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Abstract: This paper proposes an inverse optimality design method for nonlinear deterministic
system and nonlinear stochastic system with multiplicative and additive noises. The new method
is developed based on the general Hamilton-Jacobi-Bellman(HJB) equation, and it constructs an
estimated cost function using a linear function approximator—Gaussian Radial Basis function,
which can recover the original performance criterion for which the given control law is optimal.
The performance of the algorithm is illustrated on scalar systems and a complex biomechanical
control problem involving a stochastic model of the human arm.
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1. INTRODUCTION

When we are examining the human movement, such as
reaching, throwing, orienting, it is usually hypothesized
that natural control systems may be implicitly optimizing
an objective function. However, it is not known what
this performance criterion might be. In order to establish
the correspondence between the natural and the artificial
systems, we need to ascertain what it is that the natural
control system is optimizing. Investigations of general opti-
mal control problems assume that the performance criteria
are known. Based on this performance criterion and a
given dynamic system, an optimal feedback control law
is derived to satisfy the Hamilton-Jacobi-Bellman(HJB)
equation. The inverse problem of optimal control, on the
other hand, solves for the coefficients of cost function for
which a given control law is optimal. Surprisingly, the
novel inverse optimal control approach gives us a clue to
determine the cost function by fitting the mathematical
model to real behavior in a variety of circumstances.

The viewpoint of inverse optimum control problem was
originated in the early 1960s by Kalman (1964): ”Given
a dynamic system and a feedback control law, which
is known to yield an asymptotically stable closed-loop
system, the inverse problem is to seek the most gen-
eral performance index for which this control law is op-
timal.” Kalman considered a very precise formulation
of this inverse problem for linear time-invariant single-
input systems and derived a beautiful conclusion for linear
quadratic regulators (Anderson et al. (1990)). For a given
control law u = −kx of the deterministic linear system
ẋ = Fx+ gu, a necessary and sufficient condition for this
control law to be optimal with respect to a performance
criterion

∫∞
t0

(u2 + xTQx)dt is that the return difference

condition is hold for all real frequencies.

The inverse optimal control approach was then introduced
into nonlinear systems by Thau (1967), Yokoyama et al.
(1972) and Moylan et al. (1973). The main results of

Thau (1967) are restricted to system where the optimum
performance criterion is required to have a quadratic term
in the state variables. Yokoyama et al. (1972) extent
results for a general class of multi-input systems, and
found the necessary and sufficient conditions for optimized
performance indices. While Moylan et al. (1973) consid-
ered another class of inverse problems that the control
variables are quadratic in the performance index, but not
necessary the state, and established a certain nonlinear
return inequality which implies robustness to some input
nonlinearities. To our knowledge, this inverse optimality
method has not been well-studied until it was revived for
the design of robust nonlinear controllers by Freeman et al.
(1996) and Sepulchre et al. (1997). Instead of designing a
controller for a given cost functional, the inverse optimal
control problem in Freeman et al. (1996) and Sepulchre
et al. (1997) was concerned with seeking a controller that
optimizes some meaningful cost functionals. The main
contribution of the inverse optimality approach developed
by Freeman et al. (1996) is to construct a control Lyapunov
function as an optimal value function and then derive a
stabilizing control law which is optimal with respect to this
value function. This approach has then been employed to
construct optimal feedback control laws for rigid spacecraft
by Krstic et al. (1999) and some other stochastic nonlinear
systems, see Deng et al. (1997), Deng et al. (1999), Li et al.
(1997), Tang et al. (2002) and Dvijotham et al. (2010). One
way of approaching optimal control problems of stochastic
nonlinear system involves solving the Hamilton-Jacobi-
Bellman (HJB) partial differential equation, which turns
out to be an infeasible task. The benefit of the inverse
optimal control approach is that it avoids the burden of
solving HJB equation, whenever the optimal cost-to-go
function is known (i.e. inferred from the data), it becomes
an explicit formula and results in a controller optimal with
respect to a meaningful cost functional.

