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ABSTRACT

Sensorimotor control occurs simultaneously on multiple lev-
els. We present a general approach to designing feedback
control hierarchies for redundant biomechanical systems,
that approximate the (non-hierarchical) optimal control law
but have much lower computational demands. The approach
is applied to the task of reaching, using a detailed model
of the human arm. Our hierarchy has two levels of feed-
back control. The high level is designed as an optimal feed-
back controller operating on a simplified virtual plant. The
low level is responsible for transforming the dynamics of
the true plant into the desired virtual dynamics. The new
method may be useful not only for modelling the neural
control of movement, but also for designing Functional Elec-
tric Stimulation systems that have to achieve task goals by
activating muscles in real time.

Keywords— Hierarchical control, Optimal feedback con-
trol, Redundant systems

1. INTRODUCTION

Neural control of movement is accomplished by a complex
hierarchy of recurrently connected brain regions. Under-
standing how the multiple levels of the sensorimotor system
cooperate to produce integrated action has been a central
theme in Neuroscience since the pioneering work of Sher-
rington. Perhaps the most thorough investigation of the lev-
els of human motor control was undertaken by Bernstein
[1], who concluded that every motor skill involves at least
two levels of feedback control: a leading level that mon-
itors progress and steers the biomechanical plant towards
the achievement of the task goals, and a background level
that provides various automatisms and corrections that help
the leading level. More recently, recordings in a variety of
motor areas have revealed a progression of increasingly ab-
stract (and increasingly hard to describe) neural representa-
tions. But despite this long standing interest and the wealth
of relevant data and intuitive notions, quantitative theories
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of hierarchical sensorimotor control are surprisingly rare
[3]. Indeed, the computational ideas that can provide a
solid foundation for such theories have emerged only re-
cently. The objective of the present paper is to synthesize
these ideas into a general approach to hierarchical feedback
control, and illustrate the approach with a specific model of
arm movement control.

2. GENERAL APPROACH

A distinguishing feature of biomechanical plants is their
massive redundancy. Let x be a state vector (representing
joint angles, joint velocities, muscle activation states, and
relevant aspects of the environment), and q(x) be a cost
function that quantifies the notion of a ”task”. Redundancy
means that the function q(x) depends on the state x only
through a reduced set of (more abstract) variables p(x), i.e.
q(x) can be written as q(p(x)). In the task of reaching, for
example, performance depends only on the position of the
hand relative to the target.

Our goal is to design controllers for the dynamical sys-
tem ẋ = f(x, ux) that minimize the performance criterion

J = h(x(T )) +

∫ T

0

q(x(t)) + r‖ux(t)‖2dt (1)

Our recent theory of coordination [5] has revealed a some-
what surprising fact about the optimal way to control re-
dundant systems. We have shown that optimal feedback
controllers obey a ”minimal intervention” principle: rather
than correcting all deviations from a desired trajectory, such
controllers only act in the task-relevant subspace and leave
task-irrelevant deviations uncorrected. Loosely speaking,
this is done by extracting a small set of task-relevant fea-
tures (through a set of sensory synergies), performing feed-
back control in that feature space, and mapping the resulting
abstract controls into control signals for the real actuators
(through a set of motor synergies). The difficulty with op-
timal feedback controllers for complex systems is that they
are extremely hard to design – perhaps even for the brain.

The minimal intervention principle suggests a natural
approximation to optimal feedback control, using a two-
level feedback control hierarchy. The basic idea (see Fig



1) is to design optimal feedback controllers that optimize
the true cost function, but for a simpler virtual plant with
state y(x). This corresponds to Bernsteins leading level of
control, and generates an abstract control signal uy inter-
preted as desired change in y. The background level then
has the job of transforming the dynamics of the actual plant
into that of the virtual plant, i.e. computing the real con-
trol signal ux(x, uy) such that the desired change in y(x)
is accomplished, with minimal control effort. We propose
the following principles for designing the virtual dynamics
ẏ = g(y;w) + uy:

1. It should be sufficiently simple, so that optimal con-
trol methods become feasible;

2. It should be sufficiently close to the true dynamics,
so that the transformer does not have to guess blindly (recall
that the transformer does not know what the task is);

3. It should contain p(x) as state variables, so that the
true cost q(p(x)) can be measured and optimized by the
leading level;

4. The internal model of the virtual dynamics (needed
by the leading level to design feedback control laws) should
be improved through system identification, so as to com-
pensate for unavoidable errors in the translation process.
This corresponds to learning the parameters w via super-
vised learning.

