we have

∣∣R ((aj)Tj=1;α/β
)∣∣ ≤ LT ′

T

∣∣∣∣∣ 1

T ′

T ′−1∑
t=0

ei2παLt/β

[
1

L

L∑
s=1

aLt+se
i2παs/β

]∣∣∣∣∣+
L supt>0 |at|

T

<
LT ′

T

∣∣∣∣∣ 1

T ′

T ′−1∑
t=0

ei2παLt/β

∣∣∣∣∣ ·
∣∣∣∣∣ 1L

L∑
s=1

bse
i2παs/β

∣∣∣∣∣+ µ+
L supt>0 |at|

T

<
2

|1− ei2παL/β|
·
(
µ+ sup

t≥1
|at|
)
· L
T

+ µ+
L supt>0 |at|

T
.

Since |1− ei2πa| ≥
√

2(1− a2)π2/6a for a ∈ (0, 1) by [61, Proposition 3.2], we have

∣∣R ((aj)Tj=1;α/β
)∣∣ < (µ+ sup

t≥1
|at|
)

2βL√
2(3/4)π2/6T

+ µ+
L supt≥1 |at|

T

< µ+
LβC0(µ+ supt≥1 |at|)

T
.

Then, we obtain the explicit lower bound of the samples for period estimation:

Proposition 6.3.2. Let a := (at)
∞
t=1 be a µ-nearly periodic sequence of length L. Fix a

positive integer Lmax > 1 with L ≤ Lmax, δ ∈ (0, 1), ξ ∈ (0, 1), and σ0 > 0. Let (ηt)
∞
t=1 be a

noise sequence satisfying Assumption 6.2.5. Put γ := 1/(1+
√

4Lmax + 1) and λ := µ/(σ0γ).

We define

ε := σ0γξ.

If µ/(γξ) < σ0 ≤ σL(a), then, for any

T ≥ 8LmaxR
2 log(4/δ)

σ2
0(ξ − λ)2

+
36L

5/2
max supt≥1 |at|
σ0(ξ − λ)

,

the set of rational numbers

ST,ε :=
{
q ∈ Q ∩ (0, 1) : qL ∈ Z>0 and

∣∣R ((at + ηt)
T
t=1; q

)∣∣ > ε
}

is nonempty with probability at least 1− δ.
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If we apply several collections of rewards (rt(xt))
T
t=1 for sufficiently large T indicated in

Proposition 6.3.2, we obtain various divisors of L. Finally, we provide the precise inputs and

output of Algorithm 4 in the following Theorem:

Theorem 6.3.3. Suppose Assumptions 6.2.4, 6.2.5 and 6.2.6 hold. Let r ∈ [0, 1) be a

nonnegative real number, and suppose ρ > 0 and δ ∈ (0, 1) are given. Fix a positive integer

Lmax > 1 with L ≤ Lmax. We define

ε :=
ρ

6
√
dLmax

. (6.3.4)

Assume that rε ≥ µ. Let Tp be an integer satisfying

Tp ≥
72dAL2

max

ρ2(1− r)2
+

108Bθ

√
dL3

max

ρ(1− r)
, (6.3.5)

where A := R2 log(4dL2
max logLmax/δ). Then, the output L̂ of Algorithm 4 is a (ρ,

√
d)-anp

of (f t(θ))∞t=t0 with probability at least 1− δ.

If µ is sufficiently small, we may set r as a small positive number, in particular r = 0 if

the system is periodic.

Remark 6.3.4. If random arm selection is adopted rather than the orthogonal basis, it may

underestimate an error margin on some dimensions, which could lead to the nearly period

with much larger error margin than expected; considering failure probability of such a case

may potentially produce a variant of our algorithm.

6.3.2 Eigenvalue estimation

If the underlying system has certain structures, more detailed information about the system

is expected to be obtained. In this section, we assume the following condition, linearity of

the underlying dynamical system f on Θ, in addition to Assumption 6.2.4, 6.2.5, and 6.2.6:

Assumption 6.3.5 (Linear dynamical systems). The dynamical system f : Θ→ Θ is linear

and is represented by a matrix M ∈ Rd×d.
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Let Cd = ⊕αVα be the decomposition via generalized eigenspaces of M , where α runs

over the eigenvalues of M and Vα := N ((αI −M)d). We describe θ =
∑

α θα with θα ∈ Vα.

We remark that an eigenvalue α of M such that θα ̸= 0 is in the form of e2πiℓ/L unless |α| < 1

by Proposition 6.2.2.

Our objective is to estimate some of, if not all of, the eigenvalues of M with high prob-

ability within some error that decreases by the sample size. To this end, we define the

meaningful subset of eigenvalues of M .

Definition 6.3.2 ((θ, k)-distinct eigenvalues). For a vector θ ∈ Cd and k ∈ Z>0, we define

a (θ, k)-distinct eigenvalue by an eigenvalue β of Mk such that |β| = 1 and θβ ̸= 0.

In our case, starting from a vector θ, the effect of the eigenvalues that are not of (θ, d)-

distinct eigenvalues of M may not be observable. Basically, once being able to ignore the

effects of eigenvalues of magnitudes less than 1, the system becomes nearly periodic and we

aim at estimating (θ, d)-distinct eigenvalues as we obtain more samples.

Our eigenvalue estimation algorithm is summarized in Algorithm 5; it maintains the

following matrices. For N ∈ Z>0, d random unit vectors x̃1, . . . , x̃d, and s = 0, 1, we define

the matrix As(N) ∈ Cd×d so that its (k, ℓ) element is given by

N−1∑
j=0

r2(k−1)d+sd+2d2j+N+ℓ(x̃k)e
i2πj2

4L . (6.3.6)

That is, after N steps, the reward multiplied by exp(i2πj2/4L) is placed from the top row

of A0 and then the top row of A1, followed by the second rows of them, and so on. Then,

those values are summed up for every 2d2 steps or every jth cycle. Here, after throwing

away N samples, the effects of eigenvalues of magnitude less than 1 become negligible, and

the trajectory becomes nearly periodically behaved under Assumption 6.3.5. The rest of

the samples is used to average out the observation noise while maintaining some meaningful

information about M .

The aforementioned exponential sum can be characterized by the Weyl-type sum of ma-

trices, a key machinery for our algorithm, which we define below:
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Algorithm 5 Eigenvalue estimation

Input: Effective sample size N ∈ Z>0; threshold γ(N)

Output: Matrix A1(N)Â0(N)+

1: Independently draw random unit vectors x̃m, m ∈ {1, . . . , d}, from uniform distribution

over the unit sphere in Rd.

2: Wait N time steps.

3: for t = N + 1, · · · , N + 2Nd2 do

4: m0 ← {(t−N − 1) mod 2d2}+ 1

5: m← ⌈m0/2d⌉

6: Sample arm xt = x̃m and observe r̃t := rt(x̃m).

7: end for

8: Construct matrices A0(N) and A1(N) as in (6.3.6), respectively.

9: Obtain the low rank approximation Â0(N) of A0(N) via SVD with the threshold γ(N).

10: Output A1(N)Â0(N)+.

Definition 6.3.3. Let W be a linear space and let M1, . . . ,MN for N ∈ Z>0 be linear maps

on W . For L ∈ Z>0, we define

W ((M1, . . . ,MN)) :=
1

N

N−1∑
j=0

Mj+1e
i2πj2

4L .

Remark 6.3.6. Let Es,n := (η2di+N+sd+j+1+2d2n)i,j=0,...,d−1 be a noise matrix for s = 0, 1.

Let

X :=


x̃⊤1M

1

x⊤2M
2d+1

...

x̃⊤dM
2(d−1)d+1

 and K := (Mθ, . . . ,Mdθ).

Then, As(N) has an alternative description as follows:

As(N) = XW
(

(M2d2j)N−1
j=0

)
M sd+N−1K + W

(
(Es,j)

N−1
j=0

)
. (6.3.7)
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As in Proposition 6.3.8 below, the Weyl-type sum has a crucial property. Define κ ≥ 1

by

κ := inf
P

{
∥P∥∥P−1∥ : P−1MP = JM

}
,

where JM is a Jordan normal form of M . Also, we define ∆ ∈ (0, 1] to be a value such that,

for any eigenvalue α of M satisfying |α| < 1, |α| ≤ 1−∆ (define ∆ = 1 if no such eigenvalue

exists). Note by Proposition 6.2.2, the existence of such spectral gap is guaranteed without

any further assumptions.

Roughly speaking, Algorithm 5 estimates “A1(N)A0(N)−1 = XMdX−1”. Of course, the

formula in “...” is not valid as X, K, and the Weyl-type sum are not necessarily invertible

and we cannot recover full information of Md in general. However, we can still reconstruct

information of Md restricted on the eigenspaces for (θ, d)-distinct eigenvalues.

To see this, we introduce the Weyl sum and its lower bound:

Lemma 6.3.7 (Lower bound on the Weyl sum [44, 187]). Define the Weyl sum by

W (N, b, q) :=
N∑
j=0

ei2π(j
2b
4q

+j2 1
4q ),

for some b ∈ N, q ∈ Z>0, b < q and N ∈ Z>0. Then, for N ≥ 16q2, it holds that

|W (N, b, q)| ∈ Ω

(
N
√
q

)
.

Proof. It is immediate from Proposition 3.1 in [187] because gcd(1, 4q) = 1, 4q ≡ 0 mod 4,

and 2b is even.

We define Cws(L) > 0 by

Cws(L) := inf

{
C > 0 : C−1 <

∣∣∣∣ 1

N
W (N, b, L)

∣∣∣∣ < C for any N ≥ 16L2, 0 ≤ b < L

}
.

Then, we have the following proposition:
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Proposition 6.3.8. Let M1 and M<1 be matrices as in Corollary 6.2.3. We define linear

maps on W by

QN(M1) := W
(

(M2d2j
1 )N−1

j=0

)
QN(M<1) := W

(
(M2d2j

<1 )N−1
j=0

)
.

Then, we have the following statements:

1. W
(

(M2d2j
θ )N−1

j=0

)
= QN(M1) +QN(M<1),

2. for any N ≥ 16L2, QN(M1) is invertible on W=1,

3. for any r ≥ 0 and for any N ≥ 16L2, ∥M r
1QN(M1)|W=1∥, ∥(M r

1QN(M1))|−1
W=1
∥ ≤

κCws(L),

4. for any r ≥ 2(d− 1), we have

∥M r
<1QN(M<1)∥ ≤

d2κe−∆(r−d+1)

N∆d−1
.

Proof. We prove 1. By the properties 1 and 2 in Corollary 6.2.3, we have W ((M2d2j)N−1
j=0 ) =

QN(M1) + QN(M<1). Next, we prove 2. When we regard QN(M1)|W=1 as a linear map

on W=1, it is represented as a diagonal matrix diag(W (N, b1, L), . . . ,W (N, bm, L)), where

m = dimW=1. Therefore, by Lemma 6.3.7, QN(M1) is a bijective linear map on W=1. Next,

we prove 3. We estimate ∥M r
1QN(M1)∥. Let p : Cd → W be the orthogonal projection and

let i : W → Cd be the inclusion map. Let M̃1 := iM1p ∈ Cd×d. Then, we have

∥QN(M1)∥ = ∥QN(M̃1)∥ ≤ κCws(L).

Next, we estimate ∥M r
<1QN(M<1)∥. Let M̃<1 := iM<1p. Then, iM r

<1QN(M<1)p =

W ((M̃2d2j+r
<1 )N−1

j=0 ) and ∥iM r
<1QN(M<1)p∥ = ∥M r

<1QN(M<1)∥. Let P be a regular matrix

such that

M̃<1 = PJP−1,
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where J is the Jordan normal form. Then, for r ≥ 2(d− 1), we see that

∥M r
<1QN(M<1)∥ = ∥iM r

<1QN(M<1)p∥

≤ κ

N

N−1∑
j=0

∥J2d2j+r∥ < d2κ

N

∞∑
j=0

(
2d2j + r

d− 1

)
(1−∆)2d

2j+r−d+1

≤ d2κ(1−∆)r−d+1

N∆d−1
≤ d2κe−∆(r−d+1)

N∆d−1
.

The second last inequality is proved as follows: for |a| < 1, n ≥ 1 and r ≥ m ≥ 0,∣∣∣∣∣
∞∑
j=0

(
nj + r

m

)
anj−m+r

∣∣∣∣∣ =

∣∣∣∣∣∣ 1

m!

dm

dxm

∞∑
j=0

xnj+r

∣∣∣∣∣
x=a

∣∣∣∣∣∣
≤ 1

m!

m∑
j=0

(
m

j

)
r!

(r −m+ j)!
|a|r−m+j

∣∣∣∣ djdxj 1

1− xn

∣∣∣∣
x=a

∣∣∣∣
≤ 1

m!

m∑
j=0

(
m

j

)
r!

(r −m+ j)!

j!|a|r−m+j

(1− |a|)j
=

m∑
j=0

(
r

j

)
|a|r−m+j

(1− |a|)j
,

where, the last inequality follows from∣∣∣∣ dmdxm 1

1− xn

∣∣∣∣ =

∣∣∣∣∣∑
ζn=1

m!ζ1−n

n(ζ − x)m

∣∣∣∣∣ ≤ m!

(1− |x|)m
.

Thus, we have

m∑
j=0

(
r

j

)
|a|r−m+j

(1− |a|)j
≤ |a|r−m

r∑
j=0

(
r

j

)(
|a|

1− |a|

)j
≤ |a|r−m

(1− |a|)m
.

Proposition 6.3.8 plays an essential role in our analysis and guarantees that the informa-

tion in As(N) about (θ, d)-distinct eigenvalues does not vanish while noise effects are canceled

out. Now, we state our main theoretical result for the eigenvalue estimation algorithm. To

this end, we introduce lower rank approximation via the singular value threshold.

Definition 6.3.4. Let A ∈ Cn×m be a matrix. Let A = U [D O]V † be a singular val-

ued decomposition of A where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and D :=
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diag(σ1, . . . , σr,o
⊤) is a diagonal matrix with nonnegative components. Let γ > 0. We

define a low rank approximation Aγ of A via the singular value threshold γ by the matrix

Aγ defined by Aγ = U [Dγ O]V †, where, Dγ := diag(1[γ,∞)(σ1)σ1, . . . ,1[γ,∞)(σr)σr,o
⊤) and

1I is defined to be the characteristic function supported on I ⊂ R.

Given this definition, we are ready to present the following main result:

Theorem 6.3.9. Suppose Assumptions 6.2.4, 6.2.5, 6.2.6, and 6.3.5 hold. Given δ ∈ (0, 1],

let the effective sample size

N ≥ max

{
16L2,

−(d− 1) log ∆

∆
+

log(Bθκ
2) + d+ 6

∆
+ d

}
, (6.3.8)

and γ(N) = (
√

4d2R2 log (4d2/δ) + 1)/
√
N . Then, there exists a matrix A whose eigenvalues

are zeros except for (θ, d)-distinct eigenvalues of M , such that the output of Algorithm 5, i.e.

A1(N)Â0(N)+, satisfies, with probability at least 1− δ, that∥∥∥A− A1(N)Â0(N)+
∥∥∥ ≤ C

(
R2 (log (1/δ) + 1) + 1√

N

)
. (6.3.9)

Here, Â0(N)+ is the Moore-Penrose pseudo inverse of a lower rank approximation of A0(N)

via the singular value threshold γ(N). The constant C > 0 depends on θ, M , d, (x̃m)dm=1,

and Cws(L).

We mention that by using the results shown in [227], the bound on spectral norm (6.3.9)

can be translated to the bounds on eigenvalues, where the constant depends on the form of

A. As described in Theorem 6.3.9, the constant is not the absolute constant for any problem

instance but depends on several factors; however, for the same execution, this rate is useful

to judge how many samples one collects to estimate eigenvalues.

Remark 6.3.10. We note that we can reconstruct the (θ, 1)-distinct eigenvalues of M via

Algorithm 5 using the following trick: Fix nonnegative integer r ≥ 0. Take d + r random

unit vectors x̃1, . . . , x̃d+r. Then, for s = 0, 1, we may define a matrix As(N ; r) ∈ C(d+r)×(d+r)

so that its (k, ℓ) element is given by

N−1∑
j=0

r2(k−1)(d+r)+s(d+r)+2(d+r)2j+N+ℓ(x̃k)e
i2πj2

4L .
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Figure 6.2: Left: Illustration of a period eight instance of LifeGame; (top) original transitions.
(down) an instance of noisy observation. Right: µ-nearly periodic dynamics (6.4.1).

Then, we see that Algorithm 5 outputs a matrix Ã(r) that well approximates the (θ, d+ r)-

distinct eigenvalues of M since the matrix As(N ; r) coincides with As(N) in the case when

we replace M and θ with M(r) and θ(r) defined by

M(r) :=

 M O

O O

 ∈ C(d+r)×(d+r), θ(r) :=

 θ

o

 ∈ Cd+r.

Let r be an integer such that r + d is prime to L and fix a positive integer m such that

m(r + d) ≡ 1 mod L. Then, the eigenvalues of Ã(r)m is close to those of (θ, 1)-distinct

eigenvalues if we take sufficiently large N .

6.4 Simulated experiments

In this section, we present simulated experiments that complement the theoretical claims.

In particular, we conducted period estimations for an instance of LifeGame [66], which is a

special case of cellular automata [253], and for a nearly periodic toy system, and an eigenvalue

estimation for a linear system, where some dimensions are for permutations and the rest is

for shrinking.

Period estimation; LifeGame: We use a specific instance of LifeGame which is illus-

trated in Figure 6.2. As shown on the top eight pictures, starting from certain configuration
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of cells, it shows transitions of period eight. The sample size is computed as the smallest

integer satisfying (6.3.5), and the threshold ε is given by (6.3.4). To prevent the dimension

from becoming too large, we used five cells that correctly display period eight; that is d = 5.

Noise ηt is given by i.i.d. Gaussian with proxy R = 0.3, and the down eight pictures of

Figure 6.2 are some instances of noisy observations. We tested 50 different random seeds

(i.e., 1, 51, 101, 151, ... , 2451), and computed the error rate (the number of runs producing

a wrong estimate other than the fundamental period eight, which is divided by 50); and it

was zero.

Period estimation; Simple µ-nearly periodic system: We consider the following µ-

nearly periodic system that circulates over a circle with small variations:

rt+1 = µ

(
α
rt − 1

µ
− ⌈αrt − 1

µ
⌉
)

+ 1, θt+1 = θt +
2π

L
, (6.4.1)

where r and θ are the radius and angle, and α /∈ Q. We use µ = 0.001, L = 5, and α = π.

Noise ηt is drawn i.i.d. from the uniform distribution within [−R,R] for R = 0.3. We tested

50 different random seeds (i.e., 1, 51, 101, 151, ... , 2451), and computed the error rate; and

it was zero.

Eigenvalue estimation; Permutation and shrink: We use d = 5, and M ∈ R5×5 is

made such that 1) the first four dimensions are for permutation (i.e., each of row and column

of 4 × 4 sub-matrix has only one nonzero element that is one.), and 2) the last dimension

is simply shrinking; we gave 0.7 for (5, 5)-element of M . Initial vector θ0 and each arm

x̃m, m ∈ [d], are uniformly sampled from the unit sphere in R5. The value L is computed by

4! = 24. We used the smallest integer N that satisfies (6.3.8), multiplied by Csim > 0. The

results are shown in Table 6.1; it is observed that the more samples we use the more accurate

the estimates become to (θ0, 5)-distinct eigenvalues of M . Noise ηt is drawn i.i.d. from the

uniform distribution within [−R,R] for R = 0.3, and the Table 6.1 is of the random seed

1234. We also tested 50 different random seeds (i.e., 1, 51, 101, 151, ... , 2451) for Csim = 30,
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Table 6.1: Results for the eigenvalue estimation. The top-most row shows the true eigenvalues
of M5, and the second row shows its (θ0, 5)-distinct eigenvalues. From the third to sixth row,
it shows the estimated eigenvalues for different values of Csim.

eigenvalues of M5 1.000 1.000 −0.500− 0.866i −0.500 + 0.866i 0.168

(θ0, 5) 1.000 0 −0.500− 0.866i −0.500 + 0.866i 0

when Csim = 1 1.000 + 0.008i 0 −0.489− 0.860i −0.510 + 0.869i 0

when Csim = 5 0.999− 0.000i 0 −0.495− 0.867i −0.501 + 0.862i 0

when Csim = 10 1.000 + 0.003i 0 −0.497− 0.867i −0.501 + 0.864i 0

when Csim = 30 1.000 + 0.001i 0 −0.500− 0.866i −0.500 + 0.864i 0

and computed the mean absolute error between the true (θ0, 5)-distinct eigenvalues and their

nearest estimated values; it was 0.0019, which is sufficiently small.

Computation: Throughout the experiment in Section 6.4, we used the following version

of Julia [41]; for each experiment, the running time was less than a few minutes.

Julia Version 1.6.3

JULIA_NUM_THREADS = 12

OS: Linux (x86_64-pc-linux-gnu)

CPU: Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

WORD_SIZE: 64

LIBM: libopenlibm

LLVM: libLLVM-11.0.1 (ORCJIT, broadwell)

6.5 Applications to bandit problems

We briefly cover the applicability of our proposed algorithms to bandit problems (e.g., regret

minimization).

A naive approach is an explore-then-commit type algorithm (cf. [205, 20]). One employs
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our algorithm to estimate a nearly period, followed by a certain periodic bandit algorithm

such as the work in [52] to obtain an asymptotic order of regret. Caveat here is, because

our estimate is only an aliquot nearly period, one may need to take into account the regret

caused by this misspecification when running bandit algorithms (e.g., ρ and µ may lead

to (small) linear regret). Avoiding this small linear regret would require the system to be

0-nearly periodic and that there exists a sufficiently large gap ensuring µ-nearly period with

sufficiently small µ implies 0-nearly period.

If one aims at designing an anytime algorithm, the straightforward application of our

algorithms may not give near optimal asymptotic rate of expected regret because the failure

probability of periodic structure estimations cannot be adjusted later. To remedy this, one

can employ our algorithm repetitively, and gradually increase the span of such procedure.

Importantly, samples from separated spans can contribute to the estimate together when the

surplus beyond a multiple of period is properly dealt with. Since failure probability decreases

exponentially with respect to sample size, we conjecture that increasing the span for bandit

algorithm by a certain order will lead to the same rate (up to logarithm) of expected regret

of the adopted bandit algorithm.

6.6 Chapter summary and discussion

This chapter proposed novel algorithms for estimating periodic information about the dy-

namical systems from bandit feedback contaminated by a sub-Gaussian noise. Statistical

sample complexities for our algorithms have been provided which rely on the asymptotic re-

sults of exponential sums, including the Weyl sum. The obtainable (statistically important)

estimates of the dynamic structures have been carefully and mathematically defined.

Our work is fundamental and should constitute the research on reconstruction of dynam-

ical systems; however, because our problem setups are rather novel, its applicability to the

real world problems is somewhat unknown. Also, the lower bound arguments or elimination

of dependence on the upper bound Lmax through systematic guessing should be investigated.

Note, if the hyperparameters are correctly chosen for nearly periodic systems, the outputs of
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our algorithms are consistent and reasonable across runs, following the theoretical insights;

therefore, practically, one can check if the hyperparameters are properly chosen by running

the algorithms.

This work is a first attempt of applying the Weyl sum, a variant of exponential sums,

to statistical estimation problems and the uses of other types of sums or number theoretic

tools in this domain remain unexplored.

Finally, this chapter only considered (nearly) periodic dynamics, which is a mere fraction

of interesting dynamical phenomena; and extending similar arguments to more general (ran-

dom) dynamical systems including some nonlinear attractor dynamics will be an important

direction of research.
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Chapter 7

CONSTRUCTIVE APPROACH FOR ANALYZING COMPLEX
MACHINE LEARNING ALGORITHMS AS DYNAMICAL

SYSTEMS

Chapter’s key takeaways� �
This chapter presents a constructive approach for analyzing some of the phenomena

observed in deep RL algorithms employing different critic loss functions (including dis-

tributional RL). The key findings are as follows:

1. Theoretically, gradient w.r.t. quantile-Huber loss behaves the same as that of the

Huber loss under certain conditions while minimization of the quantile-Huber loss, as

an approximation of quantile loss, tends to better estimate the mean of the target than

Huber loss does as a proxy for ℓ1 loss when the mean and median of the target differ

2. RL algorithms with MSE, Huber and quantile-Huber critic loss functions can show

behavior separations even in very simple toy tabular MDP cases, for which the critical

causes are the interaction of critic and action selection

3. For such a toy abstracted system that is made to consist of guiding rewards in addition

to a sparse large reward/penalty, the use of (quantile-)Huber loss helps the critic and

action selection evolve robustly, which leads to stable performance increase

4. For such a toy abstracted system that is made without guiding rewards, the use of

MSE loss shows better performance; this observation enables straightforward creation of

an environment where the use of MSE loss leads to a better performance

5. For more complex systems, metrics and visualizations hint at some connections to

the behaviors of abstracted systems and help deepening the understanding; however the

findings stay largely hypothetical� �
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7.1 Introductions

Concurrently with the empirical success of distributional RL highlighted by the superhu-

man racing AI agent, Gran Turismo Sophy, theoretical investigations of convergence and

comparisons against the traditional (expected) RL algorithm have been made.

However, elucidating the rationale behind this success has proven to be a challenge due

to the inherent complexity of deep RL algorithms. This challenge penetrates through most

of the modern complex ML domains, including large language models (cf. [208]). The

complexity hinders straightforward deductive or inductive reasoning about the observable

phenomena, and it is particularly pronounced in the domains such as RL, where dynamic

interactions among the learner (including an actor and a critic), environment and even human

users play a key role.

In this chapter, we aim at tackling this challenge by focusing on algorithmic behaviors gen-

erated by the soft-actor-critic (SAC) algorithm [94] with three types of critic loss functions,

namely, the mean-squared-error (MSE), Huber [104], and quantile-Huber [72] (distributional

RL) loss functions. Inspired by another set of results [55, 175] indicating the use of Huber

loss for critic learning oftentimes (if not always) produces better learning curves, we ask the

following question “How does the choice of critic loss affect the learning curve? And how

does it depend on the agent environment?”. In particular, the novelty of our work lies in the

methodology we employ, a constructive approach (see Chapter 1) tailored to our problem.