The aim of this research is to address the inverse problem
of optimal control to the biological movement systems,



that is, the problem of extracting the objective function
that can explain the observed, optimal movement behav-
ior. Such a goal is possible because of significant exper-
imental advances in our understanding of motor control
systems in humans, and because of the increased knowl-
edge in computational models for control learning, see
Todorov et al. (2002), Todorov et al. (2005) and Li et al.
(2007). It will create a new way not only to analyze the
natural movement phenomena, but also to derive much
more effective methods in modelling all kinds of purpo-
sive(or skilled) behavior.

In this paper, we focus on the study of inverse optimality
design for nonlinear system. Given a nonlinear dynamic
system and a feedback control law optimized with respect
to a discounted cost function (which is quadratic on the
control, but not the state), we develop a new algorithm
to construct an estimated cost function which can recover
the original performance criterion for which this control
law is optimal. The new method used the general HJB
equation which can deal with nonlinear dynamic cases, and
our approximation to cost function uses Gaussian basis
functions which do not assume a quadratic form. We shall
show that the simulation results clearly demonstrate the
effectiveness and advantages of the proposed approach.

The paper is organized as follows. In section 2 the in-
verse optimality problem is formulated for a class of non-
linear deterministic system and performance indices. An
algorithm for the construction of cost functional is also
developed in section 2. Section 3 addresses the inverse
optimality design for a class of nonlinear stochastic system.
Section 4 presents several numerical examples: one is on
the inverse optimal control problem of the determinis-
tic/stochastic linear system under the quadratic cost as-
sumption, the other is the application to human movement
control. Concluding remarks are drawn in section 5.

2. INVERSE DESIGN FOR DETERMINISTIC
SYSTEM

2.1 Problem Formulation

Consider the problem of minimizing the infinite horizon
discounted cost function subject to the nonlinear dynamic
system

ẋ = f(x) +G(x)u, (1)

where x ∈ Rnx and u ∈ Rnu are state and control
variables, f(x) and G(x) are known nonlinearities. The
performance criterion to be minimized is

V (x(0)) =

∫ ∞

0

e−t/τ

[
q(x(t)) +

1

2
u(t)TRu(t)

]
dt, (2)

where q(x) is a smooth function of its arguments, R ∈
Rnu×nu is symmetric and positive definite, and τ > 0
represents the constant discount factor.

The inverse optimal control problem can now be formu-
lated as follows. Given the dynamic system (1) and a
feedback control law u(t) as

u(t) = Ψ(x(t)) (3)

which can result in an asymptotically stabilized closed-
loop system

ẋ = f(x) +G(x)Ψ(x), (4)

the objective here is to recover the cost function (including
q(x) and R) for which the control law (3) is optimal.

2.2 Cost function Estimation

Let us define the Hamiltonian H as

H(x(t), u(t), V (x(t)) = q(x(t)) +
1

2
u(t)TRu(t)

+ V T
x

(
f(x) +G(x)u(t)

)
,

where Vx is a simplified notation of partial derivative of
V (x(t)) over x. A necessary and sufficient condition for a
control law

u∗(t) = Ψ(x(t)) = −R−1G(x)TV ∗
x (x(t)) (5)

to be optimal is that it satisfies the following optimality
condition

1

τ
V ∗(x(t)) = min

u(t)

{
H(x(t), u(t), V ∗(x(t))

}
. (6)

The above partial differential equation (6) is called the
Hamilton-Jacobi-Bellman (HJB) equation, where V ∗(x(t)),
known as the optimal value function (optimal cost-to-go),
is the accumulated expected cost if the system is initialized
in state x at time t, and the optimal control law u∗(t) is
applied until the end of optimal control history; V ∗

x is the
partial derivative of V ∗(x(t)) over x. Bellman’s optimality
principle refers to V (x(t)) and u(t) at all possible states
x(t) , and therefore leads to global methods that compute
an optimal control law.

A necessary condition for u(t) to minimize H is that

∂H
∂u

= 0, (7)

thus the optimal control (5) is obtained by solving the
above equation (7).

