
Ensemble-CIO: Full-Body Dynamic Motion Planning that Transfers to
Physical Humanoids

Igor Mordatch, Kendall Lowrey, Emanuel Todorov
Department of Computer Science & Engineering, University of Washington

Abstract— A lot of progress has recently been made in
dynamic motion planning for humanoid robots. However this
work has remained limited to simulation. Here we show that
executing the resulting trajectories on a Darwin-OP robot, even
with local feedback derived from the optimizer, does not result
in stable movements. We then develop a new trajectory opti-
mization method, adapting our earlier CIO algorithm to plan
through ensembles of perturbed models. This makes the plan
robust to model uncertainty, and leads to successful execution
on the robot. We obtain 90% success rate in (dynamic) forward
walking, 95% success rate in sideways walking, 80% success
rate in turning, and a similarly high success rate in getting
up from the floor (the robot broke before we quantified the
latter). Even though the planning is still done offline, this work
represents a significant step towards automating the tedious
scripting of complex movements.

I. INTRODUCTION

The mechanical and actuation capabilities of modern
robots are quickly surpassing our ability to control them in
ways that do justice to their hardware. Especially challenging
are under-actuated systems such as humanoids where some
form of dynamic planning appears to be unavoidable. We
and others have recently developed optimization methods
that can generate complex and dynamically-consistent move-
ments in simulation [4]–[7], [9]. However this work has
not yet transfered to physical robots. Instead the controllers
deployed on physical systems tend to rely on task-specific
simplifications and reduced models. Examples are ZMP and
a variety of inverted pendulum models – which have been
very successful in walking [1]–[3], [8], [11]. But humanoids
are mechanically capable of much more than walking, and
yet walking appears to be one of the very few complex
task where adequate model reductions are available. Another
pragmatic approach is for a team of engineers to spend weeks
designing and fine-tuning a specialized controller (usually a
reference trajectory with PD gains around it), but ideally this
effort will be automated.

Our goal is to transfer full-body dynamic plans from simu-
lation to the real world. The obvious place to start is to build
the most accurate model that we can with reasonable effort,
optimize a movement trajectory, play it on the robot and
see what happens. Not surprisingly, the robot falls. We are
working with Darwin-OP, and indeed using an inexpensive
and easy-to-handle robot may be key to making progress in
this direction. The next obvious step is to use the locally-
optimal time-varying linear feedback control law which most
trajectory optimizers generate, and apply it to the physical
system with the hope that it will suppress deviations from

the planned motion. This improves performance somewhat
as we will see later, but in a nutshell it still doesn’t work.
Now this could be reason for desperation. If we cannot
stabilize a single dynamic trajectory on the physical system,
even though it works well in simulation, what hope is there
for model-based control? One answer could be that we
need more accurate models and state estimators – and if
we had them performance would certainly improve. Indeed
this field is approaching a point where we can make our
simulations accomplish most tasks of interest, and so the
next step may be not only about control, but about system
identification and state estimation coupled with control. Yet
developing more accurate modeling techniques, especially
for complex robots where multiple poorly-understood factors
can mask each other and complicate the interpretation of
sensor measurements, will take time.

The main contribution of this paper is a new method
for transferring model-based controllers to physical systems,
that can tolerate the errors in our existing models. The
idea is conceptually simple: instead of optimizing through
one (nominal) model, we optimize through an ensemble of
models obtained by perturbing the parameters of the nominal
model. The ensemble cannot be too large for computational
reasons (presently around 10), and the space of model
parameters is too high-dimensional to be explored by such a
small number of samples. Thus the samples in model space
have to be placed with consideration of which aspects of the
nominal model are likely to be inaccurate, and also which
types of errors are likely to affect control performance. Our
new method is based on contact-invariant optimization (CIO)
[5] which we adapt to the ensemble case. We show that the
resulting trajectories can indeed be executed on the physical
system with high success rate, for diverse tasks including
forward and sideways walking, turning, and getting up from
the floor. Using the local feedback generated by the trajectory
optimizer further improves performance.

