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Abstract— This paper presents an iterative Linear-Quadratic-
Gaussian method for locally-optimal control and estimation of
nonlinear stochastic systems. The new method constructs an
affine feedback control law obtained by minimizing a novel
quadratic approximation to the optimal cost-to-go function. It
also constructs a non-adaptive filter optimized with respect
to the current control law. The control law and filter are
iteratively improved until convergence. The performance of the
algorithm is illustrated on a complex biomechanical control
problem involving a stochastic model of the human arm.

I. I NTRODUCTION

Optimal control of partially-observable stochastic systems
is generally intractable, because the optimal estimator tends
to be infinite-dimensional and consequently the optimal
controller is also infinite-dimensional. The only notable
exception is the Linear-Quadratic-Gaussian (LQG) setting
[1], [2], [4], [5], [6], [9], where the posterior probability over
the system state is Gaussian and the optimal controller only
depends on the mean of that Gaussian. Unfortunately many
real-world problems (including the biological control prob-
lems we are interested in) are not LQG and are not amenable
to global LQG approximations. Local LQG approximations,
on the other hand, are often quite reasonable: they rely on
local low-order polynomial approximations to the system
dynamics, cost function and noise log-probability — all of
which tend to be smooth functions. It then makes sense to
construct approximately-optimal estimators and controllers
by starting with a local LQG approximation, finding the opti-
mal solution, using it to construct a new LQG approximation,
and iterating until convergence.

This idea is reminiscent of second-order (Newton) meth-
ods for numerical optimization: the function that needs to
be optimized is rarely quadratic, but nevertheless one can
approximate it locally with a quadratic, find the minimum,
construct a new quadratic approximation around that min-
imum, and iterate. The reason for choosing quadratics is
very simple: they represent the most complex numerical
optimization problem we know how to solve analytically.
Similarly, LQG is the most complex optimal control problem
we know how to solve analytically. Thus iterative LQG
methods have the potential to play the role that second-order
methods have played in numerical optimization (namely, they
have become the method of choice). For some reason that
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potential has not been fully realized. The goal of the present
paper is to fill this gap, by iteratively constructing extended
Kalman filter and linear-quadratic regulator adapted to the
approximation setting.

This work represents the convergence of two lines of
research we have previously pursued. In one line of research,
we derived an iterative algorithm for optimal estimation
and control of partially-observable linear-quadratic systems
subject to state-dependent and control-dependent noise [8].
This was possible due to a restriction to non-adaptive filters.
In another line of research, we derived an iterative algorithm
for optimal control of fully-observable stochastic nonlinear
systems with arbitrary costs and control constraints [3], [7].
This was possible due to a novel approximation to the opti-
mal cost-to-go function. Here we combine these ideas, and
derive an algorithm which can handle partially-observable
nonlinear systems, non-quadratic costs, state-dependentand
control-dependent noise, and control constraints. In section
II we formalize the problem we want to solve. In sections III
and IV we present an LQG approximation to that problem,
and compute an approximately-optimal control law under the
assumption that state estimates are obtained by an unbiased
non-adaptive linear filter. In section V we derive the optimal
filter corresponding to the given control law. The two results
together provide an iterative coordinate-descent algorithm,
which is guaranteed to converge to a filter and a control law
optimal with respect to each other. In section VI we illustrate
the application of our method and explore its convergence
properties, in the context of reaching movements and obsta-
cle avoidance movements using a model of the human arm.

II. PROBLEM FORMULATION

Consider the nonlinear dynamical system described by the
stochastic differential equations

dxp = f
(

xp,up
)

dt + F
(

xp,up
)

dω(t), (1)

along with the output equation

dyp(t) = g
(

xp,up
)

dt + G
(

xp,up
)

dv(t), (2)

where state variablexp ∈ R
nx , control inputup ∈ R

nu ,
measurement outputyp ∈ R

ny , and standard Brownian
motion noiseω ∈ R

nω , v ∈ R
nv are independent of each

other. We define the cost-to-go functionvπ(t,xp) as the total
cost expected to accumulate if the system is initialized in
statexp at time t, and controlled until timeT according to
the control lawup. The admissible control signals may be
constrained:up ∈ U .



The objective of optimal control is to find the optimal
control law u∗ that minimizesvπ(0,xp(0)). Note that the
globally-optimal control law does not depend on a specific
initial state. However, finding this control law in complex
problems is unlikely. Instead, we seek locally-optimal control
laws: we will present an LQG approximation to our original
optimal control problem and compute an approximately-
optimal control law. The present formulation in this paper
assumes that the state of system is measurable through
delayed and noisy sensors, therefore we will also design an
optimal filter in order to extract the accurate state information
from noisy measurement data.