See Figure 7.1 for illustration.

Our methodology begins with (approximately) categorizing the selected learning behav-

iors based on some observation. Subsequently, it aims at finding a model (1) involving

essential components (such as the critic and action selection interaction) of the target sys-

tems, (2) having simplicity that allows clear reasoning about the behavior, and (3) showing

behaviors of interest, based on which we can at least identify sufficient conditions for some

class of learning behaviors to emerge. In our case, we naturally employ the learning curve

of cumulative rewards for categorizing the behaviors, and consider simple forms of MDPs as
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Figure 7.1: In this chapter, we treat the environment coupled with the RL algorithms (SAC
with different critic loss) as the entire system to take constructive approach to analyze the
phenomena (learning curves in our case) by using observable information.

candidates of such models; however, we mention that the process of selecting viable catego-

rizations and models is the critical part of our methodology.

Finally we use a few measurable metrics and visualization that we propose to retroduc-

tively study about the phenomena observed in the target (more complex) systems. As there

may not be a single common and valid cause across complex environments and due to the

imperfect observations that can be made, our findings stay hypothetical and carry an at-

tempt of affirming the consequent although we also conduct experiments aimed at eliminating

or weakening other potential hypotheses; however, we believe our work will lead to further

research on the methodology and for other ML domains.

Contributions: The contributions are five folds: (1) present theoretical analyses that

expose some of the basic logic behind the behavior difference caused by the choice of critic

loss, (2) present behavior class to categorize the learning curves of algorithms with different

critic losses, (3) propose abstracted systems whose learning behaviors fall into the proposed

behavior classes and are logically predictable, (4) propose a few metrics that help quantify the
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behaviors observed in more complex environments, and (5) present an array of experimental

results.

7.2 Problem setups

In this chapter, we consider the MDP environment described in Section 2.1.3. The problem

of interest in this chapter is described as follows: given an MDP M and an initial state

distribution µ ∈ ∆(S), find an algorithm A that returns a policy π∗ which maximizes the

expected return E
[
Qπ(s0, a0)

∣∣∣∣s0 ∼ µ, a0 ∼ π(s0)

]
.

Constructive approach

An illustration of constructive approach is depicted in Figure 1.9. A notable example of

constructive approach may be seen in the Lorenz attractor [153]; although this abstract

system is too simplified to represent the dynamics of atmospheric convection and weather, it

shows that such a simple system can show chaotic behavior (i.e., the sensitivity to the initial

conditions), which implies the inherent difficulty of weather forecast up to some extent. In

this case, interactions of three variables are the essential components to look at in the target

system while they are simplified in a way that the behavior can be analyzed thoroughly.

Dynamical system view of RL algorithms

To apply constructive approach to RLs, we are implicitly viewing an algorithm interacting

with an environment as a dynamical system, resembling the natural phenomena, which might

be expressed by an RDS. Let X be a set of the entire state which consists of the states of

agent, environment, and the learning algorithm. The dynamics over X is assumed to be

an RDS. This way, we will also be able to properly define the metrics for analyzing RL

algorithms, which we will see later.
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7.3 Basic theoretical analyses

In this section, we give some of the basic theoretical analyses about the Huber critic loss and

quantile-Huber loss.

7.3.1 Quantile-Huber loss revisited

The Huber loss Lκ : R→ R for a given constant κ > 0 is defined by

Lκ(u) =


1
2
u2, if |u| ≤ κ

κ
(
|u| − 1

2
κ
)
, otherwise

and the quantile-Huber loss for the quantile τ , namely, ρκτ (u) is given by

ρκτ (u) =
|τ − δ{u<0}|Lκ(u)

κ
.

Equivalence between Huber and quantile-Huber loss algorithms under certain

regime: The quantile-Huber loss using a single head (i.e., there is only one quantile point

τ1 = 1
2
) is equivalent to the Huber loss within a constant scale factor because

ρκ1
2
(u) =

∣∣∣∣12 − δ{u<0}

∣∣∣∣ Lκ(u)

κ
=

1

2κ
Lκ(u).

Next, assume the quantile-Huber loss uses N ∈ Z>0 heads with the initial values q0 :=

[q0,1, · · · , q0,N ] ∈ RN . Assume also that maxi∈{1,2,··· ,N}{|q0,i|} < M for some M > 0, and

let c = 1
N

∑N
i=1 q0,i. Now, suppose one does bootstrap update for the target quantile y =

[yi, · · · , yN ] that satisfies |yi| > M + κ for all i. The simple gradient update is given by

q1 = q0 − α ·
∂ℓ(q0, y)

∂q
, α ∈ (0, 1], ℓ(q0, y) =

1

N2

∑
i

∑
j

ρκτj(yi − qj).

Here, under assumption1 yi > M + κ, we obtain

ρκτj(yi − qj) =
τj
κ
Lκ(yi − qj)⇝ −

∂ρκτj(yi − qj)
∂qj

= τj ⇝ −
∂ℓ(q0, y)

∂qj
=

1

N2

∑
i

τj =
1

N
τj.

1A similar argument can be applied for the case yi < −M − κ too.
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Finally, the mean of q1 is given by 1
N

∑N
i=1 q1,i = c + α · 1

N2

∑
j τj = c + α

2N
. On the other

hand, for the quantile-Huber loss algorithm with a single head, where q0,1 = c, we obtain

q1,1 = c+ α/2. As such, it is again equivalent within a constant factor.

ℓ1 loss bootstrap leads to wrong solution for some MDPs: Let {yn}n∈{1,...,N} ⊂ R

be a set of N observations, and ŷ be the estimate. Define

L2 :=
1

N

N∑
n=1

(yn − ŷ)2, L1 :=
1

N

N∑
n=1

|yn − ŷ|.

Then, it is straightforward to see that L2 and L1 are minimized when

∂L2

∂ŷ
= − 2

N

N∑
n=1

(yn − ŷ),
∂L1

∂ŷ
= − 1

N

N∑
n=1

sign (yn − ŷ)

are zeros, respectively, which implies the well-known facts that ŷ should be the mean (median)

of the observations under ℓ2 (ℓ1) loss. For the temporal-difference (TD) error minimization

in the context of RL, the work [197] points out that the use of the Huber loss resembles that

of a mean Huber TD error rather than the Bellman error. Therefore, using the Huber loss

(or ℓ1 loss) may lead to a wrong critic or even to nonconvergent behaviors. We will see a

(potential) outcome of this theoretical fact in a case study in Section 7.4.4.

In the next section, we present a categorization of the learning behaviors, and present

simple MDPs which show respective behaviors when coupled with some algorithm employing

different loss functions.

7.4 Categorizations

7.4.1 Behavior classes

In this chapter, we employ the learning curve of cumulative rewards as the basis for catego-

rizing behaviors, and mainly focus on the following four classes of learning behaviors. Those

classes are irrelevant to environments or function approximators. Throughout, we use the

term “(quantile-)Huber” as a shorthand for quantile-Huber and Huber implementations.
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Class 1: No significant performance separation For this class of behaviors, the learn-

ing curves for RL algorithms with MSE, Huber and quantile-Huber critic loss show no sig-

nificant performance difference.

Class 2: MSE loss algorithm performs worse than (quantile-)Huber loss algo-

rithms For this class of behaviors, RL algorithm with MSE critic loss struggles to increase

performance while other two loss functions show no degradation of performance.

Class 3: MSE loss algorithm performs better than (quantile-)Huber loss algo-

rithms For this class of behaviors, RL algorithms with Huber and quantile-Huber critic

loss functions show worse performances than the MSE counterpart.

Class 4: MSE loss algorithm performs poorly at the beginning and better at

later stage For this class of behaviors, RL algorithm with MSE critic loss struggles to

increase performance at first, but catches up with other two to eventually perform better

than the Huber and quantile-Huber loss counterparts.

Remark 7.4.1 (On behavior classes). These classes obviously do not cover all of the possible

combinations of behaviors; in fact, some Gym environments show behaviors that may not

straightforwardly fall into the presented behavior classes. Rather, we presented them in

order to gain insights about how the stability of critic/policy growth and the properties of

reward/dynamics are coupled to produce certain behaviors.

Below, we propose some representative MDP environments that possess desirable proper-

ties while preserving simplicity to allow theoretical arguments to reason about the behaviors.

7.4.2 Representative environments

For RL problems, we naturally consider tabular MDPs as candidate abstracted models for

understanding the behaviors of target complex systems. We present two abstracted toy MDP

topologies in Figure 7.2. Moreover, we employ a simple toy algorithm given in Algorithm 6
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Figure 7.2: An illustration of abstracted MDPs for categorization. Left Top: Topology
for MDP Class 1 to MDP Class 3. Left Down: Topology for MDP Class 4 (omitting the
self-transitions at the states N − 2 and N − 1). Right: An illustration of an MDP that
demonstrates separation between ℓ1 loss and Quantile loss algorithms.

(which is a modified ϵ-greedy Q learning algorithm), where the state and action spaces are

S = {s0, s1, . . . , sN−1} and A = {0, 1} at all of the states except for the final done states

where it is the singleton A = {0}. Assume, across all the classes, that α < 1/H and that

H > 2N . In this section, we define success conditions to be those where the estimated Q

values at each state lead to an optimal action selection that achieves the fastest reach to the

done states. Note that the representative model of MDP Class 4 has two done states. We

give the following classes of MDPs as representative environments for each behavior class;

we mention that those are a mere fraction of the entire space of MDPs but that they convey

ideas of what causes the behavior separation. For the four cases below, we suppose the reward

function returns a scalar value deterministically.

MDP Class 1: Guiding (smooth) rewards. This class of MDPs is characterized by the

abstracted system Figure 7.2 (left top) as follows: Action a = 1 increments the state. The
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Algorithm 6 Algorithm for learning in the abstracted MDPs

1: Estimates of Q values (Q̂) are set to zeros

2: for Episodes t = 0, . . . do

3: initial state s0

4: for Environment steps h = 0, . . . H − 1 do

5: Q̂copy ← Q̂

6: Action selection a = min{arg maxa′∈A Q̂(sh, a
′)} with 1− ϵ prob

7: (otherwise uniformly select from A \ {a})

8: Follow environment dynamics and observe data d = (sh, sh+1, a, rh)

9:

Q̂copy(sh, a)← Q̂(sh, a) + α∇ℓ
(
rh + max

a′
{Q̂(sh+1, a

′)} − Q̂(sh, a)
)

10: end for

11: Q̂← Q̂copy

12: end for

reward function R satisfies

R(si, si, 0) < R(si, si+1, 1), R(sN−2, sN−1, 1) = R(sN−1, sN−1, 0) = 0, ∀i ∈ {0, . . . , N − 2},

and

R(si, si+1, 1) < R(si+1, si+2, 1), ∀i ∈ {0, . . . , N − 3},

meaning, the optimal action is hinted at in each step.

MDP Class 2: Guiding (smooth) rewards + consistent sparse and large magnitude rewards.

This class of MDPs is characterized by the abstracted system Figure 7.2 (left top) as follows:

Action a = 1 increments the state. The reward map satisfies

R = R1 +R2,
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where R1 satisfies the conditions of MDP Class 1 in addition to the bound ∥R1∥∞ < B for

B > 0. R2 is zero everywhere except for the transition at one of the states sk in {s0, . . . , sN−3}

giving

R2(sk, sk+1, 1) < −BH.

MDP Class 3: No guiding rewards. This class of MDPs is characterized by the abstracted

system Figure 7.2 (left top) as follows: Action a = 1 increments the state. The reward map

satisfies

R(sN−3, sN−2, 1) ≤ −3, R(sN−2, sN−1, 1) > 4|R(sN−3, sN−2, 1)|,

and is zeros elsewhere, meaning, there is a misleading reward for the transition sN−3 to sN−2

to be overcome to reach N − 1.

MDP Class 4: MDP Class 2 + necessity of fine-tuning of Q value. This class is charac-

terized by the abstracted system Figure 7.2 (left down) as follows: Action a = 1 increments

the state except for sN−3 where either action leads to the final states sN−2 (action 0) or sN−1

(action 1). The reward function satisfies

R = R1 +R2 +R4,

where R1 follows the condition of that of MDP Class 1 up to the transition to sN−3 and

zeros elsewhere, and R2 is zero everywhere except for the transition at one of the states sk

in {s0, . . . , sN−4} giving

−2BH < R2(sk, sk+1, 1) < −BH.

The function R4 satisfies

R4(sN−3, sN−2, 0) ≥ 1, R4(sN−3, sN−1, 1) ≥ cR4(sN−3, sN−2, 0),

for some c > 2, meaning, the final transitions are similarly rewarding depending on c.

The illustrations of MDP topologies and schematic diagrams of reward shape are given

in Figure 7.3.
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Figure 7.3: Illustrations of abstracted MDPs and their schematic diagrams of reward shape.

7.4.3 Theoretical result

Now, we present the performance separations of ℓ1 loss algorithm and ℓ2 loss algorithm,

where ℓ1(·) = | · | and ℓ2(·) = | · |2/2, respectively.

Proposition 7.4.2 (Informal; see Appendix B.7 for a formal argument.). For each class of

MDPs, ℓ1 loss algorithm and ℓ2 loss algorithm satisfy the followings:

MDP Class 1: Both algorithms will meet the success conditions equally faster when ϵ = 0,

which is of Class 1 behavior.

MDP Class 2: ℓ1 loss algorithm meets the success conditions faster when ϵ = 0, which is

of Class 2 behavior.

MDP Class 3: Due to lack of guiding rewards, assume positive ϵ. ℓ2 loss algorithm meets

the success conditions faster more probably than ℓ1 loss algorithm, which is of Class 3 behav-

ior.
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MDP Class 4: Suppose ϵ = 0 except at the state sN−3 where ϵ = 0.5 (i.e., completely

random) until the agent explores that final transitions K times, where H ≥ K ≥ 2. Then,

ℓ1 loss algorithm meets the success conditions faster, but ℓ2 loss algorithm becomes better at

later stage of learning, which is of Class 4 behavior.

Remark 7.4.3 (On ϵ in the algorithm). In Proposition 7.4.2 above, we assume ϵ = 0 for

MDP Class 1 and MDP Class 2, which means there will be no exploration to simplify the

arguments; which would be validated by the fact that they have guiding rewards which make

it meet the success condition if it experiences sufficiently many episodes.

7.4.4 Other important cases

Here, we present some important cases that do not necessarily fall into the behavior classes

that we defined. These behavioral observations may happen together with certain class of

behavior.

Case study 1: Separation between QRSAC and SAC-Huber ver. 1. We only present

a basic mechanism here. Consider the MDP illustrated in Figure 7.2 (right), where the

probability of reward for the transitions to the final states is portrayed. In this case, the

following holds:

10 = Q(sN−3, 0) < 40 = Q(sN−3, 1),

and therefore, the optimal action w.r.t. the Q function is 1. However, we have

10 = Median[R(sN−3, sN−2, 0)] > Median[R(sN−3, sN−1, 1)] = 5,

indicating that the median estimate will lead to a suboptimal action selection. As such,

ℓ1 loss may potentially lead to a wrong action selection in terms of the mean cumulative

rewards.
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Case study 2: Separation between QRSAC and SAC-Huber ver. 2. When the magnitudes

of reward are very large across states, we see empirically that SAC-Huber outperforms QR-

SAC in certain environments. We did not explore this phenomenon in detail; however, there

is an evidence that SAC-Huber also degrades when the Q networks have multiple heads that

are intentionally learned to have very distinct values but to be averaged to the true estimate.

We explain this experimental results in Appendix A.5.4. This evidence may imply that the

shared network having multiple heads that have too distinct values may cause troubles in

learning.

7.5 Experimental evaluations

In this section, we present experimental results on (1) simple tabular environments with

Q-learning, and (2) 1D environments, where the state and action spaces are both of one

dimension, which enables us to fully visualize the growth of critic and actor, and on (3) some

selected Gym environments [46].

7.5.1 Metrics

We define several metrics that are used to hint at the connection of algorithmic behaviors in

the aforementioned environments to our proposed behavior classes.

Stability metrics

The oscillation of a function f : N→ R, generating a time sequence, over an interval I ⊂ N

is defined by

ωf (I) = sup
τ∈I

f(τ)− inf
τ∈I

f(τ).
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Inspired by this, we measure the oscillation of the Q value ωQ over the interval It :=

{max{0, t− Ts + 1}, . . . , t} at time step t by

ωtQ := E

 ∑
(s,a)∈Dt

(
max
τ∈It
{Q̂τ (s, a)} −min

τ∈It
{Q̂τ (s, a)}

)
/|Dt|

 ,

where Dt is the sampled batch at time t, which is a random variable.

Smoothness metrics

We also measure smoothness of the critic surface as well. To this end, we propose two

smoothness metrics: expected determinants of Hessian over batch data, and variance of

policy gradients.

Hessian: We compute the following:

E

 ∑
(s,a)∈Dt

∣∣∣detHa

(
Q̂t(s, a)

)∣∣∣ /|Dt|
 ,

where Ha

(
Q̂t(s, a)

)
∈ Rda×da is the Hessian matrix of Q̂t at s and a with respect to a, and

da is the dimension of action space. Conflict of policy update direction happens when the

surface is nonsmooth; in particular, we would like to compute | detC|, which indicates the

variance of individually updated action points around a point (a∗, s∗), where

C := Ea∼N (a⋆,σ2I)

[
z(a, s⋆, a⋆)z(a, s⋆, a⋆)⊤

]
, σ > 0,

and

z(a, s⋆, a⋆) = (a− a⋆) + α∇aQ(s⋆, a), α ∈ (0, 1).

We can then show that the following approximation holds:

detC ≈ det{σ2I + 2ασ2H + α2(gg⊤ + σ2H2)}, g := ∇aQ(s⋆, a⋆), H := Ha (Q(s⋆, a⋆)) .

(7.5.1)
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To see this, define a′ = a− a⋆, and we write

C = E[a′a′⊤]︸ ︷︷ ︸
=:A

+αE[a′∇aQ(s⋆, a)⊤ +∇aQ(s⋆, a)a′
⊤

] + α2E[∇aQ(s⋆, a)∇aQ(s⋆, a)⊤].

Because

∇aQ(s⋆, a) ≈ ∇aQ(s⋆, a⋆)︸ ︷︷ ︸
=:g

+H (Q(s⋆, a⋆))︸ ︷︷ ︸
=:H

a′,

we obtain

C ≈ A + α
{
E[a′]g⊤ + AH + gE[a′

⊤
] + HA

}
+ α2

{
gg⊤ + gE[a′⊤]H + HE[a′]g + HAH

}
= A + α(AH + HA) + α2(gg⊤ + HAH),

where we used H = H⊤ and the fact that g and H do not depend on a, and that E[a′] = 0.

Since A = σ2I, we reach the approximation. As such, we use | detHa| as a simplified measure

for the conflict of policy gradients.

Variance of gradients Typically, gradients of policy parameters, denoted by gπ ∈ Rdπ ,

are of very high dimension, which hinders direct computations of determinant of

E
[
(gπ − E[gπ])(gπ − E[gπ])⊤

]
.

We instead use the following trace computation:

trE
[
(gπ − E[gπ])(gπ − E[gπ])⊤

]
= E

[
tr(gπ − E[gπ])(gπ − E[gπ])⊤

]
= E∥gπ − E[gπ]∥2Rdπ .

Accuracy metrics

We test if the supervised learning and bootstrap learning under a fixed policy scenario with

each critic loss function give accurate target value function estimate; to this end, if we know

the target Q function Q∗, we use it and compute the leaning curve of the MSEs:

E

 ∑
(s,a)∈Dt

(
Q∗(s, a)− Q̂t(s, a)

)2
/|Dt|

 .



148

For complex environments where we do not have the ground-truth Q function, we use the

return (distribution) of QRSAC at some later learning stage; for such case of bootstrap

learning scenario, we randomly draw reward from the distribution computed by

Ẑπ(s, a)− γẐπ(s′, a′),

where the policy π is the policy of QRSAC at the selected stage of learning which is used for

bootstrap learning test associated with the return estimate Ẑπ, s′ is the observed next state

and a′ is sampled from π(s′).

7.5.2 Experimental setups

Common setups: Throughout, all RL runs are trained in a distributed manner with

separated processes of a rollout worker that collects experiences and a trainer that follows

the algorithm dynamics, asynchronously. For data storage and experience replay, we use

Reverb [54]. Details of the neural networks and other hyperparameters are described in

Appendix A.5.3. We also conduct bootstrap and supervised learning experiments under a

fixed policy scenario to eliminate the effect of critic and policy interactions, and other minor

experiments for testing the influence of multi-headed network.

Tabular MDPs: We tested on five different tabular MDPs; one of them, which we refer

to as MDP 1, is illustrated in Figure 7.4 (left top), and other four are shown in Appendix

A.5.1. All of our toy MDPs are intentionally created to possess similar properties to those of

the representative MDP classes, except for the MDP 5 which is made to show the behavior

introduced in Case study 1.

1D continuous environments: We tested 13 variants, which are summarized in Ap-

pendix A.5.2. For all of them, the state and action spaces are defined by S = [−5, 5] and

A = [−1, 1] (see Figure 7.4 (left down)). The initial state is −4.5 or 4.5 with probability

0.5 each, and at every step, the state s is updated by action a. Those systems are created
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Figure 7.4: Illustrations of selected environments for our simulation experiments. (Left top)
Tabular MDP 1. (Left down) Simple 1D (continuous) environment. (Right) OpenAI Gym
environments: Lunar Lander and Bipedal Walker are shown.

intentionally to possess some of the conceptually similar properties to the abstracted tabular

MDP systems. We then observe evolution of our proposed metrics and full visualizations of

critic/policy growth, from which we discuss if the cause of performance separations has some

similarity to that of the abstracted systems (i.e., MDP Class 1 to MDP Class 4 etc.).

More complex environments We tested Lunar Lander, Bipedal Walker, and Hopper

environments (see 7.4 (right)) for RL algorithms with different critic losses and settings.

Although the visualizations of critic/policy growth are only partially possible, we conduct

similar analyses to the case of 1D environments.

7.5.3 Results

We present only a set of selected results (see Appendix A.5.4 for the rest of the results).
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7.5.4 Toy MDP

The learning curves for the toy MDPs are given in Figure 7.5. The curves of MDPs 1 to 4

are consistent to the behavior class definitions. For MDP 5, it shows noisy behavior due to

the probabilistic nature of the system and shows the clear separation between Huber and

quantile-Huber loss.

Figure 7.6 shows the evolution of Q value estimates of different loss algorithms for MDP

1, 2 and 4. MDP 1 shows similarly stable evolution of Q values for MSE and quantile-Huber

cases; while in MDP 2 and 4, MSE loss algorithm shows radical changes of the Q estimate

which leads to worse or better performance. Especially for MDP 4, MSE loss algorithm

correctly estimates the optimal action at State 3. Figure 7.7 shows the same evolution for

MDP 5. We observe that the values at State 2 differ between MSE/quantile-Huber and

Huber loss, indicating that the Huber loss algorithm struggles to estimate the true order

of values. This toy MDP is created intentionally so that the mean and median estimate of

value differ, and the Huber loss algorithm shows inferior performance as expected (refer to

Case study 1). Interestingly, quantile-Huber loss algorithm spreads the quantile buckets so

that it can estimate the mean value better than the Huber loss counterpart.

All of these toy MDPs are created intentionally to follow similar properties to our the-

oretical MDP classes. Although they are not necessarily covered by our theoretical MDP

classes, it is at least observed that creating such simple systems that show desired behaviors

of different critic loss algorithms is no difficult task.
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Figure 7.5: Reward curves averaged over 300 runs for MDPs 1 to 5 with standard deviation
shading. All of them are consistent to the behavior class definitions; MDP 5 is noisy because
of the probabilistic nature of the system but shows the clear separation between Huber and
quantile-Huber loss.
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Figure 7.6: Evolution of Q value estimates for MSE (blue) and quantile-Huber (red) loss
algorithms for MDP 1, 2 and 4; for each state (0 to 3), the left bin indicates the value for
action 0 and the right is for action 1. Note the “×” marks in quantile-Huber cases correspond
to the quantile estimates. MDP 1 shows similarly stable evolution of Q values for the two
while MSE loss algorithm shows radical change for MDP 2. On the other hand, it is observed
for MDP 4 that while MSE loss algorithm shows some radical change of the estimates, it
finally reaches to the better state quicker.
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Figure 7.7: Evolution of Q value estimates for different loss algorithms for MDP 5; for each
state (0 to 3), the left bin indicates the value for action 0 and the right is for action 1. Note
the “×” marks in quantile-Huber cases correspond to the quantile estimates. It is observed
that the values at State 1 differ between MSE/quantile-Huber and Huber loss, indicating
that the Huber loss algorithm struggles to estimate the true order of values.
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7.5.5 1D continuous environments

RL results

The learning curves, including reward, stability and smoothness curves, for the representative

environments are shown in Figure 7.8, 7.9, 7.10 and 7.11. Note, in the plots, diff q avg,

det Hessian avg and policy var avg are the stability, smoothness metric based on Hessian,

and smoothness metric based on the variance of policy gradient directions.

Figure 7.8: Reward curve, stability, and smoothness metrics (Hessian and policy gradient)
curves for the representative 1D environment falling into Class 1.

There are a few observations.

1. SAC shows instability especially at the earlier stage of learning except for the Class 1

representative where all algorithms show similar stability

2. Smoothness seems to become worse following unstable critic evolution

3. At least, smoothness of critic and performance do not correlate exactly (Class 3 repre-

sentative shows better performance for SAC but nonsmooth surface)
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Figure 7.9: Reward curve, stability, and smoothness metrics (Hessian and policy gradient)
curves averaged over 30 runs for the representative 1D environment falling into Class 2.