Substituting (5) into (6), we obtain the HJB equation as

1

τ
V ∗(x(t)) = q(x(t)) + V ∗T

x f(x)

− 1

2
V ∗T
x G(x)R−1GT (x)V ∗

x . (8)

In order to obtain more explicit results on the value of the
optimal performance index, we use the function approxi-
mation method to estimate the optimal value function

V ∗(x(t)) ∼=
m∑
i=1

wiΦi(x), (9)

where

Φi(x) = exp

(
−∥x− ci∥2

r2i

)
(10)

is the ith Gaussian radial basis function (GRBF), ci defines
its center and ri effectively determines the width of GRBF;
wi is the associated weight of Φi(x). By defining w ∈ Rm

as a vector of linear weights

w = (w1 w2 · · · wm)T ,

and Φ(x) ∈ Rm as a vector of Gaussian radial basis
functions

Φ(x) =
(
Φ1(x) · · · Φm(x)

)T
,



the optimal value function (9) can be written as follows

V ∗(x(t)) = wTΦ(x). (11)

Actually the Gaussian radial basis function Φ(·) plays an
important role in traditional neural networks, and is often
used in reinforcement learning to learn value function ap-
proximations having local generalization properties. Here
the optimal value function (11) is expressed as a linear
combination of a set of m basis functions. By taking the
derivative over x on both sides of (11), it yields

V ∗
x (x(t)) = wTΦx(x), (12)

where Φx(x) defines the derivative of Φ(x) over x. Substi-
tuting (12) into (5), we have

u∗(t) = −R−1G(x)TΦT
x (x)w. (13)

By choosing R as a fixed positive definite matrix and
assuming R−1G(x)TΦT

x (x) is rank efficient, the linear
parameters w of the Gaussian radial basis functions can
then be determined by solving the above equation using
the least squares regression method.

Finally, substituting (11) and (12) into (8) yields

q(x) =
1

τ
wTΦ(x)−

(
wTΦx(x)

)T
f(x)

+
1

2

(
wTΦx(x)

)T
G(x)R−1GT (x)

(
wTΦx(x)

)
.

(14)

Hence the scalar function q(x) is determined from the
solution to (14).

Here we develop a new algorithm for the inverse optimality
design which does not require solving the forward problem.
Given a control law and the system dynamics, the cost
function can be recovered by parameterizing and inferring
the optimal value function rather than the cost function,
and then computing the cost function with an explicit
formula.

3. INVERSE DESIGN FOR STOCHASTIC SYSTEM

3.1 Problem Formulation

Consider the nonlinear dynamical system described by the
stochastic differential equations

dx = f(x) dt+G(x)
(
u dt+ σu dε

)
+ F(x) dω, (15)

where x ∈ Rnx is the state variable, u ∈ Rnu is the
control input, the random variables ε ∈ Rnε , ω ∈ Rnω

are independent of each other and have multidimensional
Gaussian distributions with zero means and identity co-
variances respectively. Here the control input u is dis-
turbed by the multiplicative noise ε, where σ is a unit-
less quantity that defines the noise magnitude relative to
the magnitude of the control signal. Thus, the control-
dependent and additive noise terms in (15) have co-
variances σ2G(x)uuTGT (x) and F(x)FT (x) respectively.
And f(x), G(x) and F(x) are known nonlinearities.

Define the value function (cost-to-go function) v(t,x) as
the total cost expected to accumulate if the system is
initialized in state x at time t, and controlled according
to the control law

v(t,x) , E

∫ ∞

t

e−t/τ

[
q(x) +

1

2
uTRu

]
dt, (16)

where q(x) is a smooth function of its arguments, R ∈
Rnu×nu is symmetric and positive definite, and τ > 0
represents the constant discount factor. The expectation
is taken over the instantiations of the stochastic process.

The inverse optimal control problem can now be formu-
lated as follows. Given the dynamic system (15) and a
feedback control law u as

u = Ψ(x) (17)

which can result in an asymptotically stabilized closed-
loop system

dx = f(x) dt+G(x)
(
Ψ(x) dt+ σΨ(x) dε

)
+ F(x) dω,

(18)
the objective here is to estimate the cost function (includ-
ing q(x) and R) for which the control law (17) is optimal.
Here we assume that the optimal control law exists and
the necessary and sufficient condition for u to be optimal
can be obtained by solving the HJB equation.