We chose CIO as the basis of the ensemble approach
developed here because of all available dynamic planning
methods it appears to be the most capable of discover-
ing complex long-horizon movements automatically. CIO
is particularly good at planning through multiple contacts,
without requiring the user to specify contact events in
advance. Nevertheless it is possible that other trajectory-
planning algorithms as well as more generic policy-gradient
algorithms can be used successfully in the ensemble setting.
Indeed some algorithms have previously been adapted to
optimization under uncertainty [12] but only in simulation.

Our ensemble-CIO method does not work in realtime.
Presently it takes around 5 minutes of CPU time for walking,
and up to 20 minutes of CPU time for getting-up movements
(which involve more contacts), on a powerful workstation. So
in this sense our work is related to the above-mentioned team
of engineers designing a reference trajectory with suitable
local feedback. The difference is that here this process is
automated. We still have to design suitable cost functions,
but that takes much less effort and is quite intuitive as
described below. There are opportunities for speeding-up
the new method which we have to yet explored, and it
remains to be seen how well it will perform with warmstarts
in model-predictive control mode. But even in its present
form, Ensemble-CIO already provides an automated way to
plan complex dynamic movements that can be successfully
executed on humanoid robots.

II. PRELIMINARIES

A. Model and Actuation Dynamics

We focus on second-order servo-controlled systems –
which is what most existing humanoids are, even if they have
force feedback mimicking compliance to some extent. Let q
denote the vector of positions including the root position and
orientation (the latter is represented as a unit quaternion).
Physically consistent motions must satisfy the traditional
equations of motion for an articulated rigid body system:

M(q)q̈ + C(q, q̇) = J(q)T f + τ (q, q̇, r) (1)

Here M is the joint-space inertia matrix, C is the vector of
Coriolis, centrifugal, and gravitational terms, J is the contact
Jacobian, f is the contact force vector, and τ is the force
applied by the controller. We use the Mujoco physics engine
[10] to calculate these quantities for any given state. MuJoCo
has a built-in model of PD control, so the entire dynamical
system together with the low-level actuation can be handled
in a uniform way.

The actuation model is based on PD control, with refer-
ence positions/setpoints r that need to be specified by the
high-level controller we seek to design. The control force is

τ (q, q̇, r) = B (ks(qact − r) + kdq̇act) (2)

where ks and kd are stiffness and damping coefficients and
qact are the degrees of freedom corresponding to the actu-
ators. The constant matrix B = [0; I] inserts the actuation
torques in the overall torque vector.

B. CIO trajectory optimization

The motions we are interested in involve complex contact
interaction between the robot and the environment. We
include the contact forces as explicit optimization variables
so as to help the optimizer. This is the key idea behind the
CIO method [6], which we know briefly recall.

We predefine a number of potential points p on the robot
which will be making contact with the environment, each of
which can result in a force being applied by the environment
on the robot. Contact forces and states must be consistent

with each other. Contact forces must lie within the friction
cone f ∈ C(q). If a contact is not active, the contact force
should be zero. If a contact is active, the contact point should
be touching the environment and not be sliding. The former
can be written as a cone constraint, while the latter can be
expressed as the following soft complementarity constraint
for each contact i:

λi(‖pi − proj(pi)‖2 + ‖ṗi‖2) = 0 (3)

where proj() is the projection of a point onto the environment
and λ is a smooth contact indicator variable calculated from
contact normal force fN as

λ =
1

2
tanh(kcf

N) +
1

2
(4)

For the purposes of CIO optimization, any state and
its temporal derivatives satisfying the above constraints is
considered dynamically consistent. This may not be fully
consistent with the forward dynamics. However in the present
work we post-process the CIO trajectories by applying a sin-
gle Newton step using MuJoCo’s forward dynamics model.

The unique aspect of the CIO method is the above soft
cost. We add this cost to any other costs needed to encode
a specific task (see below), resulting in the total cost

1

T

∑
t

ct(qt, f t) (5)

This cost is optimized with respect to the trajectory of
system configurations and contact forces [q f]

1:T , using a
direct collocation approach described in more detail later.