III. L OCAL LQG APPROXIMATION

A. Linearization

In this paper the locally-optimal control law is computed
using the method of dynamic programming. Time is dis-
cretized ask = 1, · · · , N , with time step∆t = T/(N − 1).
Our derived algorithm is iterative. Each iteration starts with a
nominal control sequencēup

k, and a corresponding nominal
trajectory x̄

p
k obtained by applyinḡup

k to the deterministic
systemẋp = f(xp,up) with x̄p(0) = x

p
0. This can be done

by Euler integration̄xp
k+1 = x̄

p
k + ∆t f(x̄p

k, ūp
k).

By linearizing the system dynamics and quadratizing the
cost functions around(x̄p

k, ūp
k), we obtain a discrete-time

linear dynamical system with quadratic cost. Note that the
linearized dynamics no longer describe the state and control
variables, instead they describe the state and control devia-
tionsxk = x

p
k−x̄

p
k, uk = u

p
k−ū

p
k, andyk = y

p
k−ȳ

p
k, where

the value of the outputs at the operating point are defined as
ȳ

p
k = g(x̄p

k, ūp
k). Written in terms of these deviations — state

variablexk ∈ R
nx , control inputuk ∈ R

nu , measurement
output yk ∈ R

ny , the modified LQG approximation to our
original optimal control problem becomes

xk+1 = Akxk + Bkuk + Ck(xk,uk)ξk, (3)

yk = Fkxk + Ekuk + Dk(xk,uk)ηk, (4)

costk = qk + xT
k qk +

1

2
xT

k Qkxk

+ uT
k rk +

1

2
uT

k Rkuk + uT
k Pkxk, (5)

where

Ak = I + ∆t
∂f

∂x
p
k

, Bk = ∆t
∂f

∂u
p
k

, (6)

Fk =
∂g

∂x
p
k

, Ek =
∂g

∂u
p
k

, (7)

Ck(xk,uk) ,

[

c1,k + Cx

1,kxk + Cu

1,kuk, · · · ,

cnω,k + Cx

nω,kxk + Cu

nω,kuk

]

, (8)

Dk(xk,uk) ,

[

d1,k + Dx

1,kxk + Du

1,kuk, · · · ,

dnv,k + Dx

nv,kxk + Du

nv,kuk

]

, (9)

ci,k =
√

∆t F [i], Cx

i,k =
√

∆t
∂F [i]

∂x
p
k

,

Cu

i,k =
√

∆t
∂F [i]

∂u
p
k

, di,k =
1√
∆t

G[i],

Dx

i,k =
1√
∆t

∂G[i]

∂x
p
k

, Du

i,k =
1√
∆t

∂G[i]

∂u
p
k

,

and

qk = ∆t `, qk = ∆t
∂`

∂x
p
k

, Qk = ∆t
∂2`

∂(xp
k)2

,

rk = ∆t
∂`

∂u
p
k

, Rk = ∆t
∂2`

∂(up
k)2

, Pk = ∆t
∂2`

∂u
p
k∂x

p
k

,

are computed at each(x̄p
k, ūp

k).
The initial state has known mean̂x1 and covari-

ance Σ1. All the matricesAk, Bk, Fk, Ek, ci,k, Cx

i,k, Cu

i,k,
dj,k,Dx

j,k,Du

j,k (i = 1, · · · , nω,and j = 1, · · · , nv) are
assumed to be given with the proper dimensions. The in-
dependent random variablesξk ∈ R

nω and ηk ∈ R
nv are

zero-mean Gaussian white noises with covariancesΩξ = I
and Ωη = I respectively. Note thatF [i] and G[i] denote
the ith column of matrixF ∈ R

nx×nω and G ∈ R
ny×nv

respectively. At the final time stepk = N , the cost is defined
as qN + xT

NqN + 1
2x

T
NQNxN , whereqN = h,qN = ∂h

∂x
p

N

,

andQN = ∂2h
∂(xp

N
)2

.
Here we are using a noise model which includes control-

dependent, state-dependent and additive noises. This is suffi-
cient to capture noise in the system — which is what we are
mainly interested in. Considering the sensorimotor control,
noise in the motor output increases with the magnitude of
the control signal. Incorporating the state-dependent noise in
analysis of sensorimotor control could allow more accurate
modelling of feedback form sensory modalities and various
experimental perturbations. In the study of estimation and
control design for the system with control-dependent and
state-dependent noises, the well-known Separation Principle
of standard LQG design is violated. This complicates the
problem substantially, and forces us to develop a new struc-
ture of recursive controller and estimator.