Figure 7.10: Reward curve, stability, and smoothness metrics (Hessian and policy gradient)
curves averaged over 30 runs for the representative 1D environment falling into Class 3.
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Figure 7.11: Reward curve, stability, and smoothness metrics (Hessian and policy gradient)
curves averaged over 30 runs for the representative 1D environment falling into Class 4.

Figure 7.12: Event probabilities for good1, bad1, and bad2 for the representative Class 3
1D example. Good event happens for SAC more often while SAC-Huber and QRSAC can
decrease bad events.
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For the Class 3 representative, we define good1, bad1, and bad2 events as the transitions to

exit states giving high reward and high costs respectively, and we plot the event occurrence

probability in Figure 7.12. It is interesting to observe that SAC consistently shows higher

chance of good1 event while others do not but they can eventually decrease the chance of bad

events. Stable growth of critic may help decrease the bad events here.

Figure 7.13 (top) shows the representative of Case study 2; with large magnitude of

reward, QRSAC shows inferior performance. Also, for this environment, as mentioned in

Appendix A.5.2, it has a flavor of Class 2 as well, and we can indeed observe that SAC-

Huber slightly outperforms SAC.

Figure 7.13: Reward curve, stability, and smoothness metric (Hessian) curves for the 1D
environment showing what is discussed in Case study 2. Top ones are of the representative
environment and the down ones are of env. #13.

We also visualize the evolution of critic surface and policy of the Class 1 to Class 4

representatives in Figure 7.14, 7.15, 7.16 and 7.17. We see that they match the intuition

given by the stability curves. Class 1 representative shows similarly stable and smooth

growth while SAC has some instability for Class 2 representative. For Class 3 one, it seems
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that SAC-Huber and QRSAC show relatively stable growth while SAC shows instability but

faster learning of better critic surface. In the Class 4 case, SAC seems to reach relatively

complicated critic surface faster while SAC-Huber and QRSAC show smoother critic surface

which may not be the optimal surface in this environment.

We emphasize that these results are not comprehensive in the sense that one could poten-

tially create other sets of environments which show different learning performance; however,

this style of analysis is shown to be useful for identifying pathological and theoretically

important environments and behaviors for further study.

Supervised learning and bootstrap learning

The results of bootstrap and supervised learning for the Class 2 and Class 4 representatives

are shown in Figure 7.18. Most notably, the results of bootstrap learning do not correlate

to the RL runs at all, and the Huber loss learning shows tremendously low performance.

Therefore, we at least claim that the interaction between critic and policy plays critical role

in the performance in some environments. For the supervised learning, the target critic

generated by SAC-Huber seems to be learned well by the Huber loss algorithm while that

generated by SAC is learned well by both QRSAC and SAC. While we do not delve into this,

different loss algorithms for the regression could show distinct performance depending on the

target function surface and data distribution. We mention that the data are generated by

the policy learned by SAC or SAC-Huber and they may only cover a fraction of the state

space.
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Figure 7.14: Evolution of critic surface and policy for SAC (blue), SAC-Huber (green) and
QRSAC (red) for the representative 1D environment of Class 1. It is observed that all of
them show stable evolution of policy and critic.
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Figure 7.15: Evolution of critic surface and policy for SAC (blue), SAC-Huber (green) and
QRSAC (red) for the representative 1D environment of Class 2. It is observed that SAC
shows instability of policy growth.
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Figure 7.16: Evolution of critic surface and policy for SAC (blue), SAC-Huber (green) and
QRSAC (red) for the representative 1D environment of Class 3. While SAC shows some
instability, it helps learn the correct surface quicker.
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Figure 7.17: Evolution of critic surface and policy for SAC (blue), SAC-Huber (green) and
QRSAC (red) for the representative 1D environment of Class 4. While SAC shows well-tuned
critic surface at the end, others are not sufficiently capturing the correct surface.
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Figure 7.18: Bootstrap/Supervised learning performance curves of the representative 1D
examples for Class 2 and Class 4. We see that the curves do not appear to be consistent to
those of the RL results.
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7.5.6 Complex RL environments

RL results

The learning curves, including reward, stability and smoothness curves, for Lunar Lander,

Bipedal Walker and Hopper are shown in Figure 7.19. For all of the three, SAC shows

instability in critic growth. We also visualize the evolution of critic surface and policy for

SAC and QRSAC at the fixed state for Lunar Lander in Figure 7.20 to verify this observation.

The rewards for all of them seem to guide the agent to achieve certain tasks; and for

Bipedal Walker where there is large penalty when failing, which is similar to the property

of MDP Class 2, it indeed shows the Class 2 behavior. For Lunar Lander, it also has the

tendency of Class 2 behavior while the performance of SAC-Huber degrades at later stage.

Although it stays largely hypothetical, the crash and successful landing can happen with

similar action sequences compared to Bipedal Walker environment, and this probabilistic

nature may cause this degradation with some flavor from Class 4 and Case study 1 repre-

sentatives. The most interesting behavior emerges out of Hopper environment; it has some

guiding reward, but the dynamics are very nonsmooth and discontinuous. As such, it may

have Class 3 or Class 4 essence as well. However, we do not have clear reasoning about

Hopper environment, and it is of future work for analyzing more behavior classes and the

case where reward is smooth while dynamics is very nonsmooth.

Supervised learning and bootstrap learning

The results of bootstrap and supervised learning for Lunar Lander and Bipedal Walker

environments are shown in Figure 7.21. Similar to the results of 1D environment cases, the

performance of bootstrap learning does not correlate to the RL runs; however, the Huber loss

algorithm is functioning well in these Gym environments. Although we used the target critic

generated by QRSAC, the MSE loss algorithm shows better performance for both bootstrap

and supervised learning in Bipedal Walker environment while quantile-Huber loss one shows

better curve than the MSE loss counterpart in supervised learning for Lunar Lander.
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Figure 7.19: Reward curve, stability, and smoothness metric (Hessian) curves for Lunar
Lander, Bipedal Walker, and Hopper.
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Figure 7.20: Evolution of critic surface for SAC and QRSAC at the fixed state for Lunar
Lander; SAC shows more instability compared to QRSAC.
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Figure 7.21: Bootstrap/Supervised learning performance curves of Lunar Lander and Bipedal
Walker. We see that the curves do not appear to be consistent to those of the RL results
except that Huber loss one performs relatively poorly for bootstrap learning on Lunar Lander.
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7.5.7 Findings

Below, we summarize our findings. We strongly emphasize that those results do not identify

the clear mechanism of performance separation observed in complex environments but only

help us understand some aspects of the behaviors.

1. For tabular MDPs and 1D environments, creating simple reward architectures that lead

to the behaviors categorized in our proposed classes is a relatively straightforward task;

which at least gives sufficient conditions for certain algorithmic behaviors to emerge

2. For all of the environments we tested except for the ones showing Class 1 behavior, SAC

shows consistently unstable critic growth indicated by the visualization of critic/policy

growth and by the stability measure

3. Smoothness of the critic surface does not necessarily correlate with better performance;

and the critic seems to become nonsmooth after it shows unstable behaviors in most

of our environments

4. At least for some environments, interaction of critic and policy produces remarkable

behaviors that do not show up in the fixed policy bootstrap or supervised learning

scenario; in particular, stability measures of critic in an RL setting show unique per-

spectives of critic and policy interaction

5. On the other hand, for some environments, the Huber loss algorithm shows significantly

poor performance in the bootstrap learning

6. Although our behavior classes and (representative) abstracted models cannot explain

every phenomenon observed in (complex) environments, it gives us some lessons about

how the interactions among dynamics, reward structure, critic growth and policy

growth affect the overall performance
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7.6 Discussions on the relation to existing work

The work [158] proves that, with the squared Cramér distance loss, distributional RL behaves

exactly the same as expected RL for the tabular and linear approximation settings, while the

difference is pronounced in the nonlinear approximation settings. In this chapter, we provably

showed the improvement with the use of quantile-Huber loss for a certain type of MDPs and

retroductively argued similar phenomena may happen in more complex environments. In

particular, even the tabular case can show separation between distributional RL with quantile-

Huber loss and expected RL; this is no contradiction to [158] because the loss function for

the distributional RL is different.

The authors of the work [197] claim that capacity constraints on approximators lead to

distinct critic surfaces for the Huber and MSE loss cases. We showed, even for the simplified

systems where no function approximator is used, the use of the Huber loss helps enhance

performance under certain conditions. Moreover, in our toy abstracted environments, the

behavior difference emerges out of the interaction between critic and action selection and not

necessarily of the learning accuracy of critic itself.

Further, we showed that smoothness of the surface does not necessarily correlate with

an improvement of performance. For some cases, instability of critic and policy evolution

indeed causes inferior performance with nonsmooth critic surface; however, this instability

(and consequent nonsmooth surface) could also correlate with better performance for certain

environments.

Finally, although dynamical system perspective has been applied to RL in [160], we

presented patterns or classes of algorithms’ dynamic behaviors to take constructive approach;

and our approach does not separate critic and policy evolution unlike previous approach on

learning dynamics. In several environments having more complexity, we also saw that the

interaction between critic and actor is playing a key role.
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7.7 Chapter summary and discussion

In this chapter, we explored the performance difference of SAC algorithms with different

critic loss functions including the quantile-Huber loss; in particular, we analyzed them by first

categorizing the learning behaviors, and presenting MDP classes that are sufficiently simple

but still show respective behaviors. In this way, we established some sufficient conditions

that cause the performance separations. Then, we hint at the connection between this

established logic and the mechanism of performance discrepancies observed in more complex

RL environments through the lenses of some metrics and visualizations of critic/policy growth

using a retroductive argument.

Most importantly, our approach does not prove the cause of behavior difference observed

in complex RL environments as they have too many parameters to analyze or as there may

not be a single common cause that is valid for different environments; therefore, only a

massive amount of experiments conducted from a variety of angles can reinforce or fine-tune

the arguments. In this regard, although we conducted some set of experiments, it can never

be sufficient to explain phenomena in complex systems. We will need more detailed metrics,

observations and respective experiments to strengthen the methodology.

Also, although tabular MDP can be a natural choice for the abstracted model, it is not

yet clear if our constructive approach becomes a strong methodology for analyzing other

domains of ML including large language models and generative models.
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Chapter 8

CONCLUDING REMARKS

This thesis showcased multiple contributions of bridging the gap between dynamical sys-

tems (or control) and (statistical) ML from a variety of angles. Rather than patching them

together, the beauty of this amalgamation is highlighted by the co-evolution of both fields

through creations of novel and elegant concepts that fundamentally progress the understand-

ing of each field, emerging out of necessity.

8.1 Summary

Chapter 3 bridged the control and ML by first coining a control theoretic term, namely,

limited-duration safety, to utilize value function learned through RL with discount factor as

a candidate for limited-duration control barrier function (LDCBF); then we exploited the

guarantees given by LDCBFs in long-duration autonomy and in transfer learning tasks.

In Chapter 4, by exploiting the continuity property of continuous control problems and

a state-of-the-art planning technique as a reasonable optimal control oracle embedded in

the algorithm, we created a novel and sample efficient model-based RL algorithm, which is

then shown to be effectively applied to practical complex control tasks. Further, the unique

control perspectives, including pole assignment problems working in the spectral domain,

are leveraged to devise a novel decision making framework which opens a new direction of

research in RL.

Going further, Chapter 5 takes advantages of recent rough-path theoretical studies on

path signatures, which have been developed to analyze controlled differential equations, to

create a novel dynamic programming based decision making paradigm. This is a leap from

the classical Bellman based approach, and its application to control tasks is shown to be
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effective for tasks such as trajectory following, having many desirable properties such as

robustness against unknown disturbance and against misspecification of system models.

In Chapter 6, to address the loss of information when dealing with a dynamic environ-

ment in statistical estimation (ML) problems, we adopted asymptotic results of exponential

sums studied in the number theory literature to devise novel estimation algorithms that

have statistical guarantees. Also, this work successfully identified a statistically meaningful

set of dynamic structure information which helps increase resolution of dynamical systems

perspective as well.

Finally in Chapter 7, as a stepping stone towards the future direction of research which

is aimed at treating the ML algorithm itself as a dynamical system to unify the perspectives,

we took constructive approach to analyze the deep RL task, which is one of the most complex

domains in ML.

8.2 Future direction of research

Before closing, I would like to list some of the future direction of research.

8.2.1 Extension of each contributing chapter

Each aspect in the contributing chapters should be further deepened in the future as there

still exist a plenty of interesting ideas in each direction.

Chapter 3 explored control theoretic guarantees for learning systems. There exist plenty

of exciting control theoretic results in, for example, multi-agent systems and network controls.

We could extend the research to those domains of studies. More abstractly, the work has

exploited the property of control theoretic tools that give guarantees on global characteristics

of dynamics through local constraints (i.e., constraint on one step dynamics), and it stems

from the state space representation of the dynamics. Coming up with novel representation

of the dynamics so that some constraints on the learned behaviors can be efficiently encoded

should be a promising future work.
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In Chapter 4, especially for LC3, we assumed the RKHS is known. Although using the

simulator with different physics parameters as the featurizer is a promising approach, we

should carefully study what kinds of representations could make the problem significantly

simpler for complex practical tasks including contact-rich dynamics. Although related to

Chapter 3, it could also be the case that considering representations for policy by following

the idea of muscle synergy or the tension of tendons helps.

Moreover, the incorporation of the Koopman spectrum cost for decision making opens

up a research direction for studying what kind of duality may be considered in the decision

making or learning settings. Even within the realm of (data-driven) optimization, optimizing

both for the primal and dual domains is essential in some applications and extending this idea

to decision making problems should help them more flexible in terms of generative capability

(recall many physical phenomena embrace duality). We believe the technical contribution

of the chapter becomes a stepping stone. Also, it is critical to devise policy gradient type

methods for the KSNR to scale up the methodology to more complex practical domains. It

could be the case that we need to reconsider the way of sampling trajectories to properly

incorporate this spectrum cost in the policy gradient type algorithms.

For the work of Chapter 5, as we briefly mentioned in the chapter, we should research an

analogue of policy/value iteration and study its theoretical guarantees. We believe whether

one can guarantee convergence to (sub)optimal solutions depends on the conditions on the

signature cost; ranging from the linear assumption to convexity. Once this research turns out

to be successful, we should be able to devise reliable RL algorithms based on Chen equation.

At a meta level, it is pivotal to reconsider how we encode certain tasks executed by a single

trajectory in the way that an efficient decision making is still possible. Aside from the path

following tasks, our signature framework can encode higher orders of reward signals than the

cumulative sum that is used in the traditional Bellman based settings, for example.

The work of Chapter 6 is somewhat exploratory for identifying the gap between dynamical

systems theory and statistical approach. Digging deeper into other number theoretic results

that are unknown in the ML community is a naive but exciting future direction. Although
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it is not really problem-oriented, naively merging existing results of estimation problems

or analysis in signal processing, dynamical systems and potentially in number theory to

statistical analysis should produce many novel results.

Finally for Chapter 7, we considered a constructive approach tailored to our specific

problem setups; nevertheless, it is anticipated that the AI technology evolves around large

scale data and models in the near future, and more general and systematic procedures of

this constructive approach for wider domains of ML will be required. Therefore, formalizing

this methodology should help the creation of some software framework that can be used to

retroductively analyze some large scale complex systems. The abstraction of phenomena

observed in the complicated target systems for the sake of understanding is a fundamental

aspect of the human’s cognitive process that the current ML systems may not be able to

exercise well. Bringing the words of dynamical systems theory could potentially provide

appropriate inductive bias for future ML designs.

8.2.2 Beyond this thesis

Among all, in the future, the following research inquiry should be addressed: In what manner

may we craft intricate “systems” that are endowed with unwavering reliability and robustness,

while concurrently ensuring their intrinsic openness and emergent qualities? This is the

dilemma when one seeks optimization of behavior with respect to user-defined (or learned)

costs to achieve desirable behaviors while aiming for preserving openness of the “system”

and for keeping a room for emergent properties.

However, if looking closely, the biological systems are capable of producing “useful” dy-

namics and are at the same time flexibly interacting with environments while maintaining

body conditions (e.g., homeostasis, homeorhesis [131, 120]). As such, in the long run, univer-

sal biological view (cf. [120]) may be adopted to (1) resolve inherent contradictions between

emergent system quality and its exploitability, (2) establish the clear distinct formulations

that stand apart from the prevailing ML paradigm, and (3) scale such novel paradigm to a

level of practical viability.
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A key idea would be to regard optimization as hindsight; in fact, so-called inverse opti-

mality is well known in the control community. Instead of optimizing for some predefined

cost function, studying the way of exploiting some extracted stable dynamics as something

that can be described as a result of some cost optimization seems promising.
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contact-invariant optimization. ACM Transactions on Graphics, 31(4):1–8, 2012.

[180] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka. Parametric
return density estimation for reinforcement learning. arXiv preprint arXiv:1203.3497,
2012.



190

[181] J. Morrill, C. Salvi, P. Kidger, and J. Foster. Neural rough differential equations for
long time series. In Proc. ICML, pages 7829–7838. PMLR, 2021.

[182] B. J. Morris, M. J. Powell, and A. D. Ames. Continuity and smoothness properties of
nonlinear optimization-based feedback controllers. In IEEE Proc. CDC, pages 151–158,
2015.

[183] H. Nakao. Phase reduction approach to synchronization of nonlinear oscillators. Con-
temporary Physics, 57(2):188–214, 2017.

[184] Damianou A. Niekerk, B. V. and B. Rosman. Online constrained model-based rein-
forcement learning. In Proc. AUAI, 2017.

[185] G. Notomista, S. F. Ruf, and M. Egerstedt. Persistification of robotic tasks using
control barrier functions. IEEE Robotics and Automation Letters, 3(2):758–763, 2018.

[186] S. Oh, A. M. Appavoo, and S. Gilbert. Periodic bandits and wireless network selection.
arXiv preprint arXiv:1904.12355, 2019.

[187] T. Oh. Note on a lower bound of the Weyl sum in Bourgain’s NLS paper (GAFA’93).

[188] M. Ohnishi, I. Akinola, J. Xu, A. Mandlekar, and F. Ramos. Signatures meet dynamic
programming: Generalizing Bellman equations for trajectory following. arXiv preprint
arXiv:2312.05547 (accepted for publication in L4DC 2024), 2023.

[189] M. Ohnishi, I. Ishikawa, Y. Kuroki, and M. Ikeda. Dynamic structure estimation from
bandit feedback. arXiv preprint arXiv:2206.00861, 2022.

[190] M. Ohnishi, I. Ishikawa, K. Lowrey, M. Ikeda, S. Kakade, and Y. Kawahara. Koopman
spectrum nonlinear regulator and provably efficient online learning. arXiv preprint
arXiv:2106.15775, 2021.

[191] M. Ohnishi, G. Notomista, M. Sugiyama, and M. Egerstedt. Constraint learning for
control tasks with limited duration barrier functions. Automatica, 127, 2021.

[192] M. Ohnishi, L. Wang, G. Notomista, and M. Egerstedt. Barrier-certified adaptive
reinforcement learning with applications to brushbot navigation. IEEE Trans. Robotics,
35(5):1186–1205, 2019.

[193] I. Osband and B. Van Roy. Model-based reinforcement learning and the Eluder di-
mension. In Proc. NeurIPS, pages 1466–1474, 2014.



191

[194] S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE Trans. Knowledge and
Data Engineering, 22(10):1345–1359, 2010.

[195] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. 2017.

[196] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by
self-supervised prediction. In Proc. ICML, pages 16–17, 2017.

[197] A. Patterson, V. Liao, and M. White. Robust losses for learning value functions. IEEE
Trans. Pattern Analysis and Machine Intelligence, 45(5):6157–6167, 2022.

[198] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. DeepMimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Transactions on
Graphics, 37(4):1–14, 2018.

[199] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt.
The Robotarium: A remotely accessible swarm robotics research testbed. In IEEE
Proc. ICRA, pages 1699–1706, 2017.

[200] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expres-
sivity in deep neural networks through transient chaos. Proc. NeurIPS, 29, 2016.

[201] M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via stochastic gradi-
ent Langevin dynamics: a nonasymptotic analysis. In Conference on Learning Theory,
pages 1674–1703. PMLR, 2017.

[202] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
Proc. NeurIPS, pages 1177–1184, 2008.

[203] A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade. Towards generalization and
simplicity in continuous control. Proc. NeurIPS, 2017.

[204] E. M. Rathje, N. A. Abrahamson, and J. D. Bray. Simplified frequency content esti-
mates of earthquake ground motions. Journal of Geotechnical and Geoenvironmental
Engineering, 124(2):150–159, 1998.

[205] H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535, 1952.

[206] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni.
Learning control barrier functions from expert demonstrations. In IEEE Proc. CDC,
pages 3717–3724, 2020.



192

[207] I. D. J. Rodriguez, A. Ames, and Y. Yue. LyaNet: A Lyapunov framework for training
neural ODEs. In Proc. ICML, pages 18687–18703. PMLR, 2022.

[208] A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in BERTology: What we know
about how BERT works. Transactions of the Association for Computational Linguis-
tics, 8:842–866, 2021.

[209] M. Rosca, T. Weber, A. Gretton, and S. Mohamed. A case for new neural network
smoothness constraints. 2020.

[210] M. Rowland, M. Bellemare, W. Dabney, R. Munos, and Y. W. Teh. An analysis
of categorical distributional reinforcement learning. In Proc. AISTATS, pages 29–37.
PMLR, 2018.
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[260] H. Weyl. Über die gleichverteilung von zahlen mod eins. Math. Ann., 77:31–352, 1916.
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Appendix A

ADDITIONAL EXPERIMENTAL RESULTS

Detailed experimental setups and additional results are presented here.

A.1 Simulation setups and results of LC3

Below, we provide simulation setups, including the details of environments and parameter

settings. Specifically, the hyperparameters, namely, 1) variance of random control variation

for MPPI, 2) temperature parameter for MPPI, 3) planning horizon, 4) number of planning

samples, 5) prior parameter λ, 6) posterior reshaping constant, 7) number of episodes between

model updates, 8) number of features, and 9) RFF bandwidth, are presented.

Note parameters were tuned in the following way: we first tuned MPPI parameters on

ground truth models, then we tuned number of RFFs, their bandwidth, prior parameter,

and posterior reshaping constant.

A.1.1 Gym environments

The hyperparameters used for InvertedPendulum, Acrobot, CartPole, Mountain Car,

Reacher, and Hopper are shown in Table A.1, A.2, A.3, A.4, A.5, and A.6, respectively.

We used JULIA NUM THREADS=12 for all the Gym experiments.

We mention that we tested many heuristics to improve performance such as input nor-

malization, different prior parameter for each output dimension, using multiple bandwidth

of RFFs, ensemble of RFF models, warm start of planner, experience replay, etc., however,

none of them consistently improved the performance across tasks. Therefore we present the

results with no such heuristics in this paper. Interestingly, increasing number of RFFs for

some contact-rich dynamics such as Hopper did not reduce the modeling error significantly.
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Table A.1: Hyperparameters used for InvertedPendulum environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.22 number of features 200

temperature parameter 0.1 RFF bandwidth 5.5

planning horizon 10 prior parameter 10−4

number of planning samples 256 posterior reshaping constant 0

episodes between model updates 1

Table A.2: Hyperparameters used for Acrobot environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.22 number of features 200

temperature parameter 0.3 RFF bandwidth 4.5

planning horizon 30 prior parameter 0.01

number of planning samples 256 posterior reshaping constant 10−3

episodes between model updates 1

Being able to model some of the critical interactions such as contacts seems to be the key

for success of such a complicated environment.

A.1.2 Maze

In the Maze environment, states and controls are continuous and the agent plans over con-

tinuous spaces; however, the dynamics is given by 1) xh+1 = xh+[−0.5, 0]⊤ (i.e., moving one

step left) if ⌈2uh⌉ = −1, 2) xh+1 = xh + [0,−0.5]⊤ (i.e., moving one step up) if ⌈2uh⌉ = 0, 3)

xh+1 = xh + [0.5, 0]⊤ (i.e., moving one step right) if ⌈2uh⌉ = 1, and 4) xh+1 = xh + [0, 0.5]⊤

(i.e., moving one step down) if ⌈2uh⌉ = 2, except for the case there is a wall in the direction
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Table A.3: Hyperparameters used for CartPole environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.22 number of features 200

temperature parameter 0.1 RFF bandwidth 1.5

planning horizon 50 prior parameter 5× 10−4

number of planning samples 128 posterior reshaping constant 10−4

episodes between model updates 1

Table A.4: Hyperparameters used for Mountain Car environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.32 number of features 100

temperature parameter 0.2 RFF bandwidth 1.3

planning horizon 110 prior parameter 0.01

number of planning samples 512 posterior reshaping constant 10−6

episodes between model updates 1

Table A.5: Hyperparameters used for Reacher environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.22 number of features 300

temperature parameter 0.3 RFF bandwidth 4.0

planning horizon 20 prior parameter 0.01

number of planning samples 256 posterior reshaping constant 0

episodes between model updates 4
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Table A.6: Hyperparameters used for Hopper environment.

MPPI hyperparameter Value LC3 hyperparameter Value

variance of controls 0.22 number of features 200

temperature parameter 0.2 RFF bandwidth 12.0

planning horizon 128 prior parameter 5× 10−3

number of planning samples 64 posterior reshaping constant 0.01

episodes between model updates 1

of travel, which then ends up xh+1 = xh.

The hyperparameters of Maze experiments are shown in Table A.7. Note the number

of features is 100 because one hot vector (e.g., ϕ(x, u) = [1, 0, . . . , 0]⊤ if each coordinate of

x is smaller than −0.75 and u ≤ −0.5) in this maze environment is 100 dimension. Table

A.7 also includes the parameters for PETS-CEM; we used the recommended values in the

paper and the codebase, except for the planning horizon, which was set to be the same as

the MPPI counterpart. We used JULIA NUM THREADS=12 for all the Maze experiments.

A.1.3 Armhand with model ensemble features

In table A.8, we list the dynamical properties that were randomized to make our ensemble.