C. Model Uncertainty

Even after system identification, we have uncertainty in
a number of model parameters including individual limb
masses or their centers of mass. In addition we rely on
approximations such as discrete number of contact points
(instead of a contact surface). Therefore trajectories that are
dynamically-consistent with respect to the model may not
be feasible on the robot. To address this issue, we take
model uncertainty into account when performing trajectory
optimization, as described in the next section. The sources
of uncertainty we consider are:

Contact Point Location: We use predefined spherical
contact points instead of the meshes of the robot. Thus one
source of uncertainty is the location of these points in local
body coordinates. Considering this source of uncertainty not
only increases robustness to poor sphere placement – which
is a type of modelling error – but also ensures that contacts
can be made in unexpected ways and the trajectory can still
succeed. For example, instead of a robot’s foot needing to
contact the ground specifically at one point on the heel, it
will plan for contacts around the heel and even tolerate a flat
foot. Contact points are sampled from a Gaussian distribution
centered around the nominal contact point location with a
variance of 5mm.

Limb Mass: Although we made an effort during system
identification to measure the mass of the robot’s body parts,

these measurements may not be perfect. By optimizing under
different mass distributions, the resulting trajectories become
more conservative. We vary masses by 20% of their nominal
estimated values.

Limb Center of Mass: We also have uncertainty in
the location of the center of mass for each body part.
Again, varying these parameters can yield trajectories that
are more cautious and conservative. Center of mass locations
are sampled from a Gaussian distribution centered around
the nominal location with a variance of 20% of the limb’s
bounding volume.

We denote all model parameters by a vector θ. These
model parameters affect the terms M , C, J in equation (1).

In this work we assume that inaccuracies in motor-related
parameters will result in short-horizon errors, which will be
overcome at execution time either by built-in PD controllers,
or by state-feedback control as described in section III-C.
Furthermore the Darwin-OP robot uses identical motors at all
joints, and we carefully identified one isolated motor. Thus
we do not explore uncertainty in the motor parameters here.

III. THE NEW METHOD: ENSEMBLE-CIO

We wish to find a robust behavior which performs well
under a variety of different model parameters θ. One ap-
proach would be to optimize a collection of N dynamically-
consistent state and contact force trajectories, one for each
model instance. However if there is no dependency between
the trajectories corresponding to the different instantiations
of θ, we will end up with plans that are specific to the
individual perturbed models and have no reason to be robust
on the physical system. Thus the key is to couple the
optimizations somehow. Two obvious choices are coupling at
the trajectory level or at the open-loop control level. However
neither of these is ideal: there is no reason why a single
trajectory will be physically-consistent for all the model
instances, or that one sequence of open-loop controls will
make all models perform the task.

What we really need is a single feedback control policy,
which may give rise to different state and control trajectories
for each model instance, but will nevertheless accomplish
the task for all instances. For a servo-controlled robot, a
natural way to parameterize this control policy is a reference
trajectory and a set of PD gains – which in this case are
fixed, to values that are not too large so that the policy can
adapt to the model instance at runtime. We also consider a
more elaborate form of feedback later, where the deviations
from the reference trajectory are used at runtime to adjust
the reference positions for the remainder of the movement.

But first we describe how we find the reference trajectory.
This is done by optimizing a cost in the form

min
[q f]1:T1:N

1

N

∑
i,t

ct(qt
i, f

t
i) +

1

2

∥∥rti − r̄t
∥∥2 (6)

where r̄ = 1
N

∑
i ri is the average PD setpoint trajectory.

The quantities rti can be recovered from equations (2, 1) as:

r(q, f) = qact +
kd
ks

q̇act −
1

ks
(M q̈ + C − JT f) (7)

If qi and fi are interpreted as samples from their respective
random variables, one way of interpreting (6) is to reduce
the expected cost under random model parameters, while
reducing the variance of the resulting PD setpoint trajectory.

A. Objective Function
Our objective is a weighted combination of terms, each

depending only on state variables and its temporal derivatives
at a particular point in time.

ct(q, f) =
∑
k

wkc
t
k(q, f) (8)

The terms we include are:
Equations of Motion and CIO Constraints: We require

state and contact forces to satisfy dynamic consistency
constraints as described in section II-A. Equations (1) and
(3) are enforced as soft constraints with quadratic costs.

Kinematic Constraints: We require that states q be kine-
matically consistent. Contact points should not be penetrating
the environment, body parts should not be self-intersecting
and joint angles must be within model limits. These bound
constraints are enforced softly as half-quadratic costs.

