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Abstract— This paper presents an iterative Linear-Quadratic- ~ potential has not been fully realized. The goal of the presen
Gaussian method for locally-optimal control and estimation of paper is to fill this gap, by iteratively constructing extedd

nonlinear stochastic systems. The new method constructs an aiman filter and linear-quadratic regulator adapted to the
affine feedback control law obtained by minimizing a novel . . .
approximation setting.

quadratic approximation to the optimal cost-to-go function. It X )
also constructs a non-adaptive filter optimized with respect ~ This work represents the convergence of two lines of
to the current control law. The control law and filter are  research we have previously pursued. In one line of resgarch

iteratively improved until convergence. The performance of the \ve derived an iterative algorithm for optimal estimation
algorithm s illustrated on a complex biomechanical control and control of partially-observable linear-quadraticteyss
problem involving a stochastic model of the human arm. .
subject to state-dependent and control-dependent nojse [8
|. INTRODUCTION This was possible due to a restriction to non-adaptive $ilter
In another line of research, we derived an iterative alporit

Optimal control of partially-observable stochastic spsde . . ,
P P Y b for optimal control of fully-observable stochastic nomlar

is generally intractable, because the optimal estimatwigte . . .
to be infinite-dimensional and consequently the optim ystems with arbitrary costs and control constraints [2], [

controller is also infinite-dimensional. The only notable his was possible d'.“'e to a novel appro_XImatlon tq the opt-
mal cost-to-go function. Here we combine these ideas, and

exception is the Linear-Quadratic-Gaussian (LQG) setting . . . .
. " erive an algorithm which can handle partially-observable
[1], [2], [4], [3], [6], [9], where the posterior probabiitover nonlinear sygtems non-quadratic costs pstate-élepeM\eht
I ) )

the system state is Gaussian and the optimal controller on ntrol-dependent noise. and control constraints. Iniaect
depends on the mean of that Gaussian. Unfortunately maﬁ)é/ P ' )

real-world problems (including the biological control pro we formalize the problem we want to solve. In sections IlI

lems we are interested in) are not LQG and are not amenalﬁgd IV'we present an LQG approximation to that problem,

to global LQG approximations. Local LQG approximations,and compute an approximately-optimal control law under the

on e alherhand,ae oten it reasonale: they el TSN 1l S osimates e o by an oased
local low-order polynomial approximations to the systen). P . o P
n#llter corresponding to the given control law. The two result

nami function and noise log-pr ility — all . . : ; .
dynamics, cost function and noise log-probability — a O{ gether provide an iterative coordinate-descent algaor,t

which tend to be smooth functions. It then makes sense which is guaranteed to converge to a filter and a control law
construct approximately-optimal estimators and corgrell . 9 9 . .
optimal with respect to each other. In section VI we illutgra

by starting with a local LQG approximation, finding the OIOtI_the application of our method and explore its convergence

mal solution, using it to construct a new LQG approximation o X
g QG app properties, in the context of reaching movements and obsta-

and iterating until convergence. cle avoidance movements using a model of the human arm
This idea is reminiscent of second-order (Newton) meth- 9 '

ods for r!umerical optimizationi the function that needs to Il. PROBLEM FORMULATION
be optimized is rarely quadratic, but nevertheless one can ) ) ) )
approximate it locally with a quadratic, find the minimum, Consider the nonlinear dynamical system described by the
construct a new quadratic approximation around that miritochastic differential equations
|mum,.and iterate. The reason for choosing quadrat|c§ is dx? = f(xP, uP)dt + F(x?,uP) dw(t), )
very simple: they represent the most complex numerical
optimization problem we know how to solve analytically.along with the output equation
Similarly, LQG is the most complex optimal control problem
we know how to solve analytically. Thus iterative LQG dy?(t) = g(xP,uP)dt + G(xP,uP) dv(t), (2)
methods have the potgnnal to play th(—_} rgle '_[hat secondtordvt?lhere state variable? € R", control inputu? € R,
methods have played in numerical optimization (namelyy the " .
. m?asurement outpu? € R™, and standard Brownian
have become the method of choice). For some reason that . . " n .
motion noisew € R, v € R™ are independent of each
This work is supported by NSF Grant ECS-0524761. other. We define the cost-to-go functiofi(¢, x?) as the total
"Department of ~Mechanical and Aerospace  Engineeringcost expected to accumulate if the system is initialized in
University of Califomia San Diego, La Jolla, CA 92093-0411 gtatexr at timet, and controlled until time&” according to
ww i @echani cs. ucsd. edu ’p L. .
tDepartment of Cognitive Science, University of CalifornianSDiego, the control lawu”. The admissible control S|gnals may be

La Jolla, CA 92093-051% odor ov@ogsci . ucsd. edu constrainedu? € U.