We use uniform distributions to present a window of possible, realistic values for the pa-

rameters: for example, we randomize the objects mass between 0.1 and 1.0 kg. The center

of mass distributions is the deviation from the center of the sphere, while the moments of

inertia parameter is one value applied to all elements of a diagonal inertia matrix for the

object. The contact parameters are specific to the MuJoCo dynamics simulator we use [244],

and are the parameters of internal contact model of the simulation. The range of values

of the parameters allow for objects in the ensemble to have different softness and rebound

effects.



202

Table A.7: Hyperparameters used for Maze environment.

Planner hyperparameter Value LC3 hyperparameter Value

variance of controls 0.32 number of features 100

temperature parameter 0.05 prior parameter 0.01

MPPI planning horizon 50 posterior reshaping constant 10−3 (best)

MPPI planning samples 1024 episodes between model updates 1

PETS-CEM horizon 50

PETS-CEM samples 500

PETS-CEM elite size 50

Also, Table A.9 lists learned model predictive error for different features, indicating that

the ensemble of MuJoCo model successfully captured the true dynamics.

A.2 Simulation setups and results of KSNR

In this section, we provide simulation setups, including the details of environments (see also

Figure A.1) and parameter settings.

A.2.1 Cross-entropy method

Throughout, we used CEM for dynamics parameter (policy) selection to approximately solve

KSNR. Here, we present the setting of CEM.

First, we prepare some fixed feature (e.g., RFFs) for ϕ. Then, at each iteration of

CEM, we generate many parameters to compute the loss (i.e., the sum of the Koopman

spectrum cost and negative cumulative reward) by fitting the transition data generated by

each parameter to the feature to estimate its Koopman operator A . In particular, we used

the following regularized fitting:

A = Y X⊤(XX⊤ + I)−1,
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Table A.8: Hyperparameters used for Armhand environment.

Hyperparameter Value Ensemble parameter Value

variance of controls 0.22 models in ensemble 6

temperature parameter 0.08 mass U(0.01, 1.0)

planning horizon 50 center of mass U(−0.04, 0.04)× 3

number of planning samples 64 moments of inertia U(0.0001, 0.0004)

prior parameter 10−4 contact param. (solimp) [U(0.5, 0.99),

U(0.4, 0.98),

U(0.0001, 0.01),

U(0.49, 0.51),

U(1.9, 2.1)]

posterior reshaping constant 0.01 Contact Param. (solref) [U(0.01, 0.03),

U(0.9, 1.1)]

episodes between model updates 1

Table A.9: Learned model predictive error for different features.

Feature method Predictive error:

∥xh+1 −Wϕ∥2/∥Wϕ∥2

Random Fourier features, 2048 0.22

2 layer neural network, 2048 hidden, relu activation 0.41

Model ensemble of 6 models 0.09
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Figure A.1: Illustration of some dynamical systems we have used in Chapter 4. Left: Simple
limit cycle represented effectively by the Koopman modes. Middle: DeepMind Control
Suite [238] Cartpole showing stable cycle with spectral radius regularization. Right: OpenAI
Gym [46] Walker2d showing simpler movement cycle when the Koopman eigenvalues are
regularized.

where Y := [ϕxh1+1,1
,ϕxh2+1,2

, . . . ,ϕxhn+1,n
] and X := [ϕxh1,1

,ϕxh2,2
, . . . ,ϕxhn,n

].

If the feature spans a Koopman invariant space and the deterministic dynamical systems

are considered, and if no regularization (i.e., the identity matrix I) is used, any sufficiently

rich trajectory data may be used to exactly compute K (π) for π. However, in practice,

the estimate depends on transition data although the regularization mitigates this effect.

In our simulations, at each iteration, we randomly reset the initial state according to some

distribution, and computed loss for each parameter generating trajectory starting from that

state.

A.2.2 On Koopman modes

Suppose that the target Koopman operator A ⋆ has eigenvalues λi ∈ C and eigenfunctions

ξi : X → C for i ∈ {1, 2, . . . , dϕ}, i.e.,

A ⋆ξi = λiξi.
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If the observable ϕ satisfies

ϕx =

dϕ∑
i=1

ξi(x)m⋆
i ,

for m⋆
i ∈ Cdϕ , then m⋆

i s are called the Koopman modes. The Koopman modes are closely

related to the concept isostable; interested readers are referred to [168] for example.

We mention the spectrum cost Λ(A ) = ∥m1−m⋆
1∥1 does not satisfy the Hölder condition

(Assumption 4.3.11) in general; therefore this cost might not be used for KS-LC3.

A.2.3 Setups: imitating target behaviors through Koopman operators

The discrete-time dynamics

rh+1 = rh + vr,h∆t, θh+1 = θh + vθ,h∆t

is considered and the policy returns vr,h and vθ,h given rh and θh. In our simulation, we used

∆t = 0.05. Note the ground-truth dynamics

ṙ = r(1− r2), θ̇ = 1,

is discretized to

rh+1 = rh + rh(1− r2h)∆t, θh+1 = θh + ∆t.

Figure A.2 plots the ground-truth trajectories of observations and x-y positions.

We trained the target Koopman operator using the ground-truth dynamics with random

initializations; the hyperparameters used for training are summarized in Table A.10.

Then, we used CEM to select policy so that the spectrum cost is minimized; the hyper-

parameters are also summarized in Table A.10.

We tested two forms of the spectrum cost; Λ1(A ) = ∥m −m⋆∥1 and Λ2(A ) = ∥A −

A ⋆∥2HS. The resulting trajectories are plotted in Figure A.3 and A.4, respectively. It is

interesting to observe that the top mode imitation successfully converged to the desirable
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Table A.10: Hyperparameters used for limit cycle generation.

CEM hyperparameter Value Training target Koopman operator Value

samples 200 training iteration 500

elite size 20 RFF bandwidth for ϕ 3.0

iteration 50 RFF dimension dϕ 80

planning horizon 80 horizon for each iteration 80

policy RFF dimension 50

policy RFF bandwidth 2.0

limit cycle while Frobenius norm imitation did not. Intuitively, the top mode imitation

focuses more on reconstructing the practically and physically meaningful behavior while

minimizing the error on the Frobenius norm has no immediately clear physical meaning.

Figure A.2: The ground-truth trajectory of the limit cycle ṙ = r(1 − r2), θ̇ = 1. Left:
Observations r, cos(θ), and sin(θ). Right: x-y positions.
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Figure A.3: The trajectory generated by RFF policies that minimize Λ(A ) = ∥m −m⋆∥1.
Left: Observations r, cos(θ), and sin(θ). Right: x-y positions.

A.2.4 Setups: Generating stable loops (Cartpole)

We used DeepMind Control Suite Cartpole environment with modifications; specifically, we

extended the cart rail to [−100, 100] from the original length [−5, 5] to deal with divergent

behaviors. Also, we used a combination of linear and RFF features; the first elements of

the feature are simply the observation (state) vector, and the rest are Gaussian RFFs. That

way, we found divergent behaviors were well-captured in terms of spectral radius. The

hyperparemeters used for CEM are summarized in Table A.11.

Table A.11: Hyperparameters used for stable loop generation.

Hyperparameter Value Hyperparameter Value

samples 200 elite size 20

iteration 100 planning horizon 100

dimension dϕ 50 RFF bandwidth for ϕ 2.0

policy RFF dimension 100 policy RFF bandwidth 2.0
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Figure A.4: The trajectory generated by RFF policies that minimize Λ(A ) = ∥A −A ⋆∥2HS.
Left: Observations r, cos(θ), and sin(θ). Right: x-y positions.

A.2.5 Setups: Generating smooth movements (Walker)

Because of the complexity of the dynamics, we used four random seeds in this simulation,

namely, 100, 200, 300, and 400. We used a combination of linear and RFF features for both

ϕ and the policy. Note, according to the work [203], linear policy is actually sufficient for

some tasks for particular environments. The hyperparemeters used for CEM are summarized

in Table A.12.

Table A.12: Hyperparameters used for Walker.

Hyperparameter Value Hyperparameter Value

samples 300 elite size 20

iteration 50 planning horizon 300

dimension of dϕ 200 RFF bandwidth for ϕ 5.0

policy RFF dimension 300 policy RFF bandwidth 30.0

The resulting trajectories of Walker are illustrated in Figure A.5. The results are rather

surprising; because we did not specify the height in reward, the dynamics with only cumu-
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lative cost showed rolling behavior (top figure) to go right faster most of the time. On the

other hand, when the spectrum cost was used, the hopping behavior (down figure) emerged.

Indeed this hopping behavior moves only one or two joints most of the time while fixing

other joints, which leads to lower (absolute values of) eigenvalues.

The eigenspectrums of the resulting dynamics with/without the spectrum cost are plotted

in Figure A.6. In fact, it is observed that the dynamics when the spectrum cost was used

showed consistently lower (absolute values of) eigenvalues; for the hopping behavior, most

of the joint angles converged to some values and stayed there.

Figure A.5: Walker trajectories visualized via Lyceum. Top: When only (single-step) reward
v − 0.001∥a∥2R6 is used, showing rolling behavior. Down: When the spectrum cost Λ(A ) =

5
∑dϕ

i=1 |λi(A )| is used together with the reward, showing simple hopping behavior.
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Figure A.6: Eigenspectrums showing absolute values of eigenvalues for the dynamics
with/without the spectrum cost.

A.2.6 Additional experiments on smooth Walker motions

To investigate smooth motion generations studied in the main body of this thesis more, we

conducted additional experiments. Especially, we also compare our KSNR for smoothness

enhancements to the use of action costs in the Walker environment. In this experiment,

we used the hyperparameters summarized in Table A.13. We again used a combination of

linear and RFF features for both ϕ and the policy. Recall the default immediate reward is

v − 0.001∥a∥2R6 , where v is the velocity and a is the action vector of dimension 6. Here, in

addition to KSNR, we tested increased action cost scenarios where the immediate rewards

are v − 0.01∥a∥2R6 and v − 0.1∥a∥2R6 respectively. Across the six seed runs (of seed numbers

of 100, 200, 300, 400, 500, and 600), we obtained the mean of the cumulative reward and

the cumulative action cost (which is computed for the trajectories using 0.001∥a∥2R6 for all

of the cases), and the mean and standard deviation of the spectrum cost, all of which are

summarized in Table A.14. As observed, increased action cost in our scenarios shows lower

spectrum cost; while KSNR shows better cumulative reward with better spectrum cost.

However, the motion generated by the increased action cost shows lower action penalty cost;
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which implies that the spectrum cost and the action cost have some correlation while they

qualitatively prefer different motions. We also measured the smoothness by another metric

than the spectrum cost itself, which is defined by

Smoothness(τ) :=
1

dxH

H−1∑
h=0

∥xh+1 − xh∥1,

where τ := {xh}Hh=0 is a trajectory. The mean smoothness values across the runs for the

motions generated by the CEM algorithms with default action cost, 10 times more action

cost, 100 times more action cost, and with the spectrum cost are 0.082, 0.033, 0.007, and

0.028 respectively, and they appear to be consistent to the spectrum cost in this case. The

motions are visualized in Figure A.8; their joint trajectories are plotted in Figure A.7 and

the eigenspectrums are given in Figure A.9. Note those motions are of those showing median

values of the spectrum cost within the seed runs.

Table A.13: Hyperparameters used for additional Walker smoothness experiments.

Hyperparameters Value Hyperparameters Value

samples 300 elite size 20

iteration 120 planning horizon 300

dimension of dϕ 200 RFF bandwidth for ϕ 5.0

policy RFF dimension 300 policy RFF bandwidth 30.0
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Table A.14: Cumulative reward, cumulative action cost (penalty), and spectrum cost com-
parisons.

Method (Env. setting) Reward Penalty Spectrum cost (mean) Spectrum cost (std)

CEM (default action cost) 1011.5 177.3 317.0 ±33.2

CEM (×10 action cost) 596.4 10.9 213.2 ±50.0

CEM (×100 action cost) 63.4 0.5 88.8 ±46.6

CEM (with spectrum cost) 737.8 78.1 186.6 ±88.4

Figure A.7: Joint trajectories of Walker motions generated by the CEM algorithm with
default action cost, 10 times more action cost, 100 times more action cost, and with the
spectrum cost. They are of those showing median values of the spectrum cost within the
seed runs.
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Figure A.8: Visualizations of Walker motions generated by the CEM algorithm with default
action cost, 10 times more action cost, 100 times more action cost, and with the spectrum
cost. The motions are of those showing median values of the spectrum cost within the seed
runs. It is observed that the motion generated by the one with 10 times more action cost is
smooth but uses two feet to hop, which would reduce the magnitudes of actions applied to
the joints. The motion generated by the one with the spectrum cost again lifts one foot and
hops; this specific visualized motion then shows a bit of rotation at the last moment.
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Figure A.9: Averaged eigenspectrums showing absolute values of eigenvalues for the dynamics
with/without the spectrum cost and with 10 times more action cost and 100 times more
action cost.

A.3 Additional numerical examples and setups for signature control

A.3.1 Details on the choice of terminal S-functions

In this section, we present the details of the choice of terminal S-functions. Other than the

one used in the main text (illustrated in Figure A.10), another example of T Sm is given by

T Sm(x, s, σ) ∈ arg min
u∈Tm(X )

ℓ (s⊗m Sm(σ)⊗m u) + ℓreg(u). (A.3.1)

If this computation is hard, one may choose T Sm(x, s, σ) = 1; or for path tracking problem,

one may choose the signature of a straight line between the endpoint of σ∗ and the endpoint

of σ. These three examples are shown in Figure A.11.

Terminal S-function and surrogate costs: For an application to MPC problems, we

analyze the surrogate cost ℓ, regularizer ℓreg, and the terminal S-function T S in Algorithm

3. Suppose the problem is to track a given path with signature s∗ (m =∞). Fix the cost ℓ
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Figure A.10: Illustration of the terminal S-function used in this work.

to ℓ(s) = ∥s− s∗∥2 − w1∥s∥2 and ℓreg to ℓreg(s) = w2∥s∥2, where w1, w2 ∈ R≥0 are weights.

Here, ℓreg regularizes so that the terminal path becomes shorter, i.e., the agent prefers

progressing more with accuracy sacrifice. The term w1∥s∥2 for ℓ is used to allow some

deviations from the reference path. The norm ∥ · ∥ here is the one induced by the inner

product defined in Section 2.1.7.

Fact A.3.1 (cf. [95, 42]). For the signature S(σ) = (1, s1, s2, . . .) of a path σ of finite

variation on X with the length |σ| <∞, it follows that

∥sk∥X⊗k ≤ |σ|
k

k!
.

For sufficiently well-behaved path (see [95, 42] for example), the limit exists:

lim
k→∞
∥|σ|−kk!sk∥2X⊗k ≤ 1.

If the norm is the projective norm, the limit is 1.

From this, we obtain

∥S(σ)∥2 =
∞∑
k=0

∥sk∥2X⊗k ≤
∞∑
k=0

(
|σ|k

k!

)2

≤

(
∞∑
k=0

|σ|k

k!

)2

= e2|σ|,
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Figure A.11: Illustrations of example terminal S-functions when given target path to track.
σT
t is the transformed past path whose signature is st. The left shows (A.3.1); the future

path ignores any dynamic constraints and the optimal virtual path is computed. The middle
is for the case that the signature is 1. The right is the case where straight line between the
endpoint of the target path and the state at time t+ Ta is the terminal path.

and for a zero length path, i.e., a point, we obtain 1 = ∥S(σ)∥2 = e2|σ|. Therefore, while one

could use (k!∥sk∥X⊗k)1/k for large k as a proxy of |σ|, we simply use ∥S(σ)∥2.

We compare the following three different setups with the same surrogate cost and reg-

ularizer (w1 = 0, w2 = 1): (1) terminal path is the straight line between the endpoints of

the rollout and the reference path, (2) terminal path is computed by nested optimization

(see (A.3.1)), and (3) terminal path is given by the subpath of the reference path from the

end time of the rollout. The comparisons are plotted in Figure A.12. In particular, for the

reference path (linear x = t or sinusoid x = sin(tπ)) over time interval [0, 3], we use 20 out

of 50 nodes to generate subpaths up to the fixed time 1.2. We use Adam optimizer with step

size 0.1; and 300 update iterations for all but the type (2) above, which uses 30 iterations

both for outer and inner optimizations.

From the figure, our example costs ℓ and ℓreg properly balance accuracy and length of

the rollout subpath.
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Figure A.12: Top: Green line is generated by the same approach as the one used in this
work; orange one does inner optimization to obtain the optimal terminal S-function and the
red line uses the straight line as the terminal path. Down: Comparison of the costs for the
three subpaths and two other longer paths using the same choice of the terminal path as that
in this work. As expected, longer subpath has lower score thanks to the regularizer cost.
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A.3.2 Experimental setups

Here, we describe the detailed setups of each experiment and show some extra results.

Simple pointmass MPC

The parameters used for RRT* and CEM planner are shown in Table A.15.

The parameters for the signature MPC are given in Table A.16. Here, scaling of the

states indicates that we multiply the path by this value and then compute the cost over the

scaled path. Note we used torchdiffeq package [58, 59] of PyTorch [195] to compute rollout,

and the evaluated points are of switching points of actions, and it replans when the current

action repetition ends.

Table A.15: RRT* and CEM parameters.

Hyperparameter Value Hyperparameter Value

max distance to the sample 10.0 goal state sample rate 0.2

safety margin to obstacle 0.0 γ to determine neighbors 1.0

CEM distance cost quadratic CEM obstacle penalty 1000

CEM elite number 3 CEM sample number 8

CEM iteration number 3 numpy random seed 1234

Integral control examples

We list the parameters used for signature MPCs; the execution horizon is 15.0 sec, and the

reference is the signature of the linear path over the zero state along time interval from 0 to

25.0 (we extended the reference from 15.0 to 25.0 to increase stability). The control inputs

are assumed to be fixed over planning horizon, and are actually executed over a planning

interval. The number of evaluation points when planning is given so that the rollout path is
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Table A.16: Parameters for the signature MPCs of point-mass (shared values for zero ter-
minal S-function and the best choice ones).

Hyperparameter Value Hyperparameter Value

static kernel RBF/scale 0.5 dyadic order of PDE kernel 2

scaling of the states 0.05 update number of PyTorch 20

step size for update 0.2 number of actions N 3

weight w1 0 regularizer weight w2 8.0

maximum magnitude of control 1.0

approximated by the piecewise linear interpolation of those points (e.g., for planning horizon

of 1.0 sec with 5 eval points, a candidate of rollout path is evaluated evenly with 0.2 sec

interval).

The signature cost is the squared Euclidean distance between the reference path signature

and the generated path signature up to depth 1 or 2; the terminal path is just a straight line

along the time axis, staying at the current state.

The parameters used for signature MPCs are listed in Table A.17; note the truncation

depths for signatures are 1 and 2, respectively.

Path tracking with Ant

We use DiffRL package [269] Ant model.

Reference generation: We generate reference path over 2D plane with the points

[0.0, 0.0], [2.6,−3.9], [5.85,−1.95], [6.5, 0.0], [5.85, 1.95],

[2.6, 3.9], [0.0, 3.51], [−3.25, 0.0], [−6.5,−3.9], [−6.5, 4.55]
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Table A.17: Parameters for the signature MPC for two-mass, spring, damper system.

Hyperparameter Value Hyperparameter Value

kernel type truncated linear horizon for MPC 1.0 sec

number of eval points 5 update number per step 50

step size for update 0.1 planning interval 0.5 sec

number of actions 1 max horizon 25.0 sec

maximum magnitude of control 1.0

and we obtain the splined path with 2000 nodes (skip number 1, weight for smoothness 0.5,

iteration number 150 with Adam optimizer). Also, to use for the terminal path in MPC

planning, we obtain rougher one with 200 nodes.

We run signature MPC (parameters are listed in Table A.18) and the simulation steps to

reach the endpoint of the reference is found to be 880. Then, we run the baseline MPC; for

the baseline, we generate 880 nodes for the spline (instead of 2000). Note these waypoints are

evenly sampled from t = 0 to t = 1 of the obtained natural cubic spline. We also test slower

version of baseline MPC with 1500 and 2500 simulation steps (i.e., number of waypoints).

Cost and reward: The baseline MPC uses time-varying waypoints by augmenting the

state with time index. The time-varying instantaneous cost cbaseline to use is inspired by

[198]:

cbaseline(x, t) = −
dx∑
i=1

exp{−10(x(i) − x∗(i)(t))2}

for time step t, where x∗(t) is the (scaled) waypoint at time t and x(i) is the ith dimension

of (the scaled state) x ∈ Rdx . In addition to this cost, we add height reward for the baseline

MPC:

rheight(z) = −100LeakyReLU0.001(0.37− z),
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where LeakyReLU0.001 is the Leaky ReLU function with negative slope 0.001 and z is the

height of Ant. For signature MPC, in addition to the signature cost described in the main

text, we also add the Bellman reward 10rheight (the scale 10 is multiplied to balance between

signature cost and the height reward).

Experimental settings and evaluations: The parameters are listed in Table A.18. The

parameters used for SAC RL are listed in Table A.19.

Since the model we use is differentiable, we use Adam optimizer to optimize rollout

path by computing gradients through path. Surprisingly, with only 3 gradient steps per

simulation step, it is working well; conceptually, this is similar to MPPI [262] approach

where the distribution is updated once per simulation step and the computed actions are

shifted and kept for the next planning. Also, we set the maximum points of the past path

to obtain signatures to 50 (we skip some points when the past path contains more than 50

points).

To evaluate the accuracy, we generate 2000 nodes from the spline of the reference, and

we compute the Euclidean distance from each node of the reference to the closest simulated

point of the generated trajectory. The relative cumulative deviations are plotted in Figure

A.13. For the same reaching time, signature MPC is significantly more accurate. When the

speed is slowed, baseline MPC becomes a bit more accurate. Note our signature MPC can

also tune the trade-off between accuracy and progress without knowing feasible waypoints.

Also, the performance curve of SAC RL is plotted in Figure A.15 (left) against the

cumulative reward achieved by the signature MPC counterpart. We see that RL shows poor

performance (refer to the discussions on difficulty of RL for path tracking problems in [198]).
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Table A.18: Parameters for the signature MPC for Ant. Baseline MPC shares most of the
common values except for scaling, which is 1.0 for baseline MPC.

Hyperparameter Value Hyperparameter Value

static kernel RBF/scale 0.5 dyadic order of PDE kernel 1

scaling of the states 0.2 update number of PyTorch 3

step size for update 0.1 number of actions N 64

weight w1 0 regularizer weight w2 3.0

maximum magnitude of control 1.0

Table A.19: Parameters for the SAC RL for Ant path following.

Hyperparameter Value Hyperparameter Value

number of steps per episode 128 initial alpha for entropy 1

step size for alpha 0.005 step size for actor 0.0005

step size for Q-function 0.0005 update coefficient to target Q-function 0.005

replay buffer size 106 number of actors 64

NN units for all networks [256, 128, 64] batch size 4096

activation function for NN tanh episode length 1000
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Figure A.13: For each node of the reference path, we compute the Euclidean distance from
the closest simulated point of the generated trajectory. Phase is from 0 to 1, corresponding
to the start and end points of the reference. Left shows the relative cumulative deviations
along 2000 nodes of the reference for Ant. They are the errors of the baseline MPC compared
to the errors of signature MPC; hence positive value shows the advantage of signature MPC.
Right shows those for robotic arm experiments with different magnitudes of disturbances
added to every joint.

Path tracking with Franka arm end-effector

We use DiffRL package again and a new Franka arm model is created from URDF model

[232].

Model: The stiffness and damping for each joint are given by

stiffness : 400, 400, 400, 400, 400, 400, 400, 106, 106,

damping : 80, 80, 80, 80, 80, 80, 80, 100, 100,

and the initial positions of each joint are

1.157,−1.066,−0.155,−2.239,−1.841, 1.003, 0.469, 0.035, 0.035.

The action strength is 60.0 N ·m. Simulation step is 1/60 sec and the simulation substeps

are 64.
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Reference generation: We similarly generate reference path for the end-effector position

with the points

[0.0, 0.0, 0.0], [0.1,−0.1,−0.1], [0.2,−0.15,−0.2], [0.18, 0.0,−0.18],

[0.12, 0.1,−0.12], [0.08,−0.1, 0.0], [0.05,−0.15, 0.1], [0.0,−0.12, 0.2],

[−0.05,−0.05, 0.25], [−0.1, 0.1, 0.15], [−0.05, 0.05, 0.08]

and we obtain the splined path with 1000 nodes (skip number 1, weight for smoothness

0.001, iteration number 150 with Adam optimizer). Also, to use for the terminal path in

MPC planning, we obtain rougher one with 100 nodes. Similar to Ant experiments, we use

270 evenly assigned waypoints for the baseline MPC.

For the case with unknown disturbance, we use the same waypoints.

Experimental settings and evaluations: The parameters for MPCs are listed in Table

A.20. The parameters used for SAC RL are listed in Table A.21.

We again set the maximum points of the past path to obtain signatures to 50, and the

unknown disturbances are added to every joint.

The performance curve of SAC RL is plotted in Figure A.15 (right) against the cumulative

reward achieved by the signature MPC counterpart. We see that the cumulative reward

itself of SAC RL outperforms the signature MPC for no disturbance case for the robotic arm

experiment; however it does not necessarily show better tracking accuracy along the path.

To evaluate the accuracy, we generate 1000 nodes from the spline of the reference. The

relative cumulative deviations are plotted in Figure A.13. For all of the disturbance mag-

nitude cases, signature MPC is more accurate. When the disturbance becomes larger, this

difference becomes significant, showing robustness of our method.

Visually, the generated trajectories are shown in Figure A.14.
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Table A.20: Parameters for the signature MPC for robotic arm. Baseline MPC shares most
of the common values except for scaling, which is 1.0 for baseline MPC.

Hyperparameter Value Hyperparameter Value

static kernel RBF/scale 0.5 dyadic order of PDE kernel 1

scaling of the states 10.0 update number of PyTorch 3

step size for update 0.1 number of actions N 16

weight w1 0.5 regularizer weight w2 0.5

maximum magnitude of control 1.0

Table A.21: Parameters for the SAC RL for robotic arm path following.