Regularization: To get more natural trajectories and to
improve problem conditioning, we prefer state and contact
force trajectories to be smooth. Additionally, we prefer PD
setpoint to not be too far from the state, which implicitly
minimizes velocity and control effort.

creg = ‖q̈‖2 + ||f̈ ||2 + ‖qact − r‖2 (9)

User Task: While the above terms put us in a space of
plausible trajectories, the trajectory must also satisfy tasks
specificed by the user. These objectives can be open-ended,
and are described in section IV-A.

Cost Term eom cio kin reg task
Weight 101 101 100 10−5 100

TABLE I
THE WEIGHTS FOR THE TERMS CONTRIBUTING TO THE OBJECTIVE

FUNCTION (8)

B. Optimization Algorithm
To solve the above optimization problem we use the

Levenberg-Marquardt method. It requires inversion of the
(approximate) Hessian of the total cost, but in our case each
ct only depends on qt, f t and its time derivatives. Thus,
the Hessian is block-diagonal and can be inverted efficiently
using Cholesky factorization.

We use N = 10 model samples, which is fairly small and
allows us to perform optimization in (6) without additional
approximations such as stochastic or distributed optimization
methods. We found the method to converge between 100 to
500 iterations, depending on complexity of the problem.

C. State-Feedback Control

The simplest way to apply our optimized trajectories to
the robot is to set r̄ as the reference trajectory and let the
built-in PD controller deal with any errors online. But as
discussed in section IV, there are various modelling and
system deficiencies that must be overcome for successful
trajectory playback. Ensembles of certain parameters can
overcome modelling errors, but feedback is necessary to
overcome execution-related issues such as limitations of the
servo motors. For this reason we implemented an additional
feedback loop, mapping deviations from planned positions
and velocities to adjustments in reference position.

This state-feedback controller is implemented as follows.
Let x = [q q̇] be the state of the system in forward dynamics
simulation. We first execute our PD setpoint trajectory r̄
in forward simulation under the average model parameters
to get a rollout x̄1:T . We linearize about this rollout and
perform an LQG backward pass to compute the optimal
time-varying feedback gains At. Then the state-feedback
controller modifies the reference trajectory online as:

rtFB(x) = r̄t +At(x− x̄t) (10)

Here x contains the joint angles and joint velocities
measured by the robot’s potentiometers. We are not yet using
feedback based on the root position and velocity. Adding
such feedback is likely to increase performance further, and
we will explore it in the near future.

IV. DARWIN ROBOT

The Darwin-OP humanoid from Robotis Ltd. is a 26
degree-of-freedom (DOF) robot, including 3 translational
and 3 rotational DOFs at the root, and 20 actuated hinge
joints. Each actuator is a MX-28 servo motor with position
measurement of 12-bit resolution over 2π radians that is
position controlled. An integrated inertial measurement unit
in the robot’s torso provides 3-axis acceleration and 3-axis
angular velocity. Each foot also contains four force resistive
sensors to measure contact forces. The sensor data output
and control input are processed by an onboard Atom CPU.

While the Darwin-OP is a convenient, low-cost biped
platform, there are a number of limitations that must be
overcome in one way or another. First, the control inputs to
the servo motors are the set point for a PD controller. This
means that the actual forces are generated by the built-in
controller which we have no access to (the motor’s firmware
is closed source). Secondly, while each body part of the
Darwin robot can be disassembled and its mass measured,
the center of mass of each body part and thus the entire
robot is harder to predict. Although our dynamical model was
initially derived from the CAD models of the robot which
include inertia and center of mass measurements provided
by Robotis, it is unknown if their model included all mass
contributions such as the electronics boards, wiring, and
hollow spaces in addition to the obvious metal frame and
plastic body. While these are both sources of modelling
error, we have tried our best to perform accurate system

Fig. 1. Simulated Darwin model (a), self-collision proxy (b), and
environment contact points (c)

identification of these properties offline before trajectory
optimization.

However, even with a perfect model (which ours is not),
there are real world phenomena that our simulator does not
take into account or cannot be identified. These include
mechanical backlash in the gears, as well as programmed
deadband in the control logic itself, whereby the servo will
deliberately allow some small error so as to reduce gear
wearing out. Together, these phenomena mean that idealized
position controlled motors in a simulation can act differently
from those in the real world unless the model is heavily
augmented or specifically designed to compensate for these
sources of error.