The objective of optimal control is to find the optimal c; n = VAL Fli o VAL oFll

control law u* that minimizesv™ (0, x?(0)). Note that the o oxy
globally-optimal control law does not depend on a specific w _ /AL o Fli 1 i
initial state. However, finding this control law in complex Ciw = VAL —3u£ ) dir = _\/A_t g,
problems is unlikely. Instead, we seek locally-optimaltcoh 1 aglil 1 gl
laws: we will present an LQG approximation to our original D¥f = — —, = —

; ; ) ’ VAt 0x? ' VAt oul
optimal control problem and compute an approximately k k
optimal control law. The present formulation in this papeand
assumes that the state of system is measurable through B, 920
delayed and noisy sensors, therefore we will also design amy = At £, qi = At ——, Qr = Al 5,

. o s oxy, o(x})
optimal filter in order to extract the accurate state infarora Y 520 520
from noisy measurement data. — At Ry — At P = At

Tk ou’ k d(uf)?’ b oul oxy’
[Il. LocAL LQG APPROXIMATION are computed at eadlx?, a}).
_ o The initial state has known meak; and covari-
A. Linearization ance ;. All the matrices A, B, Fi, Ex, ¢ix, CXy,, Cy.,

ddj,ka;‘ika}l,k; (7’ = ]-7 7nw7and ] =1, 7”1}) are

In this paper the locally-optimal control law is compute 4 1o be ai ith th di : The i
using the method of dynamic programming. Time is dis?SSUmed fo be given wi € proper dimensions. The in-

H Ny Ny
cretized ask = 1,--- , N, with time stepAt =T/(N — 1). dependent g"”dom Vanﬁ.?l% < R &nd ke € 3‘%@ arIe
Our derived algorithm is iterative. Each iteration startdva Zero-mean 'saussian wnite noises with covarariees=

n _ i [d] (]
nominal control sequence;, and a corresponding nominal and &7 = I respectively. Note thal™ and g* denote

-th £ Mg XM, Ny XNy
trajectoryx} obtained by applyinga} to the deterministic the i t_collum'zt ?r]: n;atr:ﬁ.}' < iR _N ?r?d g E,[.Rd fined
systemx? = f(x?,u?) with X?(0) = x%. This can be done '°°PECIVEY- € final time step= AV, the cost s define

T 1,7 _ _ _0h
by Euler integratiorx},, | = %} + At f(x},0}). asgn + Xqu]\zf + 2XnQnxN, Wheregy = h,an = 57,
0~ h

By linearizing the system dynamics and quadratizing thand@n = FICOER

cost functions aroundx?,@}), we obtain a discrete-time Here we are using a noise model which includes control-
linear dynamical system with quadratic cost. Note that thdependent, state-dependent and additive noises. Thiffiis su
linearized dynamics no longer describe the state and donti@ient to capture noise in the system — which is what we are
variables, instead they describe the state and controhdevimainly interested in. Considering the sensorimotor cdntro
tionsx;, = x} —x}, u, = u} — 0}, andy, =y, —y,, where noise in the motor output increases with the magnitude of
the value of the outputs at the operating point are defined # control signal. Incorporating the state-dependergenimi

¥ = g(xL,@}). Written in terms of these deviations — stateanalysis of sensorimotor control could allow more accurate
variablex; € R"=, control inputu, € R™, measurement modelling of feedback form sensory modalities and various
outputy, € R"™, the modified LQG approximation to our experimental perturbations. In the study of estimation and

original optimal control problem becomes control design for the system with control-dependent and
state-dependent noises, the well-known Separation Phnci
Xpi1 = ApXp + Brug + Cr(Xp, ug )&, (3) of standard LQG design is violated. This complicates the

v = Fixp + Epug + Dy (xp, up) e, (4) problem subs_tantlally, and forces us to develop a new struc-
ture of recursive controller and estimator.