Hyperparameter Value Hyperparameter Value

number of steps per episode 128 initial alpha for entropy 1

step size for alpha 0.005 step size for actor 0.0005

step size for Q-function 0.0005 update coefficient to target Q 0.005

replay buffer size 106 number of actors 64

NN units for all networks [256, 128, 64] batch size 2048

activation function for NN tanh episode length 300
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Figure A.14: Top: the left one shows signature control result for robotic arm manipulator
end-effector path tracking and the right one shows the baseline MPC. They are tracking
the path similarly well. Down: under disturbance −30.0. The baseline tracking accuracy is
deteriorated largely while signature control is robust against disturbance. Signature MPC
tries to track the first curve stubbornly by taking time there to retrace better. This is because
the signature MPC is insensitive to waypoint designs but rather depends on the “distance”
between the target path and the rollout path in the signature space.
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Figure A.15: Soft-actor-critic RL baseline for Ant (left) and robotic arm (right) path fol-
lowing experiment. The red curve shows the average cumulative rewards with standard
deviation shade over five different seed runs, and the black line is for reference of the cumu-
lative rewards achieved by signature control. The reward is the same (negative cost) as that
used in the baseline MPC, and the state is augmented with the time step (maximum time
step is 1000 and 300 given that the goal-reaching time of signature control is 880 and 270
steps, respectively). For the ant case, RL did not achieve comparable performance in terms
of rewards. For the robotic arm case under no disturbance, the RL outperforms signature
control slightly.

A.4 Simulations for dynamic structure estimation

This section presents the simulation setups and results for Chapter 6.

A.4.1 Period estimation: LifeGame

The hyperparameters of LifeGame environment and the algorithm are summarized in Table

A.22. Note µ = 0 because it is a periodic transition. Here, we used 12×12 blocks of cells and

we focused on the five blocks surrounded by the red rectangle in Figure A.16. The transition

rule is given by

1. If the cell is alive and two or three of its surrounding eight cells are alive, then the cell

remains alive.
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Table A.22: Hyperparameters used for period estimation of LifeGame.

LifeGame hyperparameter Value Algorithm hyperparameter Value

height 12 accuracy for estimation ρ 0.98

width 12 failure probability bound δ 0.2

observed dimension 5 maximum possible period Lmax 10

observation noise proxy R 0.3

ball radius B
√

5

Figure A.16: The area we focus on for the cellular automata experiment.

2. If the cell is alive and more than three or less than two of its surrounding eight cells

are alive, then the cell dies.

3. If the cell is dead and exactly three of its surrounding eight cells are alive, then the

cell is revived.

A.4.2 Period estimation: Simple µ-nearly periodic system

The dynamical system

rt+1 = µ

(
α
rt − 1

µ
− ⌈αrt − 1

µ
⌉
)

+ 1, θt+1 = θt +
2π

L
,

is µ-nearly periodic. See Figure A.17 for the illustrations when µ = 0.2, L = 5, α = π. It is

observed that there are five clusters. We mention that this system is not exactly periodic.
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The hyperparameters of this system and the algorithm are summarized in Table A.23.

Table A.23: Hyperparameters used for µ-nearly periodic system.

System hyperparameter Value Algorithm hyperparameter Value

dimension 2 accuracy for estimation ρ 0.3

µ 0.001 failure probability bound δ 0.2

α π maximum possible nearly period Lmax 8

observation noise proxy R 0.3

ball radius B 2

Table A.24: Hyperparameters used for eigenvalue estimation.

Hyperparameter Value Hyperparameter Value

κ 6 a nearly period L 24

∆ 0.1 failure probability bound δ 0.2

dimension 5 observation noise proxy R 0.3

ball radius B 1

A.4.3 Eigenvalue estimation

We used the matrix M given by

M :=



0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 0.7


.
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Figure A.17: An example of µ-nearly periodic system.

The first 4 × 4 block matrix is for permutation. After N steps, it is expected that the

last dimension shrinks so that the system becomes nearly periodic. It follows that 4! = 24

is a multiple of the length L. Eigenvalues of M5 are given by 1.000, 1.000, −0.500 −

0.866i, −0.500 + 0.866i, 0.168, and the (θ0, 5)-distinct eigenvalues are 1.000, −0.500 −

0.866i, −0.500 + 0.866i.

The hyperparameters of the environment and the algorithm are summarized in Table

A.24. Note we don’t necessarily need κ, B, and ∆ to run the algorithm as long as the

effective sample size is sufficiently large; we used the values (satisfying the conditions) in

Table A.24 for simplicity.
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A.5 Array of experimental analyses of deep RL with different critic loss

We first define the RL environments studied in Chapter 7.

A.5.1 Toy MDPs

Our representative MDP classes are proven to show behaviors categorized as one of the

behavior classes. Therefore, for our numerical experiment of toy MDPs, we construct MDPs

that may not be necessarily covered by them, and we update the Q estimate every time step

instead of every episode. Our toy MDPs, namely MDP 1, MDP 2, MDP 3, MDP4 and MDP

5, are depicted in Figure A.18.

MDP 1: This MDP has smooth or guiding reward which tells the learner to reach State 3.

MDP 2: This MDP has additional large penalty for transitioning to State 2 and large

reward for transitioning to State 3.

MDP 3: There are no guiding reward and is a large negative penalty for transitioning to

State 2.

MDP 4: For this MDP, there exist two actions for transitioning to the goal State and the

respective rewards are both positive but with some difference.

MDP 5: For this MDP, the reward is probabilistic which is designed to separate mean and

median estimates of the value (refer to Case study 1).
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Figure A.18: Illustrations of MDPs 1 to 5; the zero rewards are not depicted.
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A.5.2 1D continuous environments

We created 13 1D environments. Note for this set of environments, we will use deep RL

algorithms (SAC with different loss functions); the complexity is hence high even with the

one-dimensional action and observation space. The observation (same as state in our exam-

ples) s ∈ S := [−5, 5] ∪ Se evolves with the action a ∈ A := [−1, 1] by

M
(
P[−5,5][s+ 0.1a+ ϵ], a

)
,

where P[−5,5] : R → [−5, 5] projects back the state onto [−5, 5], M : [−5, 5] × [−1, 1] →

[−5, 5] ∪ Se is a map specific to each environment, and ϵ ∼ N (0, σ2) with an environment-

specific σ.

Representative environments

We first present the four representative 1D environments showing each one of the behavior

classes.

1D representative env. for Class 1: M(s) = s for all s, σ = 0, and the reward is

defined by

∀s, s′ ∈ S, ∀a ∈ A : R(s, s′, a) = −(0.001a2 + 0.03s2).

It is a simple system with smooth reward function.

1D representative env. for Class 2: M is defined by

M(s, a) =

done if s ∈ [−0.3, 0.3]

s otherwise

,

where done ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =

−(0.001a2 + 0.03s2) + 200 if s′ ∈ done

−(0.001a2 + 0.03s2) otherwise

.
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While it is similar to the Class 1 representative, it has a large reward around the center to

exit the episode, which is expected to cause instability for SAC.

1D representative env. for Class 3: M is defined by

M(s, a) =



2.5 if s ∈ [−3.8,−3.5)

0.8 if s ∈ [−3.4,−3.2)

bad1 if s ∈ [−1.7,−1.4)

good1 if s ∈ [−0.2, 0.2]

bad2 if s ∈ [1.4, 1.7)

−0.8 if s ∈ [3.2, 3.4)

−2.5 if s ∈ [3.5, 3.8)

s otherwise

,

where bad1, bad2, good1 ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



−(0.001a2 + 0.03s2)− 50 if s′ = bad1

−(0.001a2 + 0.03s2) + 100 if s′ = good1

−(0.001a2 + 0.03s2)− 50 if s′ = bad2

−(0.001a2 + 0.03s2) otherwise

.

There exist many transports and a few large penalties and reward without smooth guiding

reward.
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1D representative env. for Class 4: M is defined by

M(s, a) =



1 if s ∈ [−2.5,−2)

bad1 if s ∈ [−2.0,−1.5)

good1 if s ∈ [−0.1, 0.1]

bad2 if s ∈ [1.5, 2]

−1 if s ∈ (2, 2.5]

s otherwise

,

where bad1, bad2, good1 ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



−(0.1a2 + 0.03s2)− 100 if s′ = bad1

−(0.1a2 + 0.03s2) + 100 if s′ = good1

−(0.1a2 + 0.03s2)− 100 if s′ = bad2

−(0.1a2 + 0.03s2) otherwise

.

It is similar to the Class 3 representative while the highest reward can only be obtained when

the agent tunes to the narrow interval of [−0.1, 0.1].

1D representative env. for Case study 2: M is defined by

M(s, a) =

done if s ∈ [−0.1, 0.1]

s otherwise

,

where done ∈ Se, and σ = 0.05. The reward is defined by

∀s, s′ ∈ S, ∀a ∈ A : R(s, s′, a) = −(0.1a2 + s2).

It is mostly similar to that of the Class 1 representative while having much larger magnitudes

of reward. The done state is reached from a narrow interval, which, as a result, may possess

some flavor of the Class 2 representative.
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Other environments

Here, we present other environments with similar properties to those in the representative

environments.

1D env. #6: M is defined by

M(s, a) =

done if s ∈ [−0.3, 0.3]

s otherwise

,

where done ∈ Se, and σ = 0. The reward is defined by

∀s, s′ ∈ S, ∀a ∈ A : R(s, s′, a) = −(0.001a2 + 0.03s2).

It is similar to the Class 1 representative but with done state which can be easily reached.

1D env. #7: M is defined by

M(s, a) =

done if s ∈ [−0.3, 0.3]

s otherwise

,

where done ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



1 if s′ < 0 ∧ a > 0

−1 if s′ < 0 ∧ a < 0

1 if s′ > 0 ∧ a < 0

−1 if s′ > 0 ∧ a > 0

200 if s′ ∈ done

.

The action cost in this environment naturally guides the agent to reach the center having

large reward, which resembles the Class 2 representative.
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1D env. #8: M is defined by

M(s, a) =



done if s ∈ [−0.3, 0.3]

bad1 if s ≤ −4.9

bad2 if s ≥ 4.9

s otherwise

,

where done, bad1, bad2 ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



−(0.001a2 + 0.03s2) + 100 if s′ = bad1

−(0.001a2 + 0.03s2) + 100 if s′ = bad2

−(0.001a2 + 0.03s2)− 100 if s′ = done ∧ |a| ≥ 0.8

−(0.001a2 + 0.03s2) + 100 if s′ = done ∧ |a| < 0.8

−(0.001a2 + 0.03s2) otherwise

.

There is a smooth guiding reward while some large penalties and rewards are given at the

exit states. This resembles the Class 2 representative but it has also some flavor from the

Class 4 representative because of the necessity of tuning of action magnitude when entering

done state.
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1D env. #9: M is defined by

M(s, a) =



−3 if s ∈ [−3.8,−3.5)

bad1 if s ∈ [−3.4,−3.2)

−1.5 if s ∈ [−2.5,−2.2)

bad2 if s ∈ [−2.1,−1.9)

bad3 if s ∈ [1.9, 2.1)

1.5 if s ∈ [2.2, 2.5)

bad4 if s ∈ [3.2, 3.4)

3 if s ∈ [3.5, 3.8)

s otherwise

,

where bad1, bad2, bad3, bad4 ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



−0.001a2 − 50 if s′ = bad1

−0.001a2 − 50 if s′ = bad2

−0.001a2 − 50 if s′ = bad3

−0.001a2 − 50 if s′ = bad4

−0.001a2 + 50 if s+ 0.1a ∈ [−3.8,−3.5)

−0.001a2 + 50 if s+ 0.1a ∈ [−2.5,−2.2)

−0.001a2 + 50 if s+ 0.1a ∈ [2.2, 2.5)

−0.001a2 + 50 if s+ 0.1a ∈ [3.5, 3.8)

−(0.001a2 + 0.5s2) + 3 if s+ 0.1a ∈ [−1.5, 1.5]

−0.001a2 otherwise

.

While there are no significant guiding reward, showing some flavors of the Class 3 repre-

sentative, it has some guided route to the center after the agent reaches to s = −2.5 or
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s = 2.5 with some additional large penalty and reward, which is of the nature of the Class

2 representative.

1D env. #10: M is defined by

M(s, a) =



done if s ∈ [−0.2, 0.2)

bad1 if s < 0 ∧ a < −0.3

bad2 if s > 0 ∧ a > 0.3

s otherwise

,

where done, bad1, bad2 ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =



−0.001a2 − 50 if s′ = bad1

−0.001a2 − 50 if s′ = bad2

−0.001a2 + 200 if s′ ∈ done

−0.001a2 otherwise

.

There is no significant guiding reward, but the transition to bad states somehow indicate

which direction the agent should go. As such it has the Class 3 representative with a bit of

the flavor of the Class 2 representative.

1D env. #11: M is defined by

M(s, a) =

done if s ∈ [−0.1, 0.1]

s otherwise

,

where done ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =

−(0.001a2 + 0.03s2) + 200 if s′ ∈ done

−(0.001a2 + 0.03s2) otherwise

.

While the setup is very similar to that of the Class 2 representative, the final done state is

very narrow, requiring fine-tune of the control; therefore, it has the property of the Class 4

representative.
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1D env. #12: M is defined by

M(s, a) =

done if s ∈ [−0.3, 0.3] ∧ |a| > 0.95

s otherwise

,

where done ∈ Se, and σ = 0. The reward is defined by

R(s, s′, a) =

−(0.001a2 + 0.03s2) + 200 if s′ ∈ done

−(0.001a2 + 0.03s2) otherwise

.

Similar to the 1D env. #11, it requires fine-tune to obtain large reward; as such, it has the

property of the Class 4 representative.

1D env. #13: M(s) = s for all s, σ = 0, and the reward is defined by

∀s, s′ ∈ S, ∀a ∈ A : R(s, s′, a) = −(0.1a2 + s2).

It is a simple system with smooth but large magnitude of reward, having the property of the

Case study 2.

A.5.3 Experimental setups

Next, we present some parameter settings and explain the details of experiments conducted

in Chapter 7

Common setups

The common hyperparameter setups are given in Table A.25.

Specific setups

The specific parameters used for the experiments, namely, toy MDPs, 1D environments,

Lunar Lander, Bipedal Walker, and Hopper are given in Table A.26.
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Table A.25: Common hyperparameters for the SAC algorithms.

Hyperparameter Value Hyperparameter Value

discount factor 0.99 initial alpha for entropy 1

step size for critic 0.0003 step size for actor 0.0003

target update rate 0.005 activation function for NN tanh

hidden units [256, 256] optimizer Adam

# of QRSAC heads 32 window size for stability measure 32

For Lunar Lander, Bipedal Walker, and Hopper, we use OpenAI Gym [46] (for Lunar

Lander environment, we introduce a feature to the observation vector that indicates the

duration of agent being in a landing condition (i.e., zero velocities) to make it Markovian).

We mention that Hopper uses MuJoCo [244] as an internal simulator.
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Table A.26: Specific parameters for each environment considered in analysis of deep RL
algorithms.

Toy MDPs

horizon H 10 epsilon ϵ 0.1

gradient step size 0.05 # of independent runs 300

1D environment RL runs

maximum time step 150 replay buffer capacity 20000

batch size 32 trainer steps per epoch 32

evaluation frequency (model clock) 1 # of independent runs 30

1D environment bootstrap and supervised learning runs

maximum time step 150 replay buffer capacity 20000

batch size 32 trainer steps per epoch 32

evaluation frequency (model clock) 30 # of independent runs 30

Lunar Lander RL runs

maximum time step 1000 replay buffer capacity 20000

batch size 32 trainer steps per epoch 200

evaluation frequency (model clock) 50 # of independent runs 30

Lunar Lander bootstrap and supervised learning runs

maximum time step 1000 replay buffer capacity 20000

batch size 32 trainer steps per epoch 200

evaluation frequency (model clock) 20 # of independent runs 30

Bipedal Walker RL runs

maximum time step 1000 replay buffer capacity 300000

batch size 256 trainer steps per epoch 64

evaluation frequency (model clock) 50 # of independent runs 30

Bipedal Walker bootstrap learning runs

maximum time step 1000 replay buffer capacity 300000

batch size 256 trainer steps per epoch 200

evaluation frequency (model clock) 20 # of independent runs 30

Bipedal Walker supervised learning runs

maximum time step 1000 replay buffer capacity 300000

batch size 256 trainer steps per epoch 200

evaluation frequency (model clock) 10 # of independent runs 30

Hopper RL runs

maximum time step 1000 replay buffer capacity 1000000

batch size 256 trainer steps per epoch 200

evaluation frequency (model clock) 200 # of independent runs 30
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Experimental details

RL: For toy MDPs, we use Algorithm 6 but update critic every time step (i.e., Q̂copy

is replaced by Q̂), and use the MSE, Huber and quantile-Huber loss (which is similar to

Quantile Regression Q learning in [72]).

For SAC algorithms (with different critic loss), we use the policy network that outputs

the mean and diagonal log standard deviation of a squashed Gaussian distribution where

the output is constrained within (−1, 1). When exploration, randomly sampled vector from

the Gaussian distribution is fed to tanh function to obtain the action. The temperature

parameter of SAC algorithms is automatically tuned with the target entropy − dim(A).

Throughout the experiments, the trained policy is evaluated by outputting the mean vector

and by using 10 episodes. All runs are trained in a distributed manner with separated

processes of a trainer and rollout worker that collects experiences, asynchronously. Rollout

worker uses single CPU (2 GB memory) while trainer worker uses 7.7 CPU cores (8 GB

memory) under virtual machine. We use Reverb [54] for experience replay.

To identify the properties causing degradation of QRSAC under environments with re-

ward of large magnitudes, we consider multi-headed SAC-Huber to mimic some properties

of QRSAC in the 1D representative environment for Case study 2. Figure A.19 illustrates

(left) quantile regression and (right) multi-headed regression. Similar to the quantile case,

multi-headed SAC-Huber uses different loss for each head; each head is optimized to estimate

the average of target critic heads plus some distinct value assigned to each head while the

mean of all heads stays the same. In particular, we assign very distinct value (i.e., −1000 to

1000) to mimic the scenario for QRSAC showing degradation of performance. Moreover, we

also test QRSAC with 4 and 256 heads.

On the other hand, we test an effect of multi-headed network for some selected environ-

ments. Especially, we consider multi-headed SAC where in this case each head uses the same

loss, and see if it improves performance in Class 2 and Class 4 representatives.

For the 1D environment experiments, we also conduct “Two Model experiments” as well;
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Figure A.19: An illustration of (Left) quantile regression and (Right) multi-headed regres-
sion.

where we maintain SAC and QRSAC critics and policies and data are collected by a randomly

chosen policy from those two while evaluation is done for each one. For Lunar Lander, we

conduct similar experiment but the data are collected by one of the policies of SAC and

QRSAC.

Bootstrap and supervised learning: To eliminate the effect of critic and policy inter-

action, we use the fixed policy and train the action-value function by bootstrap (i.e., same

as RL but without policy update) or by supervised learning.

For 1D environments, we test two cases.

1. The Class 2 representative environment with the policy and critic of SAC-Huber at the

later stage of learning, which is the highest reward achieving algorithm out of three.

2. The Class 4 representative environment with the policy and critic of SAC at the later

stage of learning, which is the highest reward achieving algorithm out of three.

The target observation is deterministic for 1D environments.
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For Lunar Lander and Bipedal Walker, we use a policy and critic estimates of one QRSAC

run at later stage of learning as the data generating policy and as the target critic. For the

bootstrap learning in particular, we sample reward by the distribution:

Ẑπ(s, a)− γẐπ(s′, a′),

where the policy π and the return estimate Ẑπ are of QRSAC, s′ is the observed next state

and a′ is sampled from π(s′). In the supervised learning, the observation is simply drawn

from the fixed estimated return.

A.5.4 Additional experimental results

RL results for other 1D environments

1D env. #6: The reward curve shows mostly the Class 1 behavior (slight degradation of

SAC) and the stability and smoothness are similar to the Class 1 representative (see Figure

A.20 (top)).

1D env. #7: For this environment, reward curve shows interesting behaviors where SAC-

Huber and QRSAC are better than SAC while they decrease the performance at the later

stage to match that of SAC (see Figure A.20 (middle)). SAC shows unstable critic growth

at the early stage as expected but other two show some notable instability at later stages.

Furthermore, SAC consistently shows smoother critic surface. While we do not have clear

reasoning of these behaviors, it might be the case that they are partially due to the guiding

but nonsmooth reward. Nevertheless, instability of critic growth seems correlated to the

degradation of performance in this environment.

1D env. #8: The reward curve shows mostly the Class 2 behavior (slight degradation of

QRSAC) while SAC is showing a tiny advantage at the later stage which resembles Class

4 behavior (see Figure A.20 (down)). SAC indeed shows instability of critic growth and
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its nonsmooth surface. For this, we do not have clear reasoning about the degradation of

QRSAC compared to SAC-Huber.

1D env. #9: Although there exists some fluctuation of reward curves compared to those

showing the representative Class 1 behaviors, it is actually similar to that of the Class 1

representative but with clearer separation of stability measure (see Figure A.21 (first row)).

As we discussed in Appendix A.5.2, we created this environment to have some flavors of the

representative environments of Class 3 and Class 2 at the same time. While we are unable

to identify the critical cause for the behavior, it maybe the case that those two conflicting

properties cancel out each other.

1D env. #10: This environment shows one of the most difficult-to-analyze behaviors (see

Figure A.21 (second row)). As we discussed in Appendix A.5.2, it may be expected to show

similar behavior to 1D env. #9 as it has conflicting flavors of both of the Class 3 and Class

2 representatives. When looking at SAC and SAC-Huber, they show Class 3 behavior but

QRSAC shows similar overall performance to SAC. While we do not have clear reasoning for

the behavior in this environment, we see that some of the conflicting properties with some

complication of transitions and rewards may show hard-to-predict behaviors.

1D env. #11: This environment shows somewhat expected behaviors which is of Class 2

with Class 4 flavor as we discussed in Appendix A.5.2 (see Figure A.21 (third row)). Stability

and smoothness measures are seemingly consistent too.

1D env. #12: The behaviors of this environment are also not straightforward to analyze;

however, we see Class 3 and Class 4 flavors together (see Figure A.21 (last row)). Concep-

tually the environment is created to have similar property to the Class 4 representative, and

the condition for obtaining large reward is very strict which might lead to the case where

existence of guiding reward is not helping much to achieve this condition. In such a case,

Class 3 behavior may emerge.
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1D env. #13: Figure 7.13 (down) shows the behavior of env. #13, and it is similar to

that of the Case study 2 representative.

On Case study 2 and number of heads

The result is shown in Figure A.22 (left); which shows

1. Multi-headed SAC-Huber with distinct valued heads shows large degradation of per-

formance as well

2. Fewer number of heads for QRSAC shows better performance

While it stays hypothetical, multi-headed critic network with very distinct values assigned to

each head makes it harder to learn the critic surface which would be because of the conflict

of gradient within the network.

On the other hand, the comparison of SAC and multi-headed SAC in the Class 2 and Class

4 representatives is shown in Figure A.23, implying having multi-heads does not improve the

performance nor stability of critic growth significantly at least in this environment.

Two model example for 1D environments

The result for the two model experiment for the Class 3 representative 1D environment is

plotted in Figure A.22 (right). It is observed that the QRSAC policy outperforms that of

SAC under two model scenario, and QRSAC policy reaches the performance comparable to

that of (single model) SAC. In this environment, we see that QRSAC can stably improve

its performance without a guiding reward as long as the data covering important states are

enriched. This observation may lead to better algorithm design in the future.

Two model example for Lunar Lander

The result for the two model experiment for Lunar Lander is shown in Table A.27, comparing

the main policy (SAC policy for SAC and QRSAC policy for QRSAC) and side policy
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Table A.27: Lunar Lander two model experiments: cumulative discounted rewards for main
and side policies (averaged over 10 runs).

Main algorithm Main policy value Side policy value

SAC 63.8 44.3

QRSAC 73.6 27.1

(QRSAC policy for SAC and SAC policy for QRSAC) performances. It is observed that

the side policy is inferior in both cases; in this example we only used the main policy for

data collection, so it might have had the data distribution inconsistent to the side policy,

leading to degraded performance. As such, we observe at least in this environment that the

interaction of critic and policy over epochs is critical for the performance separation.
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Figure A.20: Reward curve, stability, and smoothness metric (Hessian) curves for the variants
of 1D environments #6 to #8.
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Figure A.21: Reward curve, stability, and smoothness metric (Hessian) curves for the variants
of 1D environments #9 to #12.
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Figure A.22: Left: Learning curves of 1D example for Case study 2 with multi-headed
SAC-Huber and QRSAC with different number of quantile heads. We observe that, under
the existence of rewards of large magnitude, having more heads leads to poor performance.
Right: Two model example for Class 3.

Figure A.23: Learning curves of the 1D example with multi-headed SAC, showing having
multiple heads may not be the root cause of performance difference.
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A.6 Software license

License information about the software used in this thesis is summarized below.

Julia: The MIT License; Copyright (c) 2009-2021: Jeff Bezanson, Stefan Karpinski, Viral

B. Shah, and other contributors: https://github.com/JuliaLang/julia/contributors

OpenAI Gym: The MIT License; Copyright (c) 2016 OpenAI (https://openai.com)

DeepMind Control Suite: Apache License Version 2.0, January 2004

http://www.apache.org/licenses/

Lyceum: The MIT License; Copyright (c) 2019 Colin Summers, The Contributors of

Lyceum

MuJoCo: MuJoCo Pro Lab license

sigkernel: Apache License 2.0; Copyright [2021] [Cristopher Salvi]

torchcubicspline: Apache License 2.0; Copyright [Patrick Kidger and others]

signatory: Apache License 2.0; Copyright [Patrick Kidger and others]

DiffRL: NVIDIA Source Code License

rl games: MIT License; Copyright (c) 2019 Denys88

Franka URDF: MIT License; Copyright (c) Facebook, Inc. and its affiliates
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Appendix B

ADDITIONAL THEORETICAL RESULTS

Additional theoretical contributions and some of the detailed proofs omitted in the main

body of the thesis are presented here.