We emphasize that a virtual plant whose state is only
p(x) will most likely violate principle 2. Instead, we in-
clude in the virtual dynamical state y(x) both p(x) and its
derivatives, so as to match the order of the differential equa-
tions governing the true dynamics. In the task of reaching,
the virtual state will include hand position, velocity, and net
muscle force (expressed in hand space); the virtual control
signal will specify desired change in force.
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Fig. 1. Illustration of the hierarchical control structure

The optimal feedback controller on the high level will
be designed using an iterative Linear-Quadratic-Gaussian
(iLQG) method that we have developed recently. This method
extends the efficient and well-developed LQG framework to
the domain of nonlinear control. Briefly, the iteration starts

with some control law that is applied to the nonlinear sys-
tem – obtaining an average trajectory and control sequence.
We then linearize the dynamics and quadratize the cost in
the vicinity of that state-control trajectory, apply dynamic
programming locally, and use the result to improve the ini-
tial control law. The algorithm has quadratic convergence,
similar to a Newton’s method. For more details see [7].

The low-level has to activate muscles so as to accom-
plish desired effects in the task-relevant space. Since there
are more muscles than task variables, the low-level faces a
redundancy problem which will be solved using static op-
timization. At each point in time, we will obtain a linear
relationship between muscle activations and task variables,
and then find the minimal feasible muscle activations via
Quadratic Programming.

3. APPLICATION TO REACHING MOVEMENT

The approach outlined above will now be applied to the
problem of reaching with a realistic arm. The arm model
contains 2 links, 6 muscles with varying moment arms, mus-
cle length-velocity-tension curves based on the Virtual Mus-
cle model, and activation dynamics modelled as a nonlinear
low-pass filter. See [7] for details.

3.1. The two levels

The high-level dynamics is defined in end-effector space
(hand space), and modelled using end-effector equations
of motion. The construction of the end-effector dynamic
model is achieved by expressing the relationships of hand
position p, velocities v, as well as the net muscle force f
acting on the hand.

ṗ = v, (2)

v̇ = f/m + Hv(p, v, f ; wv), (3)

ḟ = −α(f − mg) + uy + Hf (p, v, f ; wf ), (4)

where m is the average hand mass, uy is the control signal,
Hv and Hf are the function of p, v and f with unknown
weighting coefficients wv and wf respectively. Since the
model (2)-(4) is only an approximation, we need to use
some learning processes in the hierarchical control archi-
tecture, which can estimate those unknown parameters it-
eratively online before a successful implementation can be
achieved.

Furthermore, we need to establish the relationship be-
tween the high-level state (containing hand position p, ve-
locity v, as well as the net muscle force f in hand space),



and the state of the low-level dynamic model

p = K(θ), (5)

v = J(θ)θ̇, (6)

JT (θ)f = τmus − G(θ), (7)

where K is the transformation of position θ from joint space
to the end-effector space (hand space); the Jacobian matrix
J(θ) = ∂K/∂θ transforms velocities in joint space, θ̇, to
Cartesian velocity v of the end-effector expressed in hand
space.

The control signal uy is the output of the high-level loop
which specifies a desired change of force in the end-effector
space. The objective is to find the control uy that minimizes
the performance criterion

V =
1

2

∫ T

0

[

r1‖uy(t)‖2 + s(t) ‖p(t) − p∗‖2
]

dt, (8)

where p∗ is the target, r1 = 1e − 6, and s(t) is 0 when the
hand is allowed to move, and 1 when the hand is required to
be at the target. The optimal feedback controller is designed
using the iLQG method [7].

The forward dynamics of the arm can be expressed as

θ̈ = M(θ)−1(τmus − C(θ, θ̇) − G(θ)), (9)

where θ ∈ R2 is the joint angle vector (shoulder: θ1, el-
bow: θ2), M(θ) ∈ R2×2 is a positive definite symmetric
inertia matrix, C(θ, θ̇) ∈ R2 is a vector centripetal and Cori-
olis forces, G(θ) is the gravity, and τmus ∈ R2 is the joint
torque.

The tension T (a, l, v) produced by a muscle obviously
depends on the muscle activation a, but also varies substan-
tially with the length l and velocity v of that muscle

T (a, l, v) = aFvl(l(θ), v(θ, θ̇)) + Fp(l(θ)). (10)

The joint torque generated by the muscles is given by

τmus = M(θ) T (a, l(θ), v(θ, θ̇)), (11)

where M(θ) denotes muscle moment arms.
Muscle activation a is not equal to instantaneous neural

input ux, but is generated by passing ux through a filter that
describes calcium dynamics. It is modelled as the following

ȧ = α(ux − a), (12)

where α is the muscle decay constant. Combining (9)-(12),
the low-level dynamic system can be obtained where the
state is given by x = (θ1 θ2 θ̇1 θ̇2 a1 · · · a6)

T .
Equation (7) represents the fundamental relationship be-

tween the net muscle force f and the joint torque τmus con-
sistent with the end-effector and arm dynamic equations.