3.2 Cost function Estimation

Let us define the Hamiltonian H as

H(x,u, v(t,x)) = q(x) +
1

2
uTRu

+ vTx

(
f(x) +G(x)u)

)
+

1

2
tr
(
σ2G(x)uuTGT (x)vxx

)
+

1

2
tr
(
F(x)FT (x)vxx

)
, (19)

where vx and vxx represent the first and second order
partial derivative of v(t,x) over x respectively.

A necessary and sufficient condition for a control law

u∗ = Ψ(x) = −R̄−1G(x)T v∗x, (20)

R̄ , R+ σ2GT (x)v∗xxG(x) (21)

to be optimal is that it satisfies the following HJB equation

−v∗t (t,x) = min
u(t)

{
H(x(t),u(t), v∗(t,x)

}
. (22)

Note that the optimal value function (optimal cost-to-go)
v∗(t,x) is the accumulated expected cost if the system is
initialized in state x at time t, and the optimal control
law u∗ is applied until the end of optimal control history;
v∗t (t,x) is the derivative of v∗(t,x) over t.

The Hamiltonian (19) can be minimized analytically with
respect to u by solving ∂H

∂u = 0, the minimum is achieved
at (20) and the result is

min
u(t)

{
H(x,u, v∗(t,x)

}
= q(x) + v∗Tx f(x)

−1

2
v∗Tx G(x)R̄−1GT (x)v∗x

+
1

2
tr
(
vxxF(x)FT (x)

)
.

(23)

Substituting (23) into (22), we obtain the HJB equation
as follows



1

τ
v∗(t,x) = q(x) + v∗Tx f(x)

− 1

2
v∗Tx G(x)R̄−1GT (x)v∗x

+
1

2
tr
(
vxxF(x)FT (x)

)
, (24)

thus the HJB equation becomes the second order quadratic
PDE which doesn’t involve the minimum operator.

In order to obtain more explicit results on the optimal
value function, we use the following function approximator

v∗(t,x) ∼=
m∑
i=1

wiΦi(x) = wTΦ(x), (25)

where

Φi(x) = exp

(
−∥x− ci∥2

r2i

)
,

Φ(x) =
(
Φ1(x) · · · Φm(x)

)T
,

w = (w1 w2 · · · wm)T ,

Φi(x) is the i
th Gaussian radial basis function (GRBF), ci

defines its center and ri effectively determines the width of
GRBF, and Φ(x) ∈ Rm is defined as a vector of GRBFs;
wi is the associated weight of Φi(x), w ∈ Rm is defined as
a vector of linear weights.

Taking the derivative over x on both sides of (25) yields

v∗x = wTΦx, (26)

v∗xx = wTΦxx, (27)

where Φx,Φxx defines the first and second derivative of
Φ(x) over x respectively. Here we suppress the dependence
on x for clarity. Combing equations (20)-(21) and (26)-
(27), the linear parameters w can then be solved by the
linear regression method.

By choosing R as a positive definite matrix, the cost
function can be recovered by computing

q(x) =
1

τ
wTΦ−

(
wTΦx

)T
f(x)

+
1

2

(
wTΦx

)T
G(x)R̄−1GT (x)

(
wTΦx

)
− 1

2
tr
(
wTΦxxF(x)FT (x)

)
. (28)

Here we extend our results to the stochastic system. Given
a stochastic nonlinear dynamic system and a feedback
control law optimized with respect to a discounted cost
function, we develop a new algorithm to construct an
estimated cost function which can recover the original
performance criterion for which this control law is optimal.

4. NUMERICAL EXAMPLES

In the following we present several examples to show the
applicability of the new techniques presented in this paper.

4.1 Scalar System

Deterministic Case First we will give a simple example
to demonstrate the feasibility of the idea proposed in
section 2. Consider a scalar system

ẋ = −x+ u, (29)
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Fig. 1. Cost function q(x) for three different targets:
xtarget = −4, 0 and 4. (Circle describes the recovered
q(x) based on inverse optimality approach, dark line
describes the original q(x) function)

and the performance criterion

V (x(0)) =

∫ ∞

0

e−t/τ

[
q(x(t)) +

1

2
ru(t)2

]
dt, r > 0.