B.1 Proof of Theorem 4.2.4

In this section, we provide a proof of Theorem 4.2.4 in Chapter 4. Before delving into the

proof, we give additional notations. Given a instantaneous cost function c, we define the

cost (or the “cost-to-go” ) of a policy as:

Jπ(x; c,W ) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0 = x,W

]
where the expectation is over trajectories sampled under π starting from x0 in the model

parameterized by W . The “cost-to-go” at state x at time h ∈ [H] is denoted by:

Jπh (x; c,W ) = E

[
H−1∑
ℓ=h

c(xℓ, uℓ)
∣∣∣π, xh = x

]
.

When clear from context, we let the episode t index the policy, e.g., we write J t(x; c)

to refer to Jπ
t
(x, c). Subscripts refer to the time step within an episode and superscripts

index the episode itself, i.e., ϕth will refer to the random vector which is the observed features

during time step h within episode t. We let Ht denote the history up to the beginning of

episode t.

Also, ∥x∥2M := x⊤Mx for a vector x and a matrix M . Note that the notation π for a

policy is sometimes used as a map X → U or a generator of a trajectory when clear in

the context, and that P (·|W,x, u) denotes the transition probability distribution at state x,

control u, and under the model parameterization W .
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B.1.1 Simulation analysis

We derive a novel self-bounding simulation lemma (Lemma B.1.3), using the Optional Stop-

ping Theorem.

Lemma B.1.1 (Difference lemma). Fix a policy π, cost function c, and model W . Consider

any trajectory {xh, uh}H−1
h=0 where uh = π(xh) for all h ∈ [H]. For h ∈ [H], let Ĵh refer to the

realized cost-to-go on this trajectory, i.e.,

Ĵh =
H−1∑
τ=h

c(xτ , uτ ).

For all τ ∈ {1, . . . H − 1}, we have that:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵτ − Ex′τ∼P (·|W,xτ−1,uτ−1)J
π
τ (x′τ ; c,W )

+
τ−1∑
h=1

Jπh (xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)J
π
h (x′h; c,W )

Proof. Starting from h = 0, using u0 = π(x0), we have:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵ1 − Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W )

= Ĵ1 − Jπ1 (x1; c,W ) + Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
ℓ (x′1; c,W )

= Ĵ2 − Ex′2∼P (·|x1,u1,W )J
π
2 (x′2; c,W )

+ Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W ).

Recursion completes the proof, where, at each step of the recursion, we add and subtract

Jπt (xt; c,W ) and apply the same operation on the term Ĵt − Jπt (xt; c,W ).

Lemma B.1.2 (“Optional Stopping” simulation lemma). Fix a policy π, cost function c, and

modelW . Consider the stochastic process over trajectories, where {xh, uh}Hh=0 ∼ π is sampled

with respect to the model W ⋆. With respect to this stochastic process, define a stopping time

τ as:

τ = min {h ≥ 0 : Jπh (xh; c,W ) ≥ Jπh (xh; c,W
⋆)} .
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Define the random variable J̃πh (xh) as:

J̃πh (xh) = min {Jπh (xh; c,W ), Jπh (xh; c,W
⋆)} .

We have that:

Jπ0 (x0; c,W
⋆)− Jπ0 (x0; c,W )

≤ E

[
H−1∑
h=0

1{h < τ}
(
Ex′h+1∼P (·|W ⋆,xh,uh)J̃

π
h+1(x

′
h+1)− Ex′h+1∼P (·|W,xh,uh)J̃

π
h+1(x

′
h+1)

)]

where the expectation is with respect to {xh, uh}Hh=0 ∼ π sampled with respect to the model

W ⋆.

Proof. Our filtration, Fh, at time h will be the previous noise variables, i.e.,

Fh := {ϵ0, ϵ1, . . . , ϵh−1},

and note that {x1, u1, c(x1, u1), . . . , xh, uh, c(xh, uh)} is fully determined by Fh. Also, observe

that τ is a valid stopping time with respect to the filtration Fh.

Define:

Mh = E
[
Ĵ0 − J⋆(x0; c,W ) | Fh

]
which is a Doob martingale (with respect to our filtration), and so E[Mh+1|Fh] = Mh. By

Doob’s optional stopping theorem,

E
[
Ĵ0 − J⋆(x0; c,W )

]
= E[Mτ ] = E

[
E
[
Ĵ0 − J⋆(x0; c,W ) | Fτ

]]
. (B.1.1)

The proof consists in bounding Mτ .
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Consider an Fτ , which is stopped at the random time τ . By Lemma B.1.1,

Mτ = E
[
Ĵ0 − J⋆(x0; c,W ) | Fτ

]
= Jτ (xτ ; c,W

⋆)− Ex′τ∼P (·|W,xτ−1,uτ−1)Jh(x
′
τ ; c,W )

+
τ−1∑
h=1

(
Jh(xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)Jh(x

′
h; c,W )

)
=

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)Jh(x

′
h; c,W )

)
≤

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
=

H∑
h=1

1(h ≤ τ)
(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
.

where the third equality follows using the definition of τ which implies that Jτ (xτ ; c,W
⋆) =

J̃τ (xτ ) and that Jh(xh; c,W ) = J̃h (xh) for h < τ ; and the inequality is due to the definition

of J̃ .

Using this bound on Mτ and (B.1.1), we have:

E
[
Ĵ0 − J⋆(x0; c,W )

]
≤

H∑
h=1

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)]
.

For the h-th term, observe:

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

) ]
= E

[
E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
E
[
1(h− 1 < τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
1(h− 1 < τ)E

[
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h) | Fh−1

] ]
= E

[
1(h− 1 < τ)

(
Ex′h∼P (·|W ⋆,xh−1,uh−1)J̃h(x

′
h)− Ex′h∼P (·|W,xh−1,uh−1)J̃h(x

′
h)
) ]
.

where the second equality uses that 1(h ≤ τ) = 1(h − 1 < τ), and the third equality uses

that 1(h − 1 < τ) is measurable with respect to Fh−1 = {ϵ0, . . . , ϵh−2}. This completes the

proof.
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The previous lemma allows us to bound the difference in cost under two different models,

i.e., Jπ(x; c,W ⋆)− Jπ(x; c,W ), in terms of the second moment of the cumulative cost itself,

i.e., in terms of V π(x; c,W ⋆), where

V π(x0; c,W
⋆) := E

(H−1∑
h=0

c(xh, uh)

)2 ∣∣∣∣x0, π,W ⋆

 .
Lemma B.1.3 (Self-bounding, simulation lemma). For any policy π, model parameterization

W , and nonnegative cost c, and for any state x0, we have:

Jπ(x0; c,W
⋆)− Jπ(x0; c,W )

≤
√
HV π(x0; c,W ⋆)

√√√√E

[
H−1∑
h=0

min

{
1

σ2
∥(W ⋆ −W )ϕ(xh, uh)∥2Rdx , 1

}]
.

where the expectation is with respect to π in W ⋆ starting at x0.

Proof. For the proof, it is helpful to define the random variables:

∆h = Ex′h+1∼P (·|W ⋆,xh,uh)

[
J̃h+1(x

′
h+1)

]
− Ex′h+1∼P (·|W,xh,uh)

[
J̃h+1(x

′
h+1)

]
Ah := Ex′h+1∼P (·|W ⋆,xh,uh)

[
J̃h+1(x

′
h+1)

2
]

By Lemma C.3.1 (which bounds the difference in means under two Gaussian distributions,

using the chi-squared distance function), we have:

∆h ≤
√

Exh+1∼P (·|W ⋆,xh,uh)

[
J̃h+1(xh+1)2

]
min

{
1

σ
∥(W ⋆ −W )ϕ(xh, uh)∥Rdx , 1

}
=
√
Ah min

{
1

σ
∥(W ⋆ −W )ϕ(xh, uh)∥Rdx , 1

}
.
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From Lemma B.1.2, we have:

Jπ0 (x0; c,W
⋆)− Jπ0 (x0; c,W ) ≤

H−1∑
h=0

E [1(h < τ)∆h]

≤
H−1∑
h=0

E
[√

Ah min

{
1

σ
∥(W ⋆ −W )ϕ(xh, uh)∥Rdx , 1

}]

≤
H−1∑
h=0

√
E [Ah]

√
E
[
min

{
1

σ2
∥(W ⋆ −W )ϕ(xh, uh)∥2Rdx , 1

}]

≤

√√√√E

[
H−1∑
h=0

Ah

]√√√√E

[
H−1∑
h=0

min

{
1

σ2
∥(W ⋆ −W )ϕ(xh, uh)∥2Rdx , 1

}]
,

where in the second inequality we use E[ab] ≤
√
E[a2]E[b2] and the Cauchy-Schwartz in-

equality in the last inequality. For the first term, observe that:

E [Ah] = E
[
Ex′h+1∼P (·|W ⋆,xh,uh)

[
J̃h+1(x

′
h+1)

2
]]

= E
[
J̃h+1(xh+1)

2
]
≤ E

[
Jh+1(xh+1)

2
]

= E

(E[ H−1∑
ℓ=h+1

c(xℓ, uℓ) | xh+1

])2
 ≤ E

( H−1∑
ℓ=h+1

c(xℓ, uℓ)

)2


≤ E

(H−1∑
ℓ=0

c(xℓ, uℓ)

)2
 = V π

where the first inequality uses the definition of J̃ ; the second inequality follows from Jensen’s

inequality; and the last inequality follows from our assumption that the instantaneous costs

are nonnegative. The proof is completed by substitution.

B.1.2 Regret analysis (and proofs of Theorem 4.2.4)

Throughout, let Et,cb be the event that W ⋆ ∈ Ballt holds at episode t.

Lemma B.1.4 (Per-episode regret lemma). Suppose Assumptions 4.2.1 and 4.2.3 hold. Let
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H<t be the history of events before episode t. For the LC3, we have:

1(Et,cb)
(
J t(x0; c

t)− J⋆(x0; ct)
)

≤

√
HV t(x0; c,W ⋆)

(
4βt

σ2
+H

)√√√√E

[
min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

} ∣∣∣ H<t

]
.

Note that the expectation is with respect to the trajectory of LC3, i.e., it is under πt in W ⋆.

Proof. Suppose Et,cb holds, else the lemma is immediate. By construction of the LC3 algo-

rithm (the optimistic property) and by the self-bounding, simulation lemma (Lemma B.1.3),

we have:

J t(x0; c
t,W ⋆)− J⋆(x0; ct,W ⋆) ≤ J t(x0; c

t,W ⋆)− J t(x0; ct, Ŵ t)

≤
√
HV t(x0; c,W ⋆)

√√√√E

[
H−1∑
h=0

min

{
1

σ2

∥∥∥(W ⋆ − Ŵ t
)
ϕth

∥∥∥2
Rdx

, 1

} ∣∣∣ H<t

]
.

where the expectation is with respect to the trajectory of LC3, i.e., of πt in W ⋆.

For W ⋆ ∈ Ballt, we have∥∥∥(Ŵ t −W ⋆
)
ϕth

∥∥∥
Rdx
≤
∥∥∥(Ŵ t −W ⋆

)
(Σt)1/2

∥∥∥∥∥(Σt)−1/2ϕth
∥∥

≤
(∥∥∥(Ŵ t −W t

)
(Σt)1/2

∥∥∥+
∥∥∥(W t −W ⋆

)
(Σt)1/2

∥∥∥)∥∥ϕth∥∥(Σt)−1 ≤ 2
√
βt∥ϕth∥(Σt)−1 .

where we have also used that Ŵ t,W
t ∈ Ballt, by construction.

This implies that:

H−1∑
h=0

min

{
1

σ2
∥(W ⋆ − Ŵ t)ϕth∥2Rdx , 1

}
≤

H−1∑
h=0

min

{
4βt

σ2
∥ϕth∥2(Σt)−1 , 1

}

≤ min

{
4βt

σ2

H−1∑
h=0

∥ϕth∥2(Σt)−1 , H

}
≤ max

{
4βt

σ2
, H

}
min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

}
.

The proof is completed by substitution.

Before we complete the proofs, the following two lemmas are helpful. The first lemma

bounds the sum failure probability of W ⋆ not being in all the confidence balls (over all the

episodes); the lemma generalizes the argument from [1, 73] to matrix regression.
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Lemma B.1.5 (Confidence ball). Let

βt = 2λ∥W ⋆∥2 + 8σ2
(
dx log(5) + 2 log(t) + log(4) + log

(
det(Σt)/ det(Σ0)

))
.

We have:

∞∑
t=0

Pr
(
E t,cb

)
=

∞∑
t=0

Pr

(∥∥∥(W t −W ⋆
) (

Σt
)1/2∥∥∥2 > βt

)
≤ 1

2
.

Proof. The center of the confidence ball, W
t
, is the minimizer of the ridge regression objective

in (4.2.1); its closed-form expression is:

W
t

:=
t−1∑
τ=0

H−1∑
h=0

xτh+1(ϕ
τ
h)

⊤(Σt)−1,

where Σt = λI +
∑t−1

τ=0

∑H−1
h=0 ϕ

τ
h(ϕ

τ
h)

⊤. Using that xτh+1 = W ⋆ϕτh + ϵτh with ϵτh ∼ N (0, σ2I),

W
t −W ⋆ =

t−1∑
τ=0

H−1∑
h=0

xτh+1(ϕ
τ
h)

⊤(Σt)−1 −W ⋆

=
t−1∑
τ=0

H−1∑
h=0

(W ⋆ϕτh + ϵτh)(ϕ
τ
h)

⊤(Σt)−1 −W ⋆

= W ⋆

(
t−1∑
τ=0

H−1∑
h=0

ϕτh(ϕ
τ
h)

⊤

)
(Σt)−1 −W ⋆ +

t−1∑
τ=0

H−1∑
h=0

ϵτh(ϕ
τ
h)

⊤(Σt)−1

= −λW ⋆
(
Σt
)−1

+
t−1∑
τ=0

H−1∑
h=0

ϵτh(ϕ
τ
h)

⊤(Σt)−1.

For any 0 < δt < 1, using Lemma C.3.3, it holds with probability at least 1− δt,∥∥∥(W t −W ⋆
) (

Σt
)1/2∥∥∥ ≤ ∥∥∥λW ⋆

(
Σt
)−1/2

∥∥∥+

∥∥∥∥∥
t−1∑
τ=0

H−1∑
h=0

ϵτh(ϕ
τ
h)

⊤(Σt)−1/2

∥∥∥∥∥
≤
√
λ∥W ⋆∥+ σ

√
8dx log(5) + 8 log (det(Σt) det(Σ0)−1/δt).

where we have also used the triangle inequality. Therefore, Pr(E t,cb) ≤ δt.

We seek to bound
∑∞

t=0 Pr(E t,cb). Due to that at t = 0 we have initialized Ball0 to

contain W ⋆, we have Pr(E0,cb) = 0. For t ≥ 1, let us assign failure probability δt = (3/π2)/t2
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for the t-th event, which, using the above, gives us an upper bound on the sum failure

probability as
∑∞

t=1 Pr(E t,cb) <
∑∞

t=1(1/t
2)(3/π2) = 1/2. This completes the proof.

The next lemma provides a bound on the potential function used in our analysis. It is

based on the elliptical potential function argument from [73, 228].

Lemma B.1.6 (Sum of potential functions). For any sequence of ϕth, we have:

T−1∑
t=0

min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

}
≤ 2 log

(
det(ΣT ) det(Σ0)−1

)
.

Proof. Recall that Σt+1 = Σt +
∑H−1

h=0 ϕ
t
h (ϕth)

⊤
and Σ0 = λI. First use x ≤ 2 log(1 + x) for

x ∈ [0, 1], we have:

min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

}
≤ 2 log

(
1 +

H−1∑
h=0

∥ϕth∥2(Σt)−1

)
.

For Σt+1, using its recursive formulation, we have:

log det
(
Σt+1

)
= log det

(
Σt
)

+ log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

ϕth(ϕ
t
h)

⊤ (Σt
)−1/2

)
.

Denote the eigenvalues of (Σt)
−1/2∑H−1

h=0 ϕ
t
h(ϕ

t
h)

⊤ (Σt)
−1/2

as σi for i ≥ 1. We have

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

ϕth(ϕ
t
h)

⊤ (Σt
)−1/2

)
= log

∏
i≥1

(1 + σi) ≥ log

(
1 +

∑
i≥1

σi

)
,

where the last inequality uses that σi ≥ 0 for all i. Using the above and the definition of the

trace,

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

ϕth(ϕ
t
h)

⊤ (Σt
)−1/2

)
≥ log

(
1 + tr

((
Σt
)−1/2

H−1∑
h=0

ϕth(ϕ
t
h)

⊤ (Σt
)−1/2

))

= log

(
1 +

H−1∑
h=0

(ϕth)
⊤(Σt)−1ϕth

)
.
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By telescoping the sum,

2
T−1∑
t=0

log

(
1 +

H−1∑
h=0

(ϕth)
⊤(Σt)−1ϕth

)
≤ 2

T−1∑
t=0

(
log det

(
Σt+1

)
− log det

(
Σt
))

= 2 log
(
det(ΣT ) det(Σ0)−1

)
,

which completes the proof.

Also, recall that LC3 uses the setting of λ = σ2/∥W ⋆∥2. We will also use that, for βT as

defined in Lemma B.1.5,

βT = 2σ2 + 8σ2
(
dx log(5) + 2 log(T ) + log(4) + log

(
det(ΣT ) det(Σ0)−1

))
≤ 16σ2

(
dx + log(T ) + log

(
det(ΣT ) det(Σ0)−1

))
. (B.1.2)

In particular, we can take C1 = 16 in LC3. Also,

E[βT ] ≤ 16σ2 (dx + log(T ) + γT (λ)) . (B.1.3)

using the definition of the information gain.

We now conclude the proof of our main theorem (Theorem 4.2.4).

Proof of Theorem 4.2.4. Using the per-episode regret bound (Lemma B.1.4), our confidence
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ball, failure probability bound (Lemma B.1.5), and that V t ≤ Vmax,

E [RegretLC3 ] = E

[
T−1∑
t=0

(
J t(x0; c

t)− J⋆(x0; ct)
)]

≤ E

[
T−1∑
t=0

E
[
1(Et,cb)

(
J t(x0; c

t)− J⋆(x0; ct)
)
|Ht

]]
+
√
Vmax

T−1∑
t=0

E
[
1(E t,cb)

]
≤

√
HVmax

T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

} ∣∣∣ H<t

] +
√
Vmax/2

≤
√
HVmax

T−1∑
t=0

√
E
[

4βt

σ2
+H

] √√√√E

[
min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√√√√T−1∑
t=0

E
[

4βt

σ2
+H

] √√√√E

[
T−1∑
t=0

min

{
H−1∑
h=0

∥ϕth∥2(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√
T

(
4E[βT ]

σ2
+H

) √
γT (λ) +

√
Vmax/2

≤
√
HVmax

√
64T

(
dx + log(T ) + γT (λ) +H

) √
γT (λ) +

√
Vmax/2

where the third inequality uses E[ab] ≤
√
E[a2]E[b2]; the fourth uses the Cauchy-Schwartz

inequality; the penultimate step uses that βt is non-decreasing, along with the Lemma B.1.6

and the definition of the information gain; and the final step uses the bound on βT in (B.1.3).

This completes the proof.

B.2 Proof of Theorem 4.3.16

In this section, we present the proof of Theorem 4.3.16 in Chapter 4. Throughout this

section, suppose Assumptions 4.3.4 to 4.3.15 hold. Note that Assumption 4.3.9 is required

for OptDynamics. We give some definitions of the values for the subsequent regret analysis.
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B.2.1 Some definitions of the values

The value Jπ(X t
0;M ; ct) in Algorithm 2 is defined by

Jπ(X t
0;M ; ct) :=

Nt−1∑
n=0

EΩπ

Ht
n−1∑
h=0

ct(xth,n)
∣∣∣π,M, xt0,n

 ,
where the expectation is taken over the trajectory following ϕxh+1

= [Ψ(π)† ◦M ]ϕxh
+ ϵ(ω).

Also the confidence ball at time instance t is given by

BalltM :=

{
M

∣∣∣∣ ∥∥∥(Σt
A )

1
2

(
M −M t

)∥∥∥2 ≤ βtM

}
∩Ball0M , Σt

A := λI +
t−1∑
τ=0

Nτ−1∑
n=0

Hτ
n−1∑
h=0

A τ
h,n

†A τ
h,n,

and Σ0
A := λI, where βtM := 20σ2

(
dϕ + log

(
t
det(Σt

A )

det(Σ0
A )

))
and

M
t

:= arg min
M

[
t−1∑
τ=0

Nτ−1∑
n=0

Hτ
n−1∑
h=0

∥∥∥ϕxτh+1,n
−A τ

h,n(M)
∥∥∥2
Rdϕ

+ λ ∥M∥2HS

]
.

Similar to the case of the analysis of LC3, we define the expected maximum information

gains as:

γT,A (λ) := 2 max
A

EA

[
log

(
det
(
ΣT

A

)
det (Σ0

A ))

)]
.

Here, det is a properly defined functional determinant of a bounded linear operator. Further,

γ2,T,A (λ) := 2 max
A

EA

(log

(
det
(
ΣT

A

)
det (Σ0

A ))

))2
 .

Also, we define

Σt
B := λI +

t−1∑
τ=0

Bτ †Bτ , Σ0
B := λI, γT,B(λ) := 2 max

A
EA

[
log

(
det
(
ΣT

B

)
det (Σ0

B))

)]
.

Lemma B.2.1. Assume that Ψ(π) ∈ RdΨ×dϕ and that ∥Bt∥HS ≤ BB, ∥A t
h,n∥HS ≤ BA for

all t ∈ [T ], n ∈ [N t], and h ∈ [H t
n] and some BB ≥ 0 and BA ≥ 0. Then, γT,A (λ) =

O(dϕdΨ log(1 + THB2
A /λ)), and γT,B(λ) = O(dϕdΨ log(1 + TB2

B/λ)).
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Proof. For γT,A (λ), from the definition of Hilbert-Schmidt norm, we have

tr

T−1∑
t=0

Nt−1∑
n=0

Ht
n−1∑
h=0

A t
h,n

†
A t
h,n

 ≤ THB2
A ,

and the result follows from Lemma C.3.4. The similar argument holds for γT,B(λ) too.

Now, we give the regret analysis below.

B.2.2 Regret analysis

We fist give the positive operator norm bounding lemma followed by another lemma based

on it.

Lemma B.2.2 (Positive operator norm bounding lemma). Let H be a Hilbert space and

Ai, Bi ∈ L(H;H) (i ∈ {1, 2, . . . , n}). Assume, for all i ∈ {1, 2, . . . , n}, that Ai is positive

definite. Also, assume B1 is positive definite, and for all i ∈ {2, 3, . . . , n}, Bi is positive

semi-definite. Then,∥∥∥∥∥∥
(∑

i

B
1
2
i AiB

1
2
i

)− 1
2
(∑

i

Bi

)(∑
i

B
1
2
i AiB

1
2
i

)− 1
2

∥∥∥∥∥∥ ≤ max
i

∥∥A−1
i

∥∥ .
If AiBi = BiAi for all i ∈ {1, 2, . . . , n}, then∥∥∥∥∥∥

(∑
i

AiBi

)− 1
2
(∑

i

Bi

)(∑
i

AiBi

)− 1
2

∥∥∥∥∥∥ ≤ max
i

∥∥A−1
i

∥∥ .
Proof. Let c := maxi

∥∥A−1
i

∥∥. Then, we have, for all i,

I ⪯
∥∥A−1

i

∥∥Ai ⪯ cAi,

from which it follows that

Bi ⪯ cB
1
2
i AiB

1
2
i .
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Therefore, we obtain ∑
i

Bi ⪯ c
∑
i

B
1
2
i AiB

1
2
i .

From the assumptions,
(∑

iB
1
2
i AiB

1
2
i

)−1

exists and

(∑
i

B
1
2
i AiB

1
2
i

)− 1
2
(∑

i

Bi

)(∑
i

B
1
2
i AiB

1
2
i

)− 1
2

⪯ cI,

from which we obtain∥∥∥∥∥∥
(∑

i

B
1
2
i AiB

1
2
i

)− 1
2
(∑

i

Bi

)(∑
i

B
1
2
i AiB

1
2
i

)− 1
2

∥∥∥∥∥∥ ≤ c.

The second claim follows immediately.

Lemma B.2.3. Suppose Assumptions 4.3.4, 4.3.6, and 4.3.13 hold. Then, it follows that,

for all t ∈ [T ], ∥∥∥(Σt
B)

1
2

(
M −M t

)∥∥∥2 ≤ (1 + C−1)
∥∥∥(Σt

A )
1
2

(
M −M t

)∥∥∥2 .
Proof. Under Assumptions 4.3.4 and 4.3.6, define C t ∈ L (L(H;H′);L(H;H′)) by

C t(M) = M ◦

Nt−1∑
n=0

Ht
n−1∑
h=0

ϕxth,n
ϕ†
xth,n

 .
Also, define X t :=

∑Nt−1
n=0

∑Ht
n−1

h=0 A t
h,n

†A t
h,n and Y t := Bt†Bt. We have C tY t = Y tC t =

X t (and thus X tY t = Y tX t), and

Σt
A = λI +

t−1∑
τ=0

X τ , Σt
B = λI +

t−1∑
τ=0

Y τ .