B. Computing the cost-to-go function

In practical situations, the state of the controlled plant
are only available through noisy measurement. While the
implementation of the optimal control law depends on the
state of the system, we have to design an estimator in order
to extract the correct information of the state. In this paper
we are assuming that the approximately-optimal control law
is allowed to be an affine function of̂xk — the unbiased
estimate of statexk, and the estimator has the form

x̂k+1 = Akx̂k + Bkuk + Kk(yk − Fkx̂k − Ekuk), (10)

where the filter gainsKk are non-adaptive, i.e. they are
determined in advance and cannot change as a function of
the specific controls and observations within a simulation
run. The detailed derivation for computing the filter gainKk

will be presented in section V.



The approximately-optimal control law for the LQG ap-
proximation will be shown to be affine, in the form

uk = πk(x̂k) = lk + Lkx̂k, k = 1, · · · , N, (11)

where lk describes the open-loop control component (it
arises because we are dealing with state and control
deviations, and is needed to make the algorithm iterative),
Lk is the feedback control gain. The control law we design
is approximately-optimal because we may have control
constraints and non-convex costs, and also because we use
linear Gaussian approximations. Let the cost-to-go function
vk(xk, x̂k) be the total cost expected to accumulate if the
system (3) is initialized in statexk at time stepk, and
controlled according toπk for the remaining time steps.

Lemma 1: Suppose the control lawπk for system (3)-(5)
has already been designed for time stepsk + 1, · · · , N . If
the control law is affine in the form (11), then the cost-to-go
function vk(xk, x̂k) has the form

vk(xk, x̂k) =
1

2
xT

k Sx

k xk +
1

2
x̂T

k Sx̂

k x̂k + xT
k Sxx̂

k x̂k

+ xT
k sxk + x̂T

k sx̂k + sk (12)

where the parametersSx

k , Sx̂

k , Sxx̂

k , sxk , sx̂k , and sk can be
computed recursively backwards in time as

Sx

k = Qk + AT
k Sx

k+1Ak + FT
k KT

k Sx̂

k+1KkFk

+ 2AT
k Sxx̂

k+1KkFk +

nω
∑

i=1

(Cx

i,k)T Sx

k+1C
x

i,k

+

nv
∑

i=1

(Dx

i,k)T KT
k Sx̂

k+1KkDx

i,k, Sx

N = QN , (13)

Sx̂

k = (Ak − KkFk)T Sx̂

k+1(Ak − KkFk) + LT
k HLk

+ LT
k Gx̂ + (Gx̂)T Lk, Sx̂

N = 0, (14)

Sxx̂

k = FT
k KT

k Sx̂

k+1(Ak − KkFk)

+ AT
k Sxx̂

k+1(Ak − KkFk) + (Gx)T Lk, Sxx̂

N = 0, (15)

sxk = qk + AT
k sxk+1 + FT

k KT
k sx̂k+1 + (Gx)T lk

+

nω
∑

i=1

(Cx

i,k)T Sx

k+1ci,k +

nv
∑

i=1

(Dx

i,k)T KT
k Sx̂

k+1Kkdi,k,

sxN = qN , (16)

sx̂k = (Ak − KkFk)T sx̂k+1 + LT
k Hlk + LT

k g + (Gx̂)T lk,

sx̂N = 0, (17)

sk = qk + sk+1 + lTk g +
1

2
lTk Hlk

+
1

2

(

nω
∑

i=1

cT
i,kSx

k+1ci,k +

nv
∑

i=1

dT
i,kKT

k Sx̂

k+1Kkdi,k

)

,

sN = qN . (18)

and

H , Rk + BT
k (Sx

k+1 + Sx̂

k+1 + 2Sxx̂

k+1)Bk

+

nω
∑

i=1

(Cu

i,k)T Sx

k+1C
u

i,k +

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1KkDu

i,k,

g , rk + BT
k (sxk+1 + sx̂k+1) +

nω
∑

i=1

(Cu

i,k)T Sx

k+1ci,k

+

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1Kkdi,k,

Gx , Pk + BT
k (Sx

k+1 + Sxx̂

k+1)Ak

+ BT
k (Sx̂

k+1 + Sxx̂

k+1)KkFk +

nω
∑

i=1

(Cu

i,k)T Sx

k+1C
x

i,k

+

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1KkDx

i,k,

Gx̂ , BT
k (Sx̂

k+1 + Sxx̂

k+1)(Ak − KkFk).