External factors also contribute to trajectory playback fail-
ure, namely contacts with the external environment. While
they can be predicted and planned through, hard contacts
have discontinuous nature. This means that if a contact does
not occur at the expected time, there is no assurance as to
the rest of trajectory completing satisfactorily. Trajectories
must then be planned in such a way to make up for missed
or mistimed contacts, while still positioning the robot in a
way that avoids falling. Said another way, a biped robot
needs to be deliberate in its planning to stay balanced. Indeed
this is the primary motivation behing the ensemble method
developed here.

A. Simulation Model

Our Darwin model includes all 26 degrees of freedom of
the physical robot, denoted by q ∈ R26. The model is based
on CAD created specifications to manufacture Darwin. We
have identified each actuator to have dry friction coefficient
of 0.16 and damping of 1.13. The total mass of the robot is
2.835 kilograms. We assume contact between the robot and
the ground to have friction coefficient of 0.75. For contact
and actuator parameters, we use kc = 10, ks = 36 and
kd = −12 for all our simulations.

The Darwin robot geometry is a composition of complex,
non-convex shapes which can make self-collision resolution
a costly process and cause poor conditioning when used in
trajectory optimization. To avoid these issues, we approx-
imate the Darwin body with bounding capsules shown in
Figure 1b for the purposes of self-collision detection and
resolution.

Our tasks (especially the robot lying on the ground or
getting up) involve complex interaction between Darwin and
the environment. Feet, palms, knees, elbows, torso and head
may be contacting the ground at any point in time. We
predefine 23 potential contact points shown in Figure 1c,
each of which can result in a 3-dimensional linear force being
applied by the environment on the robot. We denote the total
force vector to be f ∈ R69.

The tasks we consider in this paper are centered around
locomotion and getting up, and require the robot standing
and facing a particular orientation at the final time. In other
words we plan and execute a couple of steps of walking
as opposed to a limit cycle with infinite duration, and so
our trajectories include not only walking but also starting
and stopping. The practical reason we do this is because it
makes experiments easier to perform, but it is interesting that
our method can indeed solve these more complex planning
problems. The goal state is encoded as a quadratic cost cTtask
on the final torso position and orientation, as well as the final
position and orientation of the feet.

V. EXPERIMENTS

A. Trajectory Preparation

After an optimal trajectory is calculated, the first step is
to test it in simulation. We use the MuJoCo physics engine
to play back the calculated controls in forward dynamics.
This serves two purposes. First, the we can quickly examine
the optimized trajectory and its intuitive potential of real
world success. If the trajectory causes the robot to fall in
the simulation, it is very likely that the physical robot will
also fall. The second purpose is that the forward dynamics
simulation is used to find the reference trajectory used with
state feedback, as described earlier.

B. Trajectory Execution

To save computation time, the optimization and forward
dynamics happen at a slower time-step than the robot’s
control loop. In order to control the Darwin with a trajectory
planned at a larger timestep, we linearly interpolate between
the optimization’s timesteps at runtime. This is important for
feedback especially. At the start of every trajectory playback,
the Darwin loads the trajectory data from file into memory.
Then, it assumes the initial position specified in the trajectory
and waits for a user command to begin execution.

C. Experiment Design

Rather than showing anectodal movies illustrating the
performance of the new algorithm, we decided to perform a
systematic test. The experiment had 4 conditions with a 2-by-
2 design. The conditions varied but the type of optimization
used to generate the reference trajectory (nominal model only
vs. ensemble method) and by the type of feedback (PD only
vs. state feedback plus PD). We pertormed 20 consequtive
trials in each condition, for a total of 80 trials per task. There
were 3 tasks: walking forward, walking sideways, and turing
90 def – resulting in 240 trials in the entire experiment. This
of course is in addition to many informal tests we have done,

Fig. 2. Each subplot shows the results for one task: walking forward,
walking sideways, and turning. We repeated each task and each condition
for 20 trials. There were 4 conditions per task, which differed by the type of
feedback (PD only vs. State Feedback + PD) and the type of optimization
(Ensemble vs Nominal). In each condition we show the percent successful
trials (defined as the robot not falling), and the percent trials on which the
robot made progress (as opposed to just stepping in place).

including getting-up which we were not able to quantify
because the control board of the robot died just before the
submission deadline. Here we focus on the results from the
systematic experiment.