From Assumption 4.3.13, we obtain, for all t ∈ [T ], (C t)−1 exists and

∥(C t)
−1∥ ≤

∥∥∥∥∥∥
Nt−1∑

n=0

Ht
n−1∑
h=0

ϕxth,n
ϕ†
xth,n

−1∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
(
Nt−1∑
n=0

ϕxt0,n
ϕ†
xt0,n

)−1
∥∥∥∥∥∥ ≤ C−1.
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Therefore, using Lemma B.2.2 by substituting I and C to A, λI and Y to B, it follows that∥∥∥(Σt
A )−

1
2 Σt

B(Σt
A )−

1
2

∥∥∥ ≤ max

{
1,max

τ∈[t]
{∥(C τ )−1∥}

}
≤ 1 + C−1,

and∥∥∥(Σt
B)

1
2

(
M −M t

)∥∥∥2 =
∥∥∥(Σt

B)
1
2 (Σt

A )−
1
2 (Σt

A )
1
2

(
M −M t

)∥∥∥2
≤
∥∥∥(Σt

A )
1
2

(
M −M t

)∥∥∥2 ∥∥∥(Σt
A )−

1
2 (Σt

B)
1
2

∥∥∥2 =
∥∥∥(Σt

A )−
1
2 Σt

B(Σt
A )−

1
2

∥∥∥∥∥∥(Σt
A )

1
2

(
M −M t

)∥∥∥2
≤ (1 + C−1)

∥∥∥(Σt
A )

1
2

(
M −M t

)∥∥∥2 .
Here, the second equality used ∥A ∥2 = ∥A A †∥.

Now, let E t be the event M⋆ ∈ BalltM . Assume
⋂T−1
t=0 E t. Then, using Assumption

4.3.11, (
Λ[K (πt)] + Jπ

t

(X t
0; c

t)
)
−
(

Λ[K (π⋆t)] + Jπ
⋆t

(X t
0; c

t)
)

=
(
Λ[K (πt)]− Λ[K (π⋆t)]

)
+
(
Jπ

t

(X t
0; c

t)− Jπ⋆t

(X t
0; c

t)
)

≤
(

Λ[K (πt)]− Λ[Bt ◦ M̂ t]
)

+
(
Jπ

t

(X t
0; c

t)− Jπt
(
X t

0; M̂
t; ct
))

≤
(∣∣∣Λ[K (πt)]− Λ[Bt ◦ M̂ t]

∣∣∣)+
(
Jπ

t

(X t
0; c

t)− Jπt
(
X t

0; M̂
t; ct
))

≤ min

{
L ·max

{∥∥∥Bt
(
M⋆ − M̂ t

)∥∥∥2 , ∥∥∥Bt
(
M⋆ − M̂ t

)∥∥∥α}, 2Λmax

}
︸ ︷︷ ︸

term1

+
(
Jπ

t

(X t
0; c

t)− Jπt
(
X t

0; M̂
t; ct
))

︸ ︷︷ ︸
term2

. (B.2.1)

Here, the first inequality follows because we assumed E t and because the algorithm selects

M̂ t and πt such that

Λ[Bt ◦ M̂ t] + Jπ
t
(
X t

0; M̂
t; ct
)
≤ Λ[Bt ◦M ] + Jπ

(
X t

0;M ; ct
)

for any M ∈ BalltM and for any π ∈ Π. The third inequality follows from Assumption

4.3.11.



268

Using Lemma B.2.3, we have∥∥∥Bt
(
M⋆ − M̂ t

)∥∥∥ ≤ ∥∥∥(Σt
B)

1
2

(
M⋆ − M̂ t

)∥∥∥∥∥∥Bt(Σt
B)−

1
2

∥∥∥
≤
√

(1 + C−1)
∥∥∥(Σt

A )
1
2

(
M⋆ − M̂ t

)∥∥∥∥∥∥Bt(Σt
B)−

1
2

∥∥∥
≤
√

(1 + C−1)
(∥∥∥(Σt

A )
1
2

(
M⋆ −M t

)∥∥∥+
∥∥∥(Σt

A )
1
2

(
M

t − M̂ t
)∥∥∥)∥∥∥Bt(Σt

B)−
1
2

∥∥∥
≤ 2
√

(1 + C−1)βtM

∥∥∥Bt(Σt
B)−

1
2

∥∥∥ (∵ E t).

Therefore, if E t, it follows that

term1 ≤ min

{
L
{

4(1 + C−1)βtM + 1
}

max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2 ,∥∥∥Bt(Σt
B)−

1
2

∥∥∥α} , 2Λmax

}
.

(B.2.2)

Then, we use the following lemma which is an extension of Lemma B.1.6 to our Hölder

condition.

Lemma B.2.4. For any sequence of Bt and for any α ∈ (0, 1], we have

T−1∑
t=0

min

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α , 1} ≤ 2T 1−α

[
1 + log

(
det
(
ΣT

B

)
det (Σ0

B)

)]
.



269

Proof. Using x ≤ 2 log(1 + x) for x ∈ [0, 1],

T−1∑
t=0

min

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α , 1} ≤ T−1∑
t=0

min

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α
HS
, 1

}
(∵ ∥A ∥ ≤ ∥A ∥HS)

=
T−1∑
t=0

(
min

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2
HS
, 1

})α
≤

T−1∑
t=0

[
2 log

(
1 +

∥∥∥Bt(Σt
B)−

1
2

∥∥∥2
HS

)]α
=

T−1∑
t=0

[
2 log

(
1 + tr

{
(Σt

B)−
1
2Bt†Bt(Σt

B)−
1
2

})]α
≤ 2α

T−1∑
t=0

[
log det

(
I + (Σt

B)−
1
2Bt†Bt(Σt

B)−
1
2

)]α
≤ 2αT 1−α

[
T−1∑
t=0

log det
(
I + (Σt

B)−
1
2Bt†Bt(Σt

B)−
1
2

)]α

≤ 2αT 1−α

[
T−1∑
t=0

(
log det

(
Σt+1

B

)
− log det

(
Σt

B

))]α
≤ 2T 1−α

[
log

(
det
(
ΣT

B

)
det (Σ0

B)

)]α

≤ 2T 1−α

(
1 + log

(
det
(
ΣT

B

)
det (Σ0

B)

))
.

Here, the fifth inequality follows from [91, Exercise 1.1.4].

Corollary B.2.5. For any sequence of Bt and for any α ∈ (0, 1], we have

T−1∑
t=0

min

{
max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥4 ,∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α} , 1} ≤ 2T 1−α

[
1 + log

(
det
(
ΣT

B

)
det (Σ0

B)

)]
.
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From (B.2.2) and Corollary B.2.5, we obtain

E

[
T−1∑
t=0

term1

∣∣∣∣ T−1⋂
t=0

E t
]

≤ E

[
T−1∑
t=0

min

{
L
{

4(1 + C−1)βtM + 1
}

max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2 , ∥∥∥Bt(Σt
B)−

1
2

∥∥∥α} , 2Λmax

}]

≤ E

[
T−1∑
t=0

{
L
{

4(1 + C−1)βtM + 1
}

+ 2Λmax

}
min

{
max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥2 ,∥∥∥Bt(Σt
B)−

1
2

∥∥∥α} , 1}]

≤
T−1∑
t=0

√
E [ [L {4(1 + C−1)βtM + 1}+ 2Λmax]2]

√
E
[
min

{
max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥4 ,∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α} , 1}]

≤

√√√√ T∑
t=0

E [ [L {4(1 + C−1)βtM + 1}+ 2Λmax]2]

·

√√√√E

[
T−1∑
t=0

min

{
max

{∥∥∥Bt(Σt
B)−

1
2

∥∥∥4 ,∥∥∥Bt(Σt
B)−

1
2

∥∥∥2α} , 1}]

≤
√
T · value

√
T 1−α(2 + γT,B(λ)). (B.2.3)

Here, the first inequality is due to (B.2.2); the third inequality uses E[ab] ≤
√
E[a2]E[b2]; the

forth inequality uses the Cauchy-Schwartz inequality; the last is from Corollary B.2.5. Also,

value := 16L2(1 + C−1)2E[(βTM)2] + (8L2 + 16ΛmaxL)(1 + C−1)E[βTM ] + 4ΛmaxL+ L2 + 4Λ2
max

≤ C ′ {L2(1 + C−1)2E[(βTM)2] + (L2 + ΛmaxL)(1 + C−1)E[βTM ] + Λ2
max + L2

}
,

for some constant C ′.

Next, we turn to bound the latter term term2 of (B.2.1). Simple calculations show that

M⋆ −M t
= λ(Σt

A )−1M⋆ − (Σt
A )−1

t−1∑
τ=0

Nτ−1∑
n=0

Hτ
n−1∑
h=0

A τ
h,n

†ϵτh,n,

where ϵτh,n is the sampled noise at τ -th episode, h-th time step, and n-th trajectory. Now,

by introducing a Hilbert space containing an operator of L(L(H;H′);R), which is a Hilbert-

Schmidt operator, because of Assumption 4.3.4, we can apply Lemma C.3.3 to our problem
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too. Therefore, with probability at least 1− δt, it holds that∥∥∥(Σt
A )

1
2

(
M −M t

)∥∥∥2 ≤ λ∥M⋆∥2 + σ2(8dϕ log(5) + 8 log(det(Σt
A ) det(Σ0

A )−1)/δt),

and properly choosing δt leads to βtM defined in Section B.2.1, and we obtain the result

Pr

(
T−1⋃
t=0

E t
)
≤ 1

2
.

In our algorithm, transition data are chosen from any initial states and the horizon lengths

vary; however, slight modification of the analysis of LC3 will give the following lemma.

Lemma B.2.6 (Modified version of Theorem 4.2.4). Suppose Assumptions 4.3.4, 4.3.6,

4.3.9, 4.3.13, and 4.3.15 hold. Then, the term term2 is bounded by

E

[
T−1∑
t=0

term2

∣∣∣∣ T−1⋂
t=0

E t
]

≤
√
HVmax

√
64T (dϕ + log(T ) + γT,A (λ) +H)

√
γT,A (λ).

Combining all of the above results, we prove Theorem 4.3.16:

Proof of Theorem 4.3.16. Using (B.2.3) (which requires Assumptions 4.3.4, 4.3.6, 4.3.11, and

4.3.13), Lemma B.2.6 (which requires Assumptions 4.3.4, 4.3.6, 4.3.9, 4.3.13, and 4.3.15), and

Pr
(⋃T−1

t=0 E t
)
≤ 1

2
, it follows that

EKS−LC3 [RegretT ]

≤
√
T {C ′ {L2(1 + C−1)2E[(βTM)2] + (L2 + ΛmaxL)(1 + C−1)E[βTM ] + Λ2

max + L2}}
√
T 1−α(2 + γT,B(λ))

+
√
HVmax

√
64T (dϕ + log(T ) + γT,A (λ) +H)

√
γT,A (λ) +

1

2
· (Λmax +

√
Vmax)

≤ C1T
1−α

2 (d̃T,1 + d̃T,2),

for some absolute constant C1. Therefore, the theorem is proved.
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B.3 Separations of signature control from classical approach

This section discusses the separations of signature control presented in Chapter 5 from classi-

cal Bellman based approach. One may think that one can augment the state with signatures

and give reward at the very end of the episode to encode the value over the entire trajectory

within the classical Bellman based framework. There are obvious drawbacks for this ap-

proach; (1) for the infinite horizon case where the terminal state or time is unavailable, one

cannot give any reward, and (2) input dimension for the value function becomes very large

with signature augmentation. Here, in addition to the above, we show separations from the

classical Bellman based approach from several point of views. Let Sπ(a, y, t) (ES(y, t)) be

the S-function (expected S-function) and Qπ(a, y, s, t) (V π(y, s, t)) be the Q-function (value

function) where s represents the signature of the past path.

B.3.1 Cost and expectation order

If the cost c is linear (e.g., the case of reduction to the Bellman equation), then the cost to

be mimimized can be reformulated as

c
(
EΩ

[
Sm
(
σT
π,F (y0, T, ω)

)])
= EΩ

[
c
(
Sm
(
σT
π,F (y0, T, ω)

))]
.

However, in general, the order is not exchangable. We saw that Chen equation reduces to

the Bellman equation and therefore for any MDP over the state augmented by signatures

(and horizon T ), it is easy to see that there exists an interpolation, a transpotation, and a

cost c such that

c (ESπm (y0, 0)) = V π(y0,1, 0).

On the other hand, the opposite does not hold in general.

Claim B.3.1. There exist a 3-tuple (X ,A, Pa) where Pa is the transition kernel for action

a ∈ A, a set of randomized policies (π(a|x) is the probability of taking action a ∈ A at x ∈ X
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under the policy π) Π, an initial state y0, and the cost function c of signature control, such

that there is no immediate reward function r that satisfies

arg min
π∈Π

c (ESπm (y0, 0)) = arg min
π∈Π

V π(y0,1, 0).

Proof. Let X = Y = R, A = {a−1, a1}, T = N, y0 = 0, T = 1 and

Pa−1(0,−1) = 1, Pa1(0, 1) = 1.

Also, let Π = {π1, π2, π3} where

π1(a1|0) = 1, π2(a−1|0) = 1, π3(a1|0) = 0.5, π3(a−1|0) = 0.5,

and let c : T 1(X )→ R≥0 be

c(s) = |s1|.

The optimal policy for signature control is then π3, i.e.,

{π3} = arg min
π∈Π

c (ESπm (y0, 0)) .

Now, because we have

V π1(y0,1, 0) = EΩa−1
[r(a−1, y0,1, ω)] ,

V π2(y0,1, 0) = EΩa1
[r(a1, y0,1, ω)] ,

V π3(y0,1, 0) =
EΩa−1

[r(a−1, y0,1, ω)] + EΩa1
[r(a1, y0,1, ω)]

2
,

possible immediate rewards to care about are only EΩa−1
[r(a−1, y0,1, ω)] and

EΩa1
[r(a1, y0,1, ω)]. It is straightforward to see that

π3 ∈ arg min
π∈Π

V π(y0,1, 0)

only if

EΩa−1
[r(a−1, y0,1, ω)] = EΩa1

[r(a1, y0,1, ω)] .

However, for any reward function satisfying this equation we obtain

{π3} ≠ arg min
π∈Π

V π(y0,1, 0).
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B.3.2 Sample complexity

We considered stochastic policy above. What if the dynamics is deterministic (Ω is a sin-

gleton)? For a deterministic finite horizon case, technically, the cost over path can be rep-

resented by both the cost function with S-function and Q-function. The difference is the

steps or sample complexity required to find an optimal path. Because S-function captures

strictly more information than Q-function, it should show sample efficiency in certain prob-

lems even for deterministic cases. Here, in particular, we show that there exists a signature

control problem which is more efficiently solved by the use of S-function than by Q-function.

(We do not discuss typical lower bound arguments of RL sample complexity; giving certain

convergence guarantees with lower bound arguments is an important future work.)

To this end, we define Signature MDP:

Definition B.3.1 (Finite horizon, time-dependent signature MDP). Finite horizon, time-

dependent signature MDP is the 8-tuple (X ,A,m, {P}t, F, {r}t, T, µ) which consists of

• finite or infinite state space X

• discrete or infinite action space A

• signature depth m ∈ Z>0

• transition kernel Pa,t on X × X for action a ∈ A and time t ∈ [T ]

• signature is updated through concatenation of past path and the immediate path which

is the interpolation of the current state and the next state by F

• reward rt which is a time-dependent mapping from X × Tm(X ) × A to R for time

t ∈ [T ]

• positive integer T ∈ Z>0 defining time horizon
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• initial state distribution µ

Further, we call an algorithm Q-table (S-table) based if it accesses state x exclusively

through Q-table (S-table) for all x ∈ X . Now, we obtain the following claim.

Claim B.3.2. There exists a finite horizon, time-dependent signature MDP with a set of

deterministic policies Π and with a known reward {r}t such that the number of samples

(trajectories) required in the worst case to determine an optimal policy is strictly larger for

any Q-table based algorithm than a S-table based algorithm.

Proof. Let the first MDP M1 be given by T = 3, X = Y :=

{[0, 0], [1, 1], [2, 2], [2, 3], [−1, 1], [0, 1], [4, 0]} ⊂ R2, A := {a1, a2}, m = 2, F is linear

interpolation of any pair of points, µ([0, 0]) = Pr[y0 = [0, 0]] = 1, and

Pa1,0([0, 0], [1, 1]) = Pa1,1([1, 1], [2, 2]) = Pa2,1([1, 1], [2, 2]) = Pa1,2([2, 2], [2, 3]) =

= Pa2,0([0, 0], [−1, 1]) = Pa1,1([−1, 1], [2, 2]) = Pa2,1([−1, 1], [2, 2]) = Pa2,2([2, 2], [4, 0]) = 1

Also, let {r}t satisfy that

∀t ∈ [T − 1] : rt = 0, rT−1(x, s, a) = |s+1,2|,

where s+ is the signature of entire path that is deterministically obtained from state x at

time T −1, past path signature s, and action a (note we do not know the transition but only

the output |s+1,2|). The possible deterministic trajectories (or policies) of state-action pairs
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are the followings:

(([0, 0], a1), ([1, 1], a1), ([2, 2], a1), ([2, 3]))

(([0, 0], a1), ([1, 1], a2), ([2, 2], a1), ([2, 3]))

(([0, 0], a1), ([1, 1], a1), ([2, 2], a2), ([4, 0]))

(([0, 0], a1), ([1, 1], a2), ([2, 2], a2), ([4, 0]))

(([0, 0], a2), ([−1, 1], a1), ([2, 2], a1), ([2, 3]))

(([0, 0], a2), ([−1, 1], a2), ([2, 2], a1), ([2, 3]))

(([0, 0], a2), ([−1, 1], a1), ([2, 2], a2), ([4, 0]))

(([0, 0], a2), ([−1, 1], a2), ([2, 2], a2), ([4, 0])) .

The optimal trajectories are the last two. Let the second MDP M2 be the same as M1

except that

Pa2,2([2, 2], [2, 3]) = 1.

Suppose we obtain Q-table for the first six trajectories of M1. At this point, we cannot

distinguish M1 and M2 exclusively from the Q-table; hence at least one more trajectory

sample is required to determine the optimal policy for any Q-table based algorithm. On the

other hand, suppose we obtain S-table for the first six trajectories ofM1. Then, the S-table

at state x = [2, 2] with depth m ≥ 1 determines the transition at x = [2, 2] for both actions;

hence, we know the cost of the the last two trajectories without executing it.

B.4 Proof of Proposition 6.3.2

Proof.

B := Lmax sup
t>0
|at|,

C :=
√

4R2 log(4/δ),

D := L2
maxC0

(
µ+ sup

t≥1
|at|
)
.
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Then,
√
T > 0 satisfies the following inequality

√
T ≥ max

{
C +

√
C2 + 4(ε− µ)B

2(ε− µ)
,
C +

√
C2 + 4(ε− µ)D

2(ε− µ)

}

if and only if

ε ≤ 2ε− µ− Lmax supt>0 |at|
T

−
√

4R2 log(4/δ)

T
, and

ε ≥ µ+
L2
maxC0(µ+ supt≥1 |at|)

T
+

√
4R2 log(4/δ)

T
.

Since Lmax ≥ 2, D ≥ B, µ < γ supt≥1 |at|, C0(1 + γ) < 3, and

ε− µ =
σ0(1− λ)√

Lmax

·
√
Lmax

1 +
√

4Lmax + 1

≥ σ0(1− λ)

2
√

2
√
Lmax

,

max

{
C +

√
C2 + 4(ε− µ)B

2(ε− µ)
,
C +

√
C2 + 4(ε− µ)D

2(ε− µ)

}

=
C +

√
C2 + 4(ε− µ)D

2(ε− µ)

≤ 2

√
LmaxC2

4(ε− µ)2
+

D

(ε− µ)

≤ 2

√
2L2

maxC
2

σ2
0(ξ − λ)2

+
6
√

2L
5/2
max supt≥1 |at|
σ0(ξ − λ)

≤ 2

√
2L2

maxC
2

σ2
0(ξ − λ)2

+
9L

5/2
max supt≥1 |at|
σ0(ξ − λ)

,

where we used
√

1− 2γ = 2γ
√
Lmax. Since 2ε ≤

√
(σ2

0 − 2µσ0)/Lmax, the statement follows

from Lemma 6.3.1.
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B.5 Proof of Theorem 6.3.3

Proof. Let K be the set of all combinations (m,β, s, q) such that m ∈ {1, . . . , d}, β ∈

{1, . . . , Lmax}, s ∈ [β − 1] and {q = α/ℓ : α ∈ {1, . . . , ℓ− 1}}. We remark that

|K| ≤
d∑

m=1

Lmax∑
β=1

∑
ℓ≤Lmax/β

ℓ−1∑
α=1

β−1∑
s=0

1 = d

Lmax∑
β=1

∑
ℓ≤Lmax/β

β(ℓ− 1)

≤ d
Lmax∑
β=1

Lmax

2

(
Lmax

β
− 1

)
≤ dL2

max logLmax

2
.

Also, let ETpκ be the event such that, for the combination κ ∈ K,∣∣∣∣∣∣ 1

⌊Tp/β⌋

⌊Tp/β⌋−1∑
j=0

{
ηt0+βj+se

i2παj
ℓ

}∣∣∣∣∣∣ ≤
√

4R2 log (4dL2
max logLmax/δ)

⌊Tp/β⌋
.

Because the error sequence satisfies conditionally R-sub-Gaussian, using Lemma C.4.1 and

from the fact that any subsequence of the filtration {Fτ} is again a filtration, we obtain, for

each κ ∈ K,

Pr
[
ETpκ
]
≥ 1− δ

dL2
max logLmax

.

Define ETp :=
⋂
κ∈K E

Tp
κ . Then, it follows from the Fréchet inequality that

Pr
[
ETp
]

= Pr

[⋂
κ∈K

ETpκ

]
≥ |K|

(
1− δ

dL2
max logLmax

)
− (|K| − 1)

= 1− δ|K|
dL2

max logLmax

≥ 1− δ.

Let L̂ be the output of Algorithm 4. We show that, with probability 1− δ, L̂ is (ρ,
√
d)-anp

of L. In fact, suppose L̂ is not (ρ,
√
d)-anp. We note that L̂ < L. There exists s ∈ [L̂] and

t1, t2 ∈ Z>0,

∥f s+L̂t1(θ)− f s+L̂t2(θ)∥Rd > ρ+ 2
√
dµ.
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Let m′ ∈ argmaxm=1,...,d

∣∣∣f s+L̂t1(θ)⊤um − f s+L̂t2(θ)⊤um∣∣∣. Put at := f s+L̂t(θ)⊤um′ . Then, for

any t, t′ ∈ Z>0, we have

|at − at′ | ≥ |at1 − at2 | − 2µ

≥ ∥f
s+L̂t1(θ)− f s+L̂t2(θ)∥Rd√

d
− 2µ

>
ρ√
d
.

Thus, by definition, we have

σL/L̂((at)t) ≥
ρ

2

√
dL/L̂

≥ ρ

2
√
dLmax

.

Let σ0 = ρ/2
√
dLmax and ξ := γ−1/3

√
Lmax. Then, µ/(γξ) < σ0 ≤ σL/L̂((at)t), and

8LmaxR
2 log(4/δ)

σ2
0(ξ − λ)2

+
36L

5/2
max supt≥1 |at|
σ0(ξ − λ)

≤ 32ξ−2dL2
maxR

2 log(4/δ)

ρ2(1− r)2
+

72ξ−1
√
dL3

max supt≥1 |at|
ρ(1− r)

≤ 72dL2
maxR

2 log(4/δ)

ρ2(1− r)2
+

108
√
dL3

max supt≥1 |at|
ρ(1− r)

.

The last inequality follows from ξ ≥ 2/3. Thus, by Proposition 6.3.2, the algorithm finds β >

L̂ in m′-th loop, and the output becomes an integer larger than L̂, which is contradiction.

B.6 Proof of Theorem 6.3.9

Here, we provide the proof of Theorem 6.3.9. Let

K := [Mθ, . . . ,Mdθ] : Cd → W,

Es(N) := W
(
(Es,j)

N−1
j=0

)
: Cd → Cd.
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For a linear map M : W → W , we define linear maps:

X(M) :=


x̃⊤1M1

x̃⊤2M2d+1

...

x̃⊤dM2(d−1)d+1

 : W → Cd,

QN(M) := W
(

(M2d2j)N−1
j=0

)
: W → W.

For s = 0, 1, we define linear maps on Cd by

As(N ;M) := X(M)QN(M)Msd+N−1K + Es(N),

Bs(N ;M) := X(M)QN(M)Msd+N−1K.

We note that As(N ;Mθ) is identical to As(N) defined in (6.3.7). We impose the following

assumption on X(Mθ):

Assumption B.6.1. The kernel of the linear map X(M1) is the same as N (M1).

Note that this assumption holds with probability 1 if we randomly choose x̃1, . . . , x̃d (see

Lemma C.1.3).

The following lemma provides an explicit description of B0(N ;M1)
+.

Lemma B.6.2. Suppose Assumption B.6.1 holds. Assume N ≥ 16L2. Let

U1 := I (B0(N ;M1)) ⊂ Cd,

U2 := N (B0(N ;M1)) ⊂ Cd,

U3 := I (M1) = W=1 ⊂ W.

Let i : U1 → Cd be the inclusion map and p : Cd → U⊥
2 the orthogonal projection. Then,

restriction of X(M1) (resp. M1K) to U3 (resp. U⊥
2 ) induces an isomorphism onto U1 (resp.

U3). If we denote the isomorphism by X̃ (resp, K̃). Then, B0(N ;M1)
+ is given by

B0(N ;M1)
+ = p†K̃−1M1|2−NU3

QN(M1)|−1
U3
X̃−1i†.



281

Proof. Since we have N (M1) = N (M r+1
1 ) for all r ≥ 0 and Assumption B.6.1, surjectivity

of K by Proposition C.1.2, and bijectivity of QN(M1) on U3 by Proposition 6.3.8, we have

U1 = I (X(M1)|U3),

U2 = N (M1K).

Thus, the restriction of X(M1) (resp. K) to U3 (resp. U⊥
2 ) induces an isomorphism onto U1

(resp. U3). Let us denote the isomorphism by X̃ (resp. K̃). Then, the last statement follows

from Proposition C.1.1.

Lemma B.6.3. Assume N ≥ 16L2. Let

A := B1(N ;M1)B0(N ;M1)
+.

Then, A is independent of N and its eigenvalues are zeros except for (θ, d)-distinct eigenval-

ues of M .

Proof. We use the notation as in Lemma B.6.2. By Lemma B.6.2, we obtain

B1(N ;M1)B0(N ;M1)
+ = iX̃Md

1 X̃
−1i†,

which is independent of N and its eigenvalues are zeros except for (θ, d)-distinct eigenvalues

of M .