With (7), (10), (11) and the assumption ȧ ≫ θ, θ̇, we can
derive ḟ = J+(θ)M(θ)Fvl(θ, θ̇) ȧ, where J+(θ) denotes
the pseudo inverse. Based on (12) and the assumption ḟ =
−α(f − c) + uy , we obtain

uy = αQux, Q = J+(θ)M(θ)Fvl(θ, θ̇). (13)

Now we can design the low-level controller by solving a
constrained quadratic optimization problem

min
ux

1

2
uT

x Hux + bT ux (14)

subject to
0 ≤ ux ≤ 1, (15)

where H = α2QT Q+r2I, b = −αQT uy , and r2 = 0.001.
Therefore we can find the low-level control ux that activate
the muscles in a way that achieves the specified change of
force acting on the hand.

3.2. Simulation Results

We chose different pairs of starting postures and targets, and
applied the hierarchical control scheme described above.
Hand trajectories are shown in Fig 2. The black curves
are the actual trajectories of the hand, that result from the
coupling of the two-level hierarchy with the detailed arm
model. The gray curves are the trajectories that would have
resulted from applying the feedback control law to the vir-
tual dynamical system. Note that before learning the ”vir-
tual trajectories” are straight, because we do not have non-
linearities in the initial virtual model. However, after the
system identification stage the virtual model is improved,
and it now contains nonlinear terms. As a result, both the
virtual and real trajectories become curved, and more im-
portantly, they get closer to each other. Over the set of
movements we simulated, the average distance between the
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Fig. 2. Trajectories in hand space: (A) before learning, (B)
after learning. Gray lines – trajectories obtained by applying
the high-level feedback controller to the virtual dynamics.
Black lines – trajectories obtained by applying the hierar-
chical control scheme to the real plant.
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Fig. 3. Comparison of the muscle control sequences gen-
erated by our hierarchical controller (dashed lines) vs. the
non-hierarchical optimal controller (thick gray lines).

virtual and actual trajectory was 2.9 cm before learning, and
only 0.8 cm after learning. Additionally, the cost achieved
by the hierarchical control system after learning was 21%
lower compared to its value before learning.

Finally, we compared the behavior of the hierarchical
control scheme to that of an optimal (non-hierarchical) con-
troller designed for the real plant. Note that the plant we
are studying, although quite complex, is still amenable to
iterative methods for nonlinear optimal control. We used
the control sequences generated by our control scheme as
an initial control law, and then improved that control law
via gradient descent on the performance criterion. Both be-
fore and after learning, we found that the controls generated
by our method are close to a local minimum of the uncon-
strained problem (see Fig 3). After learning, the distance to
the nearest local minimum was about 50% less than it was
before learning.

4. DISCUSSION

Here we presented a general approach to approximately-
optimal hierarchical feedback control of redundant systems,
and illustrated its application in the context of reaching with
a realistic model of the human arm. Imposing any prede-
fined control structure is likely to result in suboptimal per-
formance. However, our simulations demonstrate that the
suboptimality due to the hierarchical structure is negligible
(especially after learning). At the same time, the compu-
tational demands are much lower than what is required for
designing an optimal feedback controller. The performance
of the new method in more complex control problems re-
mains to be established. It will be particularly interesting to
identify the behavioral differences between the present con-
trol scheme and the (unstructured) optimal controller, and
examine those differences in light of experimental data.

While this may be the first comprehensive approach to
hierarchical sensorimotor control, the main computational
ideas underlying it are not entirely new. Feedback trans-

formations that create easier-to-control virtual plants have
been used in robotics; the Operational Space Framework [2]
and Virtual Model Control [4] are particularly relevant. The
new computational aspects of our work are: (i) application
of optimal feedback control to the virtual plant; (ii) princi-
ples for designing the virtual model that make it suitable for
optimal control; (ii) continuous improvement of the internal
model of virtual dynamics, compensating for unavoidable
transformation errors.

The present approach is also related to our recent work
[6], where we pursued the idea of simplifying feedback trans-
formation combined with high-level optimal control. Our
previous feedback transformation was ”extracted” from the
plant dynamics using unsupervised learning, rather than be-
ing designed to capture the task-relevant variables as we did
here. As a result we were forced to use inefficient policy-
gradient methods for controller optimization, rather than
the efficient model-based iLQG method [7] employed here.
Both approaches have advantages, that we hope to combine
in future work. The basic idea is to make the low-level itself
hierarchical: starting with a task-independent virtual model
that captures the properties of the plant (and is acquired via
unsupervised learning), and then creating higher-level vir-
tual models suitable for specific tasks.
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