1
costy = qr + Xqu + —XTQka - ;
F 27k B. Computing the cost-to-go function

1
+ ulr, + iunguk +uf Puxy, 5) In practical situations, the state of the controlled plant
are only available through noisy measurement. While the
where implementation of the optimal control law depends on the
state of the system, we have to design an estimator in order
Ay =1+ At a_j;” By, = At 8_j;” (6) to extract the correct information of the state. In this pape
%y, oy, we are assuming that the approximately-optimal control law
_ Og _0Og is allowed to be an affine function of, — the unbiased
Fk — Q. p>? k— 5. p> (7) : :
ox), ouy, estimate of state,, and the estimator has the form
Ck(xk'; uk) £ |:c1,k + Cickxk + Cﬂkuka B }A(kJrl = Apxy + Bruy, + Kk:(}’k — Fpxp — Ekuk), (10)
Cny bk +Ch kXk +C’,}L‘W,€uk}, (8) where the filter gainsk} are non-adaptive, i.e. they are
a N " determined in advance and cannot change as a function of
Di(xk, ug) = [dl,k + DigXe + Dyjtte, the specific controls and observations within a simulation
run. The detailed derivation for computing the filter géin
DX D } . : .
e+ D, Xk D, 8| ©)  will be presented in section V.
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The approximately-optimal control law for the LQG ap-
proximation will be shown to be affine, in the form

k=1,---,N,

u \7T gx
z,k) Sk+1ci,k’

uy = (X)) = lp + LiXg, (11)

where [, describes the open-loop control component (it
arises because we are dealing with state and control G* £ Pk+Bk (Skiq +Sk+1)Ak
deviations, and is needed to make the algorithm iterative), ne

Ly is the feedback control gain. The control law we design + BE(S§q + SE) K Fr, + Z ) Sk 1O

is approximately-optimal because we may have control i=1
constraints and non-convex costs, and also because we use .

. . . . . + u TSx K. D¥
linear Gaussian approximations. Let the cost-to-go fancti Z K Siy 1 Kk D3y,

vk (xk, Xi) be the total cost expected to accumulate if the N

system (3) is initialized in state; at time stepk, and G* £ Bk (Se1 + S (A — Ky Fy,).

controlled according tery for the remaining time steps.

Lemma 1. Suppose the control law, for system (3)-(5)

has already been designed for time stéps 1,--- , N. If

the control law is affine in the form (11), then the cost-to-go

function vy (xy, %Xx) has the form

v (X, Xi) = Skxk—l— XkSkxk—&—kaxxA

+ X\ sy + XL sf + Sk (12)

where the parameter§y, S¥, S¥* s¥,s¥,and s, can be
computed recursively backwards in time as

Sl)cc = Qk + A£S§+1Ak + FEK%S§+1K]€F]§

+2ATS,€+1K,€F,€+Z S RCHIRT G

+Z * )T KF SR, KDY, S% =Qu, (13)

Sy = (Ak — KiF) " S3(A — KiFy) + LEHLy,

+ LTG* + (GX)T Ly, SX =0, (14)
Si* = FUKL SR, (A — K Fy)
+ AT S (A — K Fy) + (G¥)T Ly, S =0, (15)

Sk: k+AkSk+1+Fk Kksk+1+(Gx)le

+Z ]

) Siacin + Z Tk

i=1

T b’
Ky Sip1 Kidi g,

sy =aw, (16)
57;‘ = (Ak — Kka) Sk+1 + LkHlk +Lkg+ (Gﬁ}le?
=0, (17)

1
Sk =qr+ Skt +lfg+ alelk

1 Nw . Ty N
+ 5 (Zl Cg:kSk—',-lci,k + Zle:kKESk—‘rldelyk) ,
SN = ¢gN- (18)
and
H = Rk + B (St + Sk+1 +255%1) B

+Z

)ISEL Oy + Z 20 K Sy KDy,

=1

IV. OPTIMAL CONTROLLER DESIGN

The cost-to-go functiomy, (xx, X;) depends on the control
u = 7 (Xx) through the term

. 1 X
a(Xp, Xg, Tg) = 57"£H7"k + 7l (g + G*xp + G*xy)