VI. RESULTS

The quantitative results are presented in Figure 2 as
percentages of the 20 trials in each condition and task. The
outcomes were determined by the experimenter watching the
robot. This was rather straightforward. We used two criteria:
Success and Progress (although these names may not be
ideal). Success means simply that the robot did not fall, or
rather, we did not have rescue it by pulling on the safety
string shown in later figures. Progress means that it actually
made progress in the task – as opposed to shuffling in place
or otherwise getting stuck without falling. Thus every trial
scored as Progress is also a Success trial, but not vice versa.

Fig. 3. Mean and variance (in blue) compared to the reference control signal (in red) for side stepping with feedback on an ensembled trajectory

The results are quite clear. The Ensemble-CIO method,
with state feedback (adjusting the reference positions at
runtime) has the best performance. We should point out that
it exceeded the expectations we had at the beginning of this
project. There are several more subtle findings illustrated in
Figure 2. Trajectories optimized in the traditional way, using
only the nominal model, are often stabilized by PD control
alone and in fact state feedback hurts in that case. However
the robot tends to get stuck and does not make progress.
Ensemble-optimized trajectories on the other hand benefit
from more intelligent feedback.

One might ask how well does the robot actually follow the
specified trajectories. Figure 3 compares the reference and
actual joint trajectories in side walking for the Ensemble-
optimized trajectories with state feedback. Also shows in
the figure is the variance of the physical trajectories. The
tracking is quite good, but note that these data are somewhat
meaningless because they do not include the root position
and orientation (because we did not record it). The problem
with an under-actuated system such as a humanoid is that it
can fall and still continue to waive its arms and legs in the air
following the initial plan, and creating the impressing that it
performs well on plots such as Figure 3. We will soon add
root tracking as well as feedback and will be able to address
this issue better.

The performance of our controller is best appreciated by
watching the accompanying movie. Figure 5 shows frame
sequences from successful execution of each task. Figure 4.
shows one example of failure without safety harness.

We see the qualitative differences between walking mo-
tions optimized with and without the ensemble method at

the top of Figure 5. In particular, note that non-ensemble
method lands on heel and transfers weight from heel to toe
during double support phase. This is a natural, but precarious
strategy. In contrast, the ensemble method lands with the foot
flat on the ground. The non-ensemble method also swings
the foot really close to the ground surface, whereas the
ensemble method raises to foot more during swing phase.
Also, the non-ensemble method takes a smaller number of
large steps, whereas the ensemble method takes a larger
number of smaller steps. In general, the movement strategies
found by ensemble method are more conservative.

VII. ADDITIONAL OBSERVATIONS

The results demonstrate that while trajectories optimized
for a single nominal model might be stable enough to not
fall, they do not make progress appropriate for the given
task. This means that for the walking, turning, and side-
step tasks on a flat ground surface, the contacts with the
ground did not produce the appropriate forces to propel the
robot in the correct direction. In effect, the robot was slipping
and sliding in place. This suggests that either the expected
friction of the ground surface was wrong, or the trajectory
relied excessively on frictional contact. Regardless, the non-
ensembled trajectories either need more accurate models to
plan through, or can only be used for simpler tasks.

Trajectories optimized with Ensemble-CIO had a much
higher chance of completing the task, and demonstrated
more cautious behavior: the feet were lifted off the ground
higher to clear ensembled contact points, and more stable
trajectories were chosen overall.

Feedback had some interesting effects. When using feed-
back, the robot would frequently experience some form of

Fig. 4. Example of a failed trial.

overshoot when correcting for errors. This would obviously
be problematic for trying to remain stable, and shows that
feedback with non-ensembled trajectories in fact prevented
it from successfully completing. The reason, we suspect, is
that as both the trajectory and feedback were calculated from
an incorrect model, errors built up more quickly, and could
not be correctly compensated for.

Feedback with the ensembled trajectories did show im-
provement, however. Trajectories would frequently reach
‘tipping points’ where a successful transfer of mass would
need to take place to continue the trajectory – otherwise,
the robot would fall. Feedback would help in these instances
to maintain the correct velocity within the joints to move
correctly past the tipping point.