The following result will be used in the proof of Theorem 6.3.9 (but not essential).

Lemma B.6.4. We have

∥X(M1)∥ ≤ κ
√
d,

∥X(M<1)∥ ≤ κ(d+ 1)2d.

Proof. Considering the Jordan normal form, the first inequality is obvious. As for the second

inequality, we define J ∈ Rd×d by the nilpotent matrix

J :=


0 1 O

. . . . . .

1

O 0

 .
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Then, we have

κ−1∥X(M1)∥ ≤
d∑
r=1

∥(I + J)∥1

=
d∑
r=1

d∑
j=0

(
r

j

)
(d− j)

=
d∑
j=0

(d− j)
d∑
r=1

(
r

j

)

= d+
d∑
j=1

(d− j)
d∑
r=1

(
r

j

)

= d+
d∑
j=1

(d− j)
(
r + 1

j + 1

)
= d+ (d+ 1)2d − (d+ 1)d− (d+ 1)

< (d+ 1)2d.

Proof of Theorem 6.3.9. Let A be the matrix introduced in Lemma B.6.3. Let

γ(N) :=

√
4d2R2 log(4d2/δ) + 1√

N
.

Let M1 and M<1 be matrices as in Corollary 6.2.3. Then, by Proposition 6.2.2, we see that

As(N,M) = As(N,M1) + As(N,M<1),

Bs(N,M) = Bs(N,M1) +Bs(N,M<1).

We denote by Âs(N ;M) (resp, B̂s(N ;M)) the low rank approximation via the singular value

threshold γ(N) (see Definition 6.3.4). By direct computations, we have

∥A− A1(N ;M)Â0(N ;M)+∥

≤ ∥A1(N ;M)∥ · ∥Â0(N ;M)+ −B0(N ;M1)
+∥+ ∥A1(N ;M)−B1(N ;M1)∥ · ∥B0(N ;M1)

+∥

≤ (∥B1(N ;M1)∥+ ∥B1(N ;M<1)∥+ ∥E1(N)∥) · ∥Â0(N ;M)+ −B0(N ;M1)
+∥

+ ∥B1(N ;M<1) + E1(N)∥ · ∥B0(N ;M1)
+∥.
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By Proposition 6.3.8, for s = 0, 1 and for N ≥ max{2d, 16L2}, we have

∥Bs(N ;M1)∥ ≤ ∥X(M1)∥ · ∥MN+sd−1
1 QN(M1)∥ · ∥K∥

≤ κCws(L)∥X(M1)∥∥K∥

≤ Bdκ2Cws(L)

∥Bs(N ;M<1)∥ ≤ ∥X(M<1)∥ · ∥MN+sd−1
<1 QN(M<1)∥ · ∥K∥

≤ ∥X(M<1)∥ · ∥K∥ ·
d2κe−∆(N+sd−d)

N∆d−1

≤ Bκ
√
d(d+ 1)2d · d

2κe−∆(N+sd−d)

N∆d−1

≤ Bκ2ed+6−∆(N+sd−d)

N∆d−1
,

where we used ∥K∥ ≤
√
dB (Assumption 6.2.6), and ∥X(M<1)∥ ≤ κ(d+1)2d (Lemma B.6.4),

and
√
d(d+ 1)d22d < ed+6. By Lemma B.6.2 with Proposition 6.3.8, we see that

∥B0(N ;M1)
+∥ ≤ κCws(L)∥X̃−1∥ · ∥K̃−1∥.

By using Lemma C.4.1 and union bounds, we obtain

max(∥E0(N)∥HS, ∥E1(N)∥HS) ≤ γ(N)− 1√
N
,

with probability at least 1− δ. Assume that

N ≥ −(d− 1) log ∆

∆
+

log(Bκ2) + d+ 6

∆
+ d.

Then, we see that ∥Bs(N ;M<1)∥ ≤ 1/N . Thus, by Lemma C.3.5, with probability at least

1− δ, we have

∥Â0(N ;M)+ −B0(N ;M1)
+∥ ≤ 8(∥E0(N)∥+ ∥B0(N ;M<1)∥) · ∥B0(N,M1)

+∥2(
√
d+ 1)

≤ 8γ(N) · ∥B0(N,M1)
+∥2(
√
d+ 1)

≤ 8(1 +
√
d)κ2Cws(L)2∥X̃−1∥2 · ∥K̃−1∥2γ(N).
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Therefore, there exists C > 0 depending on ∥X(M)∥, ∥K∥, κ, Cws(L), ∥X̃−1∥, ∥K̃−1∥,

and d such that

∥A− A1(N ;M)Â0(N ;M)+∥ < C

(
R2 (log (1/δ) + 1) + 1√

N

)
,

with probability at least 1− δ.

B.7 Proof of Proposition 7.4.2

We will present a proof for each class.

MDP Class 1: We first show the behavior for ℓ2 loss algorithm, where the magnitude

of update is the absolute difference of the current estimate and the target value. We obtain

Q̂1(s0, 0) = αHR(s0, s0, 0),

and therefore, the agent will take a = 1 at s0 for the next episode. After episode 1, the Q

estimate satisfies

Q̂2(s0, 1) = αR(s0, s1, 1),

and

Q̂2(s1, 0) = α(H − 1)R(s1, s1, 0).

Repeating this process under H > 2N , α < 1/H, and R(si, si+1, 1) < R(si+1, si+2, 1) ≤ 0,

we obtain, for all 0 ≤ i < N − 1 and 1 ≤ t < N , as a rough bound,

Q̂t(si, 0) = δ(t− 1 ≥ i)α(H − i)R(si, si, 0),

Q̂t(si, 1) ≥ δ(t− 2 ≥ i)α
N−2∑
j=i

max {(t− j − 1), 0}αjR(sj, sj+1, 1)

> δ(t− 2 ≥ i)
α(N − i)

1− α
R(si, si+1, 1) > δ(t− 2 ≥ i)2α(N − i)R(si, si+1, 1),

where δ(condition) returns 1 if the condition is met and otherwise zero. Hence, byH > 2N

and 0 ≥ R(si, si+1, 1) > R(si, si, 0) for all i ∈ {0, 1, . . . , N − 2}, after time step (N − 1)H,

we have met the success condition.
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For ℓ1 loss algorithm where the magnitude of gradient is fixed to 1 almost everywhere,

similar arguments as above hold. Therefore, for both ℓ1 loss and ℓ2 loss cases, we obtain

inf
ω

[
t
∣∣ℓ1 loss meets success cond.

]
= inf

ω

[
t
∣∣ℓ2 loss meets success cond.

]
= N − 1.

MDP Class 2: It basically follows the same arguments as MDP Class 1, but the episode

where the agent first reaches sk+1, which we define to be tk+1, it receives large penalty. For

ℓ1 loss, it does not affect the magnitude of update, and thus the behavior is the same as

Class 1 until t = N . On the other hand, for ℓ2 loss

Q̂tk+1+1(sk, 1) ≤ −αBH < α(H − k)R(sk, sk, 0),

and the agent will take wrong action at tk+1 + 1. Therefore, we obtain

N − 1 = inf
ω

[
t
∣∣ℓ1 loss meets success cond.

]
< inf

ω

[
t
∣∣ℓ2 loss meets success cond.

]
.

MDP Class 3: First of all, to meet the success condition, the agent anyway needs to

reach sN−2 to learn that action a = 1 must be chosen to reach the done state; and in this

episode, it experiences the transition sN−3 → sN−2 which gives a penalty. This penalty does

not propagate to the previous states because maxa{Q̂(sN−3, a)} stays zero. Given the reward

conditions, the fastest possible case of meeting the success condition is thus by reaching sN−1

many times to cancel out the negative reward experienced when sN−3 → sN−2.

Consider ℓ1 loss algorithm; because of the constant update magnitude of 1, the agent

needs to reach sN−1 at least (as a loose bound) ⌈|R(sN−3, sN−2, 1)|/α⌉ epochs until the

estimated Q value for the transition sN−3 → sN−2 becomes positive.

On the other hands, for ℓ2 loss algorithm, assume that the agent reaches sN−1 at the

initial episode. Then,

Q̂1(sN−3, 1) = αR(sN−3, sN−2, 1),

Q̂1(sN−2, 1) > α4|R(sN−3, sN−2, 1)|.
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Further, we assume the agent reaches to the final state for ⌈1/α⌉ more consecutive episodes;

then it gets

Q̂1(sN−3, 1) ≥ R(sN−3, sN−2, 1),

Q̂1(sN−2, 1) > 2|R(sN−3, sN−2, 1)|.

Therefore, after at most 2⌈1/α⌉ such consecutive episodes, it gets

Q̂1(sN−3, 1) > 0.

The probability of such an event (i.e., experiencing at most 2⌈1/α⌉ consecutive episodes of

reaching to the final state) happening before |R(sN−3, sN−2, 1)|/α episodes is thus positive

as long as

|R(sN−3, sN−2, 1)|
α

> 2 +
2

α
.

Hence, under the assumptions, we obtain

inf
ω

[
t
∣∣ℓ2 loss meets success cond.

]
< inf

ω

[
t
∣∣ℓ1 loss meets success cond.

]
.

MDP Class 4: We show the followings:

inf
ω

[
t
∣∣ℓ1 loss meets success cond.

]
< inf

ω

[
t
∣∣ℓ2 loss meets success cond.

]
(B.7.1)

and

∃T > 0 : ∀t ≥ T, Pr
[
Q̂2,t(sN−3, 1) > Q̂2,t(sN−3, 0)

]
> Pr

[
Q̂1,t(sN−3, 1) > Q̂1,t(sN−3, 0)

]
,

(B.7.2)

where Q̂1,t (Q̂2,t) is the estimated Q function at episode t for ℓ1 loss (for ℓ2 loss).

Both ℓ1 loss and ℓ2 loss algorithms follow similarly the case of MDP Class 2, and thus

the claim (B.7.1) holds.

First, consider ℓ2 loss algorithm. Because of the action selection mechanism, and that

the rewards are all negative except for the transitions to the final states sN−2 and sN−1, and
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because α < 1/H, it follows that the estimated Q values for action 0 at the intermediate

states do not fall below the sum of all of the negative rewards, i.e.,

Q̂2,t(si, 1) ≥
N−4∑
j=i

R(sj, sj+1, 1).

This can be verified by inductions; Q̂2,t(sN−3, 0) or Q̂2,t(sN−3, 1) are at least zeros, and

Q̂2,t(sN−4, 1) is at least R(sN−4, sN−3, 1) + 0 (∵ the step size is smaller than 1/H with the

gradient of ℓ2 loss loss, implying that the estimate does not go further than the target, and

maxa{Q̂2,t(sN−3, a)} ≥ 0), and then by inductions. Therefore, after sufficiently large number

T of episodes, the agent selects action 1 at all the states except for sN−3. As such, suppose

T episodes include more than or equal to K ≥ 2 reaches to the final states.

Now we know, for a fixed target value, the output of ℓ2 loss algorithm after a given number

of updates and is linear in the target value, and the magnitude of update strictly shrinks as

the number of updates increases. Therefore, Q̂2,T (sN−3, 1) is larger than Q̂2,T (sN−3, 0) if the

number of times action 0 at sN−3 is taken is smaller than c > 2 times the number of times

action 1 is taken. It hence follows that after T episodes,

Pr
[
Q̂2,t(sN−3, 1) > Q̂2,t(sN−3, 0)

]
>

1

2
, ∀t ≥ T.

On the other hand, consider ℓ1 loss algorithm. After any number t of episodes, we have,

for any k ∈ {0, 1, 2, . . . , K},

Pr
[
Q̂t(sN−3, 1) > Q̂t(sN−3, 0)

∣∣agent has reached to the final state k times
]
≤ 1

2

because the left hand side corresponds to the probability that random walk starting from

the origin ends up in positive region at time k under the assumption αK < R(sN−3, sN−2, 0)

and because of the reflection principle of random walk. After K reaches, the order of the

estimates of Q values will not change, which now proves the claim (B.7.2).



288

Appendix C

MISCELLANEOUS

We provide some of the important technical lemmas here.

C.1 Linear algebra

Proposition C.1.1. Let A : Cm → Cn be a linear map. Let i : I (A) → Cn be the

inclusion map and let p : Cm → N (A)⊥ be the orthogonal projection. Let Ã := A|N (A) :

N (A)⊥ → I (A) be an isomorphism. Then, the Moore-Penrose pseudo inverse A+ coincides

with i†Ã−1p†.

Proof. Let B := p†Ã−1i†. We remark that A = iÃp, i†i = id, pp† = id, we see that ABA = A,

BAB = B, (AB)† = AB, and BA = (BA)†. By the uniqueness of Moore-Penrose pseudo

inverse, B = A+.

Proposition C.1.2. Let A ∈ Cd×d be a matrix and let v ∈ Cd be a vector. Let V ⊂ Cd be a

linear subspace generated by {Ajv}∞j=1. Then, V = I
(
[Av,A2v, . . . , Adv]

)
.

Proof. Put W = I
(
[Av,A2v, . . . , Adv]

)
. The inclusion W ⊂ V is obvious, we prove the

opposite inclusion. It suffices to show that Ajv ∈ W for any positive integer j > d. By the

Cayley-Hamilton theorem, Ad =
∑d

j=1 cjA
d−j for some cj ∈ C. Thus, by induction Aj is a

linear combination of A,A2, . . . , Ad, namely, Ajv ∈ W .

Lemma C.1.3 (Null space of random matrix). Suppose Mk ∈ Rd×d, k ∈ [d], have the same
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null space. Then, the null space of

X :=


x⊤1M1

x⊤2M2

...

x⊤dMd

 ,

where xk, k ∈ [d], are unit vectors independently drawn from the uniform distribution over

the unit hypersphere, is the same as those of Mk with probability one.

Proof. Given any k − 1 dimensional linear subspace in N (Mk)
⊥ for any k ∈ [d], it holds

that the probability that x⊤kMk lies on that space is zero. Therefore, by union bound, and

by the fact that the row space is the orthogonal complement of the null space, we obtain the

result.

C.2 On distributions

Lemma C.2.1 (Chi-squared distance between two Gaussians). For Gaussian distributions

N (µ1, σ
2I) and N (µ2, σ

2I), the (squared) chi-squared distance between N1 and N2 is:∫
(N1(z)−N2(z))2

N1(z)
dz = exp

(
∥µ1 − µ2∥2Rdx

2σ2

)
− 1.

Proof. Observe that:∫
(N1(z)−N2(z))2

N1(z)
dz =

∫
N1(z)− 2N2(z) +

N2(z)2

N1(z)
dz = −1 +

∫
N2(z)2

N1(z)
dz.

Note that for N 2
2 (z)/N1(z), we have:

N 2
2 (z)/N1(z) =

1

Z
exp

(
− 1

2σ2

(
2∥z − µ2∥2Rdx − ∥z − µ1∥2Rdx

))
,

where Z is the normalization constant for N (0, σ2I), i.e., Z =
∫

exp
(
− 1

2σ2∥z∥2Rdx

)
dz.

For 2∥z − µ2∥2Rdx − ∥z − µ1∥2Rdx , we can verify that:

2∥z − µ2∥2Rdx − ∥z − µ1∥2Rdx = ∥z + (µ1 − 2µ2)∥2Rdx − 2∥µ1 − µ2∥2Rdx .
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This implies that:∫
N2(z)2

N1(z)
dz =

1

Z

∫
exp

(
− 1

2σ2

(
∥z − (2µ2 − µ1)∥2Rdx − 2∥µ1 − µ2∥Rdx

))
dz

=
1

Z
exp

(
∥µ1 − µ2∥2Rdx

σ2

)∫
exp

(
− 1

2σ2
∥z − (2µ2 − µ1)∥2Rdx

)
dz

= exp

(
∥µ1 − µ2∥2Rdx

σ2

)
,

which concludes the proof.

C.3 Bounding lemmas

Lemma C.3.1 (Expectation difference under two Gaussians). For Gaussian distributions

N1(µ1, σ
2I) and N2(µ2, σ

2I), and for any (appropriately measurable) positive function g, it

holds that:

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ min

{
∥µ1 − µ2∥Rdx

σ
, 1

} √
Ez∼N1 [g(z)2].

Proof. Define mi = Ez∼Ni
[g(z)] for i ∈ {1, 2}. We have:

m1 −m2 = Ez∼N1

[
g(z)(1− N2(z)

N1(z)
)

]
≤
√

Ez∼N1 [g(z)2]

√∫
(N1(z)−N2(z))2

N1(z)
dz

=
√

Ez∼N1 [g(z)2]

√
exp

(∥µ1 − µ2∥2Rdx

2σ2

)
− 1

where we have used Lemma C.2.1. Also since m2 is positive,

m1 −m2 ≤ m1 ≤
√

Ez∼N1 [g(z)2],

and so

m1 −m2 ≤
√
Ez∼N1 [g(z)2]

√
min

{
exp

(∥µ1 − µ2∥2Rdx

2σ2

)
− 1, 1

}
.
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Now if the min is not achieved by 1, then
∥µ1−µ2∥2Rdx

2σ2 ≤ 1. And since exp(x) ≤ 1 + 2x for

0 ≤ x ≤ 1, we have:

min

{
exp

(
∥µ1 − µ2∥2Rdx

2σ2

)
− 1, 1

}
≤ min

{
1 +
∥µ1 − µ2∥2Rdx

σ2
− 1, 1

}
= min

{
∥µ1 − µ2∥2Rdx

σ2
, 1

}
.

which completes the proof.

Lemma C.3.2 (Self-normalized bound for vector-valued martingales; [1]). Let {εi}∞i=1 be a

real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is Fi mea-

surable, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R≥0. Let {Xi}∞i=1 be

a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft measurable. Assume

that a linear operator V : H → H is positive definite, i.e., x⊤V x > 0 for any x ∈ H. For

any t, define the linear operator Vt = V +
∑t

i=1XiX
⊤
i (here xx⊤ denotes outer-product in

H). With probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑
i=1

Xiεi

∥∥∥∥∥
2

V −1
t

≤ 2σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

We generalize this lemma as follows:

Lemma C.3.3 (Self-normalized bound for matrix-valued martingales). Let {εi}∞i=1 be a d-

dimensional vector-valued stochastic process with corresponding filtration {Fi}∞i=1 such that

εi is Fi measurable, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R≥0.
1

Let {Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft

measurable. Assume that a linear operator V : H → H is positive definite. For any t, define

the linear operator Vt = V +
∑t

i=1XiX
⊤
i Then, with probability at least 1 − δ, we have for

all t, we have:∥∥∥∥∥
t∑
i=1

ϵiX
⊤
i V

−1/2
t

∥∥∥∥∥
2

≤ 8σ2d log (5) + 8σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

1We say a vector-valued, random variable z is σ-sub-Gaussian if w · z is σ-sub-Gaussian for every unit
vector w.
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Proof. Denote S =
∑t

i=1 ϵiX
⊤
i . Let us form an ϵ-net, in ℓ2 distance, C over the unit ball

{w : ∥w∥Rd ≤ 1, w ∈ Rd}. Via a standard covering argument (e.g., [219]), we can choose C

such that log (|C|) ≤ d log(1 + 2/ϵ).

Consider a fixed w ∈ C and w⊤S =
∑t

i=1w
⊤ϵiX

⊤
i . Note that w⊤ϵi is a σ-sub Gaussian

due to ∥w∥Rd ≤ 1. Hence, Lemma C.3.2 implies that with probability at least 1− δ, for all t,∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w⊤ϵi

)∥∥∥∥∥ ≤ √2σ

√
log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

Now apply a union bound over C, we get that with probability at least 1− δ:

∀w ∈ C :

∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w⊤ϵi

)∥∥∥∥∥ ≤ √2σ

√
d log (1 + 2/ϵ) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

For any w with ∥w∥Rd ≤ 1, there exists a w′ ∈ C such that ∥w−w′∥Rd ≤ ϵ. Hence, for all w

such that ∥w∥Rd ≤ 1,∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w⊤ϵi

)∥∥∥∥∥ ≤ √2σ

√
d log (1 + 2/ϵ) + log

(
det(Vt)1/2 det(V )−1/2

δ

)

+ ϵ

∥∥∥∥∥
t∑
i=1

ϵiX
⊤
i V

−1/2
t

∥∥∥∥∥ .
By the definition of the spectral norm, this implies that:∥∥∥∥∥

t∑
i=1

ϵiX
⊤
i V

−1/2
t

∥∥∥∥∥ ≤ 1

1− ϵ
√

2σ

√
d log (1 + 2/ϵ) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

Taking ϵ = 1/2 concludes the proof.

Lemma C.3.4. For any sequence x0, . . . , xT−1 such that, for t < T , xt ∈ Rd and ∥xt∥Rd ≤

B ∈ R≥0, we have:

log det

(
I +

1

λ

T−1∑
t=0

xtx
⊤
t

)
≤ d log

(
1 +

TB2

dλ

)
.

Proof. Denote the eigenvalues of
∑T−1

t=0 xtx
⊤
t as σ1, . . . , σd, and note:

d∑
i=1

σi = tr

(
T−1∑
t=0

xtx
⊤
t

)
≤ TB2.
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Using the AM-GM inequality,

log det

(
I +

1

λ

T−1∑
t=0

xtx
⊤
t

)
= log

(
d∏
i=1

(1 + σi/λ)

)

= d log

(
d∏
i=1

(1 + σi/λ)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)
≤ d log

(
1 +

TB2

dλ

)
,

which concludes the proof.

Lemma C.3.5 (Perturbation bounds of the Moore-Penrose inverse). Suppose A ∈ Cd×d is

a matrix. Let E ∈ Cd×d be a matrix satisfying

∃C > 0, ∀N ∈ Z>0, ∥E∥ ≤ C
1√
N
,

and let ÂE ∈ Cd×d be the low rank approximation of A+E via SVD with the singular value

threshold C/
√
N . Then, we obtain

∥∥∥A+ − Â+
E

∥∥∥ ≤ 8C∥A+∥2
(√

d+ 1
)

√
N

.

Proof. Let σmin = ∥A+∥−1 be the minimal singular value of A. From [171, Theorem 1.1] (or

originally [259]) and from the fact∥∥∥ÂE − A∥∥∥ ≤ ∥E∥+

√
dC√
N
,

we obtain ∥∥∥A+ − Â+
E

∥∥∥ ≤ 1 +
√

5

2
max

{∥∥A+
∥∥2 ,∥∥∥Â+

E

∥∥∥2}(√d+ 1
) C√

N
.

For N such that 1 ≤ N ≤ 4C2/σ2
min, we have

∥∥∥Â+
E

∥∥∥ ≤ √N/C ≤ 2/σmin. Suppose singular

values σk, k ∈ [d], of A, and σ̂k, k ∈ [d], of A + E are sorted in descending order. Then, it

holds that

|σk − σ̂k| ≤ ∥E∥ .
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Therefore, for N > 4C2/σ2
min, the minimum singular value σ̂d is greater than σmin/2. In this

case, ÂE = A+ E, and it follows that
∥∥∥Â+

E

∥∥∥ ≤ 2/σmin. Hence, for all N ≥ 1, we obtain∥∥∥Â+
E

∥∥∥ ≤ 2

σmin

,

from which, it follows that

∥∥∥A+ − Â+
E

∥∥∥ ≤ 2C
(
1 +
√

5
) (√

d+ 1
)

σ2
min

√
N

≤
8C∥A+∥2

(√
d+ 1

)
√
N

.

C.4 Azuma-Hoeffding inequality for exponential sum

Lemma C.4.1. Let {Xj}nj=1 for n ∈ Z>0 be sub-Gaussian martingale difference with variance

proxy R2 and a filtration {Fj}. Also, let {aj} ⊂ C be a sequence of complex numbers

satisfying |aj| ≤ 1 for all j ∈ [n]. Then, the followings hold, where ∗[·] stands for Re[·] or

Im[·].

Pr

[
1

n

∣∣∣∣∣∗
[

n∑
j=1

ajXj

]∣∣∣∣∣ ≤
√

2R2 log (2/δ)

n

]
≥ 1− δ,

Pr

[
1

n

∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣ ≤
√

4R2 log (4/δ)

n

]
≥ 1− δ.

Proof. For a filtration {Fi}i≤n, we have

E
[
eλRe[

∑n
j=1 ajXj]

]
≤ E

[
eλRe[

∑n−1
j=1 ajXj]E

[
eλRe[anXn]

∣∣Fn−1

]]
≤ e

λ2R2

2 E
[
eλRe[

∑n−1
j=1 ajXj]

]
,

where the first inequality follows from the assumption of filtration, and the second inequality

follows from

E
[
eλRe[anXn]

∣∣Fn−1

]
= E

[
eλXnRe[an]

∣∣Fn−1

]
≤ e

λ2R2

2 .

By induction, we obtain

E
[
eλRe[

∑n
j=1 ajXj]

]
≤ e

nλ2R2

2 .



295

By using Markov inequality and the union bound, it follows that

Pr

[
1

n

∣∣∣∣∣Re

[
n∑
j=1

ajXj

]∣∣∣∣∣ > ϵ

]
≤ 2e−

nϵ2

2R2 .

Similarly, we have

Pr

[
1

n

∣∣∣∣∣Im
[

n∑
j=1

ajXj

]∣∣∣∣∣ > ϵ

]
≤ 2e−

nϵ2

2R2 .

Therefore, we obtain

Pr

[
1

n

∣∣∣∣∣
n∑
j=1

ajXj

∣∣∣∣∣ ≤
√

4R2 log (4/δ)

n

]

≥ Pr

[
1

n

∣∣∣∣∣Re

[
n∑
j=1

ajXj

]∣∣∣∣∣ ≤
√

2R2 log (4/δ)

n

]

+ Pr

[
1

n

∣∣∣∣∣Im
[

n∑
j=1

ajXj

]∣∣∣∣∣ ≤
√

2R2 log (4/δ)

n

]
− 1

≥
(

1− δ

2

)
+

(
1− δ

2

)
− 1 ≥ 1− δ,

where the first inequality follows from the Fréchet inequality.