This expression is quadratic i, and can be minimized
analytically, but the problem is that the minimum depends on
x While 7, is only a function ofk,. To obtain the optimal
control law at time steg:, we have to take an expectation
over x;, conditional onx;, and find the functionr, that
minimizes the resulting expression. SinEgxy|xx] = Xk,

we have

a(Xp, ) 2 E [a(xp, X, 7x) | %]

1 .
= _m Hm,+ 7 (g+G%,)  (19)

2

where G = G* + G*. Ideally we would chooser;, that
minimizesa(Xy, ;) subject to whatever control constraints
are present. However, this is not always possible within the
family of affine control lawswy (k) = I + LiXx, that
we are considering. Since the goal of the LQG stage is to
approximate the optimal controller for the nonlinear syste
in the vicinity of X, we will give preference to those control
laws that are optimal/feasible for smatl;, even if that
(unavoidably) makes them sub-optimal/infeasible for éarg
X -

If the symmetric matrix in (19) is positive semi-definite,
we can compute the unconstrained optimal control law

r=—H (g +Gx), (20)

and deal with the control constraints as described below.
But when H has negative eigenvalues, there exisfs
that makea arbitrarily negative. Note that the cost-to-go
function for the nonlinear problem is always non-negative,
but we are using an approximation to the true cost, we may
encounter situations where does not have a minimum.
In that case we usé{ to resembleH, becauseH still
contains correct second-order information; and so the true
cost-to-go decreases in the directiert{~!(g + G%;,) for

any positive definite matrix/{. One possibility is to set

H = H+ (e — AMnin(H))I where,,;,(H) is the minimum
eigenvalue ofd ande > 0. This is related to the Levenberg-
Marquardt method.



Lemma 2: The optimal control law is computed as Y1 = (Ak + BeLp)S¥ (A + BrLy,) ™ + K Fr X AL
+(Ap 4 By L) SXFT KT

ug =l + LigX, (21) .
Ih=—H 'g, Ly, =-H 'G, +Kp Fi S (Ax + BrLi)"
H=H+ (€= Apin(H))I, >0, +<(Ak + By Li)mi; + Kkam;)lZB,f
H éan + B (S5 + S;’;(Hn-i- 257%1) Bi Bl ((Ak- 4 BuLy)m + Kkamz>T
+ Z( il,lk)TSl}c(HCil,lk + Z( Zk)TKkTSI);(+1KkDEk7 +Bylili BY, oY = %%{, (26)
= — i = (Ap — Kp F)SRAL + My, 35 =3, (27)
g2+ Bl (sf +870) + Z( TSRk X1 = (A + BrLip) S5 (A — K Fy)™
s =1 + Bl (mQ)T (A, — K Fy,)7, y¥ =0, (28)
+ D (DR KL SE 1 Kidi g, Pi = E [Di (%, mk) Dy, (xi, 1)) , (29)
i=1 My = E [Cr(xk, mi) CF (1, 71)] - (30)

G2 Po+ BL (S + Sy + 25550 Ax
VI. NUMERICAL SIMULATIONS

+ D (CR) S CE 4+ Y (D) KL SR KDY A Application to arm movements
=1 =1

We have thus far tested the algorithm on the reaching
where 57, ,, 551, 5751, Sk 415 Sk41,Sk+1 €an be obtained movements for a 2-link arm model, which has nonlinear
through (13)-(18) backwards in time. dynamics, non-quadratic costs and multiplicative noise.

1) 2-link human arm model: Consider an arm model with
2 joints (shoulder and elbow), moving in the horizontal glan
It is well known that, for models with control-dependent(Fig 1). The inverse dynamics is
and state-dependent noises, the optimal filter is very diffic . . .
to compute in practice. For this kind of models, the construc M(6)0+C(0,0)+ BO =T, (31)
tion of suboptimal filters that approximate the optimal ON&hered € R? is the joint angle vector (shouldef;, elbow:
becomes very important. , ), M(0) € R?*? is a positive definite symmetric inertia
So far we computed the optimal control law for any f'Xe%atrix, C(e,é) € R? is a vector centripetal and Coriolis
sequence of filter gain&’. In order to preserve the optimal- forces, B € R>*2 is the joint friction matrix, andr € R2
ity of the control law obtained in the previous section any the joint torque. Here we consider direct torque control
attain an iterative algorithm with guaranteed convergencgnerer is the control signal. In (31), the expressions of the

we need to compute a fixed sequence of filter gains thgiterent variables and parameters are given by
are optimal for a given control law. Thus our objective

V. OPTIMAL ESTIMATOR DESIGN

here is the following: given the control law;,--- ,un—1 [ @+ 2a3c08ly  az + azcosty

(which is optimal for the previous filtefk, ..., Knx_1), az + azcost as ’

compute a new sgbophmal _fllter evalua_lted by minimizing 79'2(29'1 Jrgz) . by b
the magnitude of its estimation errors, in conjunction with C = g 2 azsinbz, B = by byy )
the given control law, which results in minimal expectedtcos !