(30)
where the discounted factor τ = 5, and q(x) and r are
unknown. Given a control law u under a quadratic cost
function where q(x) = 1

2 (x − xtarget)
2 and r = 1, the

main objective here is to find q(x) and r for which this
control law u is optimal, which means, we would like to
know whether the estimated q(x) can recover the original
quadratic performance.

Figure 1 illustrates the cost function q(x) for three differ-
ent targets: xtarget = −4, 0 and 4. Black line describes
the original function, circle describes the recovered q(x)
based on inverse optimal control approach. The simula-
tion demonstrates that, by changing the targets, the cost
function can still be recovered very well.

Stochastic Case Consider a stochastic scalar system

ẋ = −x+ u(1 + σε), (31)

and the performance criterion

V (x(0)) =

∫ ∞

0

e−t/τ

[
q(x(t)) +

1

2
ru(t)2

]
dt, r > 0.

(32)
where the discounted factor τ = 10, and q(x) and r are
unknown. Here the control input u is disturbed by the
multiplicative noise, whose standard deviation is 50% of
the magnitude of control signal — which means σ = 0.5
in (31), while ε is a zero-mean Gaussian white noise
with unity covariance. Given a control law u under a
quadratic cost function where q(x) = 1

2x
2 and r = 1, the

main objective here is to find q(x) and r for which this
control law u is optimal, which means, we would like to
know whether the estimated q(x) can recover the original
quadratic performance.

Figure 2 illustrates the performance of the inverse opti-
mality approach we developed in section 3. Black curve
corresponds to the original cost function q(x), red circle
describes the recovered q(x) based on our approach. The
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Fig. 2. Cost function q(x). (Circle describes the recovered
q(x) based on inverse optimality approach, dark line
describes the original q(x) function)

simulation demonstrates that the cost function can be
recovered almost exactly.

4.2 Biological Movement System

Consider an arm model with 2 joints (shoulder and elbow),
moving in the horizontal plane (Fig. 3). The nonlinear
dynamics of this 2-link arm can be represented using the
motion equation in the form

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ, (33)

where θ = [θ1 θ2]
T ∈ R2 is the joint angle vector

(shoulder: θ1, elbow: θ2), M(θ) ∈ R2×2 is a positive

definite symmetric inertia matrix, C(θ, θ̇) ∈ R2 is a vector
centripetal and Coriolis forces, B ∈ R2×2 is the joint
friction matrix, and τ ∈ R2 is the joint torque. Here
we consider direct torque control where τ is the control
signal. In (33), the expressions of the different variables
and parameters are given by

M =

(
a1 + 2a2cosθ2 a3 + a2cosθ2
a3 + a2cosθ2 a3

)
, (34)

C =

(
−θ̇2(2θ̇1 + θ̇2)

θ̇1
2

)
a2sinθ2, (35)

B =

(
b11 b12
b21 b22

)
, (36)

a1 = I1 + I2 +m2l
2
1, (37)

a2 = m2l1s2, (38)

a3 = I2, (39)

where b11 = b22 = 0.05, b12 = b21 = 0.025, mi is the mass
(1.4kg, 1kg), li is the length of link i (30cm, 33cm), si is
the distance from the joint center to the center of the mass
for link i (11cm, 16cm), and Ii is the moment of inertia
(0.025kgm2, 0.045kgm2).

Based on equation (33)-(39), we can compute the forward
dynamics

θ̈ = M(θ)−1
(
τ − C(θ, θ̇)− Bθ̇

)
, (40)

and write the system (40) into a state space form

ẋ = F (x) +G(x)(1 + σuε)u, (41)

where the state x = (θ1 θ2 θ̇1 θ̇2)
T is four dimensional, the

control is given by u = τ = (τ1 τ2)
T . The control input u

θ2

θ1

Fig. 3. 2-link arm model (shoulder: θ1, elbow: θ2)

is disturbed by the multiplicative noise, whose standard
deviation is 20% of the magnitude of control signal —
which means σu = 0.2 in (41), while ε is a zero-mean
Gaussian white noise with unity covariance.