VIII. FUTURE WORK

While this work demonstrates the ability of our ensemble
method to make optimized dynamic trajectories feasible for
use on robotic hardware, there are more avenues to explore.
First is the types of ensembling and how they pertain to
different actions. Robots that rely on contact with their en-
vironment might need different parameters to be ensembled
than robots that do not.

Secondly, the feedback policy’s range of use seems to
be narrow in this experiment. Strong perturbations from
the trajectory cannot be recovered. How strong remains to
be seen and measured. Furthermore, we wish to explore
how increasing the state space of the feedback can improve
the feedback policy or increase robustness. Instead of just
joint positions and velocities, we could include the robot’s
root orientation and position, and associated velocities. We
hypothesize that this would increase the degree of success of
a given action – walking forward a specific distance would
be more accurate to that specific distance as we would have
a control gain on the error in the distance. Some sensors we
consider using are the Darwin’s internal IMU or foot force
sensors, or an external Phasespace position and orientation
tracking system.

Alternatively, the simple feedback policy could be replaced
with a neural network or another type of controller optimized
via a policy gradient method. This could result in very
different policies for different models, but all derived from
the same parameters. Neural network policies (which we are

currently developing in another project) could be used to
increase robustness by expanding the stability region. This
means, of course, measuring the window of robustness. This
could be done in simulation, or by injecting noise into the
sensor measurements or control outputs of the robot and
again measuring the success of the action.

IX. ACKNOWLEDGEMENTS

This work was funded by US National Science Foun-
dation. Thanks to Yifan Hou for helpful discussions and
assistance with the experiments.

REFERENCES

[1] K. Byl and R. Tedrake, “Metastable walking machines,” International
Journal Robotics Research, 2009.

[2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive dynamic walkers,” Science, 2005.

[3] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion. part
1: Theory and application to three simple gait models,” International
Journal Robotics Research, 2012.

[4] S. Levine and V. Koltun, “Variational policy search via trajectory
optimization,” NIPS, 2013.

[5] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Trans.
Graph., vol. 31, no. 4, pp. 43:1–43:8, July 2012. [Online]. Available:
http://doi.acm.org/10.1145/2185520.2185539

[6] I. Mordatch, J. M. Wang, E. Todorov, and V. Koltun, “Animating
human lower limbs using contact-invariant optimization,” ACM Trans.
Graph., vol. 32, no. 6, pp. 203:1–203:8, Nov. 2013. [Online].
Available: http://doi.acm.org/10.1145/2508363.2508365

[7] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” International Journal of
Robotics Research, 2014.

[8] B. Stephens and C. Atkeson, “Push recovery by stepping for humanoid
robots with force controlled joints,” Humanoids, 2010.

[9] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” IROS,
2012.

[10] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: a physics engine for
model-based control,” in Proceedings of the 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2012.

[11] M. Vukobratovic and B. Borovac, “Zero-moment point thirty-five years
of its life,” International Journal of Human Robotics, 2004.

[12] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing
walking controllers for uncertain inputs and environments,” in
ACM SIGGRAPH 2010 Papers, ser. SIGGRAPH ’10. New
York, NY, USA: ACM, 2010, pp. 73:1–73:8. [Online]. Available:
http://doi.acm.org/10.1145/1833349.1778810

http://doi.acm.org/10.1145/2185520.2185539
http://doi.acm.org/10.1145/2508363.2508365
http://doi.acm.org/10.1145/1833349.1778810

Fig. 5. Top: comparison of no-enselmbe and ensemble optimization in simulation. Bottom: illustration of the behavior in each task. We have also added
the getting-up task which was not included in the main experiment.

	Introduction
	Preliminaries
	Model and Actuation Dynamics
	CIO trajectory optimization
	Model Uncertainty

	The new method: Ensemble-CIO
	Objective Function
	Optimization Algorithm
	State-Feedback Control

	Darwin Robot
	Simulation Model

	Experiments
	Trajectory Preparation
	Trajectory Execution
	Experiment Design

	Results
	Additional Observations
	Future Work
	Acknowledgements
	References