Once the iterative algorithm has converged and the controki: = I1 + Iz + mal3, az = maly sz, az = Iy,
law has been designed, we could use an adaptive filter \i/vnhe

place of the fixed-gain filter in run time. reb1y = bap = 0.05,b12 = by = 0.025, m; is the mass

' o - (1.4kg, 1kg),l; is the length of link i (30cm, 33cm)s; is
Lemma 3: With the definition of the unconditional meansthe distance from the joint center to the center of the mass

mf, £ E[et], mi £ E[x;], whereey, is the estimation for link i (11cm, 16cm), andl; is the moment of inertia
error andxy, is the estimate of the state, and the uncondi-

tional covariancesS £ E [eel |, X £ F [%,%}], and
¥¥¢ £ E [%el ], the optimal filter gain for system (3)-(5)
is computed as
Xpy1 = ApXp + Brmp + Ki(yx — FiXp — Eymy), (22)
Ki = ASLEF (BSGFT +P) (23)
mﬁ+1 = (Ak + BkLk)mf; + Kkami + Byly,
mi=%  (24)

m2+1 = (Ar — K Fy)my, mi =0, (25) Fig. 1. 2-link arm model.
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Fig. 2. Fully observable case: average behavior of the ILQ@roller for ~ Fig. 3. Partial observable case: average behavior of theGllo@ntroller

reaching movements, using a 2-link human arm model. (A) Handsgath  and estimator for reaching movements, using a 2-link human arrmeimod
movement in 8 directions; (B) Speed profiles. (A) Hand paths for movement in 8 directions; (B) Cost over iiers.

(0.025kgm?,0.045kgm?). Based on equations (31), we canga jllustrates that the hand could still arrive to the desire

compute the forward dynamics target position. Another encouraging result is that in &erm
i —1(_ _ N _ R of CPU time. Fig 3B shows how the total cost decreased
6= M(©6) (T €(.9) 69), (32) over iterations of the algorithm, for reaching in 8 diffeten
and write the system into state space form with = directions. On average, ILQG found a locally-optimal time-
(61 6 0, éQ)T, u = 7 = (11 7)T. The control input varying feedback control law in about 10 seconds (on a
u is disturbed by the multiplicative noise, whose standar@.8GHz Pentium 4 machine, in Matlab).
deviation is20% of the magnitude of control signal. Trajectory-based algorithms related to Pontryagin’s Maxi
The sensory feedback carries the information about posiaum Principle in general find locally-optimal solutionsdan
tion and velocity complex control problems may exhibit many local minima.

AN Finally, we explored the issue of local minima for the arm
y= (01 02 61 62)" +v, (33 control problem. We used 50 different initializations, for
where the sensory noisehas zero-mean Gaussian distribu_eaCh of 8 movement directions. The final trajeCtOfieS are
tion with unity covariance. given in Fig 4, where Fig 4A shows that, for the fully
observable case, all the optimization runs converge to a
2) Center-out reaching task: In order to demonstrate the solution very similar to the best solution we find for the
effectiveness of our design, we applied ILQG method t@orresponding target direction. Fig 4B shows how the cloud
the human arm model described above. The first task wg 50 randomly initialized trajectories gradually convelfgr
study is reaching movement, where the arm has to start e partial observable case by using ILQG method. There are
some initial position and move to a target in a specified timpcal minima, but half the time the algorithm converges to
interval. It also has to stop at the target, and do all thahe same result. Therefore, the derived algorithm is relbti
with minimal energy consumption. There are good reasoRgry robust, and a small number of restarts of ILQG are

to believe that such costs are indeed relevant to the neug{ljfﬁcient to discover what appears to be the g|0ba| minimum
control of movement [7] The cost function is defined as in a re|a‘[ive|y Comp|ex control prob|em_