The task we are interested in studying is reaching move-
ment, where the arm has to start at an initial position and
move to a target in a specified time interval. It also has
to stop at the target, and do all that with minimal energy
consumption. There are good reasons to believe that such
costs are indeed relevant to the neural control of movement
Todorov et al. (2002). The cost function for reaching task
will depend on the vector of joint angles [θ1 θ2]

T only
through the forward kinematic function e(θ), where e
and ė are the 2D vectors of Cartesian hand coordinates
computed as follows

e(θ) =

(
l1 cosθ1 + l2 cos(θ1 + θ2)
l1 sinθ1 + l2 sin(θ1 + θ2)

)
, (42)

ė
(
θ, θ̇
)
= Γ

(
θ̇1
θ̇2

)
, (43)

Γ =

(
−l1 sinθ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cosθ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

)
,

(44)

Consider the system (41) and the performance criterion

V (x(0)) =

∫ ∞

0

e−t/τ

[
q(x(t)) +

1

2
ru(t)2

]
ds, (45)

where the discounted factor τ = 10, and q(x) and r > 0
are unknown. Given a control law u (Todorov et al. (2005))
under a quadratic cost function

q(x(t)) =
∥∥∥e(θ(t))− e∗

∥∥∥2 + 0.008
∥∥∥ė(θ(t), ˙θ(t)

)∥∥∥2, (46)

and r = 0.00001, where e∗ is the desired target position
defined in Cartesian hand coordinates, the second term∥∥∥ė(θ(t), ˙θ(t)

)∥∥∥2 enforces stopping at the target, the main

objective here is to find q(x) and r for which this control
law u is optimal.

In order to demonstrate the effectiveness of our design,
we now apply the inverse optimality approach developed
in section 3 to the reaching movement for the 2-link
arm model described above. Given a sequence of control
law(joint torques) which can move the arm from the
starting position (shown as star in Fig 4A) to the target
(shown as circle in Fig 4A), where Fig 4A shows the
hand trajectory and Fig 4B shows the velocity profile, the
simulation result shown in Fig 5 demonstrates that the
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cost function can be recovered very well (relative error
< 2% ).

5. CONCLUSION AND DISCUSSION

This paper developed a new algorithm for inverse optimal-
ity design applicable to deterministic and stochastic non-
linear dynamical systems. The efficiency of the algorithm
is the insight of recovering the value function. Assuming
a nonlinear stochastic system is given, and a control law
under a non-quadratic cost function has already obtained,
the new method demonstrates that the estimated cost
function can recover the original performance for which
this control law is optimal. Although our work is motivated
by studying biological movement control, the present re-
sults could be of interest to a wider audience. The most im-
portant is that our proposed method used the general HJB
equation which can deal with nonlinear dynamic cases, and
our approximation to cost function uses Gaussian basis
functions which do not assume a quadratic form.

When we apply the inverse optimality approach to the bi-
ological movement system, there are also a few interesting
questions: 1)Considering two different biological models,
one is the realistic arm model driven by the muscles, the
other is the artificial arm model driven by the electronic
motor, we ask them to make the same movement, such as
reaching a target, if we obtain the same optimal trajectory,
can we recover the same cost function? 2)When we make
the reaching movement which is disturbed by a robot, we

know that the brain will learn to adapt this disturbance.
How could we deal with this kind of inverse optimality
problem? All these open questions are deserved to be
solved and will be very beneficial to understand the reality
how the brain controls and implements the movement.
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Constructive Nonlinear Control. Springer.

Tang, C. and Basar, T. (2002). Inverse optimal con-
troller design for strict-feedback stochastic systems with
esponential-of-integral cost. Proceeding of the 15th IFAC
World Congress, Barcelona, Spain.

Thau, F.E. (1967). On the inverse optimal control problem
for a class of nonlinear autonomous systems. IEEE
Transactions on Automatic Control, Vol.AC-12, No.6,
674–681.

Todorov, E. and Jordan, M. (2002). Optimal feedback
control as a theory of motor coordination. Nature
Neuroscience, Vol.5, No.11, 1226–1235.

Todorov, E. and Li, W. (2005). A generalized iterative
LQG method for locally-optimal feedback control of
constrained nonlinear stochastic systems. Proceedings
of 2005 American Control Conference, 300–306.

Yokoyama, R. and Kinnen, E. (1972). The inverse prob-
lem of the optimal regulator. IEEE Transactions on
Automatic Control, Vol.AC-17, No.4, 497–504.