2 . 2
J1 = ||e(6(T)) —e*|| + 0.001 é(e(T),G(T)) H 3) Reaching task with the obstacle avoidance: The second
1 T task is to implement the reaching task and to avoid the
+ 5/ 0.0001 |ul||? dt, (34) obstacle during the movement, while the obstacle is defined
0

as a circle with a certain radius,psiqcie = 0.02m, and
wheree(6) andé (6, 6) is the forward kinematics transforma- iS arranged in the fixed position. The distance between the
tion from joint coordinates to end-point coordinates, amel t Starting position and the target is about 0.15m. The arnbsstar
desired target* is defined in end-point coordinates. Here we

use the center-out reaching task which is commonly studied

in the Motor Control — the targets* (shown as stars in @ . ® %

Fig 2A) are arranged in a circle with 0.1m radius arount
the starting position. Fig 2 shows average behavior for tF
fully observable case: hand paths in (A), tangential spee
profiles in (B). We found out that the movement kinematic:
share many features with experimental data on human ai
movements. T : s :

Now we look at the partial observable case where the shouder angle (rad) shoulder angle (rac)
states of system are obtained by the esnmgtor. Althou ig. 4. Hand paths for random 50 initial control laws (bluaset)
the state of the controlled plant are only available throughnd optimized paths (black) to 8 targets obtained by usingettiaitial
noisy measurement, the movement trajectories shown in Fignditions. (A) fully observable case; (B) partial obséaeacase.

elbow angle (rad)
elbow angle (rad)




Hand Trajectories Here the optimal control problem is solved for minimizing
a performance criterion. Fig 6(a) shows the behavior of
movement trajectories by changing the penalty weighting
0.48 . . o :
k1 on the obstacle avoidance in the objective function (35).
m The bigger the weight penalty; is, the hand movement
0.45 . . .

0.0 0.055 trajectory is further away from the obstacle, and Fig 6(a)
exactly explains this phenomena. Another interestinglresu
in behavioral experiments shows that a longer movement
Fig. 5. Average behavior of the ILQG controller and estiméoreaching duratlpn can be predlcFed to cause a more curved trajectory.
movement with obstacle avoidance, using a 2-link human arm made¢ ~ Our simulation result Fig 6(b) quantitatively supportedsé

curve: fully observable case; green dashed curve: parisémwable case. previous studies with an enormous amount of data.
Note that obstacle circle radius= 0.02m.

VIl. CONCLUSION

This paper developed a new local method for optimal
feedback control and estimation design of stochastic non-
linear dynamical systems subject to control constrairits. |
provided an iterative coordinate-descent algorithm, Whisc
guaranteed to converge to a filter and a control law optimal
o with respect to each other. Although our work is motivated
—0.02 0.08 by studying biological movement control, the present tssul
X (m) . . . .
_— . could be of interest to a wider audience. The most important
(a) contribution of obstacle cost rate (b) contribution of movement . . . . .
duration is that our approach yields a numerical algorithm with stabl
Fig. 6. (a) C _ f behavior by choosing diffie convergence achieved through backtracking line searah; an
1g. o. a omparison o movement behavior y choosing re H s A Fs H H
weighting coefficients:; on the obstacle cost rate (fully observable case).C(_)nvergenc,e in the V!Clmty O_f a !Ocal mlnlmu,m is quadratic.
Magenta diamond%; = le — 7; Blue solid: k1 = le — 8; Yelow Finally, we illustrate its application to reaching movertgen
dashdot:k; = le — 9; Black dashedik; = le — 10; Green dotted: on a biomechanical model of the human arm.

k1 = le—11. (b) Comparison of movement behavior by choosing different There are several extensions to the work we presented
movement duration (fully observable case). Blue soli@0msec; Red

dashdot500msec; Black dashed350msec; Green dotted200msec. The ~ here. While we assumed a specified final tiffie the al-
obstacle circle radius = 0.02m. gorithm can be applied in model-predictive mode, using a

fixed time horizon rather than a fixed final time. The final
costh(x) will have to be replaced with some approximation
from rest atd; = /4,6, = w/2, and has to reach the 0 the optimal cost-to-go, but that has to be done whenever

specified target and avoid the obstacle during the reachirfiied-horizon model-predictive control is used.

Hand Trajectories

Hand Trajectories

R see000000s,

0.5

Y (m)

-0.02 0.055 0.13
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