IV. OPTIMAL CONTROLLER DESIGN

The cost-to-go functionvk(xk, x̂k) depends on the control
uk = πk(x̂k) through the term

a(xk, x̂k,πk) =
1

2
π

T
k Hπk + π

T
k (g + Gxxk + Gx̂x̂k)

This expression is quadratic inπk and can be minimized
analytically, but the problem is that the minimum depends on
xk while πk is only a function ofx̂k. To obtain the optimal
control law at time stepk, we have to take an expectation
over xk conditional onx̂k, and find the functionπk that
minimizes the resulting expression. SinceE [xk|x̂k] = x̂k,
we have

α(x̂k,πk) , E [a(xk, x̂k,πk) | x̂k]

=
1

2
π

T
k Hπk + π

T
k (g + Gx̂k) (19)

where G = Gx + Gx̂. Ideally we would chooseπk that
minimizesα(x̂k,πk) subject to whatever control constraints
are present. However, this is not always possible within the
family of affine control lawsπk(x̂k) = lk + Lkx̂k that
we are considering. Since the goal of the LQG stage is to
approximate the optimal controller for the nonlinear system
in the vicinity of x̄p

k, we will give preference to those control
laws that are optimal/feasible for smallxk, even if that
(unavoidably) makes them sub-optimal/infeasible for larger
xk.

If the symmetric matrixH in (19) is positive semi-definite,
we can compute the unconstrained optimal control law

πk = −H−1(g + Gx̂k), (20)

and deal with the control constraints as described below.
But when H has negative eigenvalues, there existπ

′

ks
that makea arbitrarily negative. Note that the cost-to-go
function for the nonlinear problem is always non-negative,
but we are using an approximation to the true cost, we may
encounter situations wherea does not have a minimum.
In that case we useH to resembleH, becauseH still
contains correct second-order information; and so the true
cost-to-go decreases in the direction−H−1(g + Gx̂k) for
any positive definite matrixH. One possibility is to set
H = H + (ε− λmin(H))I whereλmin(H) is the minimum
eigenvalue ofH andε > 0. This is related to the Levenberg-
Marquardt method.



Lemma 2: The optimal control law is computed as

uk = lk + Lkx̂k, (21)

lk = −H−1g, Lk = −H−1G,

H = H +
(

ε − λmin(H)
)

I, ε > 0,

H , Rk + BT
k (Sx

k+1 + Sx̂

k+1 + 2Sxx̂

k+1)Bk

+

nω
∑

i=1

(Cu

i,k)T Sx

k+1C
u

i,k +

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1KkDu

i,k,

g , rk + BT
k (sxk+1 + sx̂k+1) +

nω
∑

i=1

(Cu

i,k)T Sx

k+1ci,k

+

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1Kkdi,k,

G , Pk + BT
k (Sx

k+1 + Sx̂

k+1 + 2Sxx̂

k+1)Ak

+

nω
∑

i=1

(Cu

i,k)T Sx

k+1C
x

i,k +

nv
∑

i=1

(Du

i,k)T KT
k Sx̂

k+1KkDx

i,k,

where Sx

k+1, S
x̂

k+1, S
xx̂

k+1, s
x

k+1, s
x̂

k+1, sk+1 can be obtained
through (13)-(18) backwards in time.

V. OPTIMAL ESTIMATOR DESIGN

It is well known that, for models with control-dependent
and state-dependent noises, the optimal filter is very difficult
to compute in practice. For this kind of models, the construc-
tion of suboptimal filters that approximate the optimal one
becomes very important.

So far we computed the optimal control law for any fixed
sequence of filter gainsKk. In order to preserve the optimal-
ity of the control law obtained in the previous section and
attain an iterative algorithm with guaranteed convergence,
we need to compute a fixed sequence of filter gains that
are optimal for a given control law. Thus our objective
here is the following: given the control lawu1, · · · ,uN−1

(which is optimal for the previous filterK1, . . . ,KN−1),
compute a new suboptimal filter evaluated by minimizing
the magnitude of its estimation errors, in conjunction with
the given control law, which results in minimal expected cost.
Once the iterative algorithm has converged and the control
law has been designed, we could use an adaptive filter in
place of the fixed-gain filter in run time.

Lemma 3: With the definition of the unconditional means
me

k , E [ek], mx̂

k , E [x̂k], where ek is the estimation
error andx̂k is the estimate of the state, and the uncondi-
tional covariancesΣe

k , E
[

ekeT
k

]

, Σx̂

k , E
[

x̂kx̂
T
k

]

, and
Σx̂e

k , E
[

x̂keT
k

]

, the optimal filter gain for system (3)-(5)
is computed as

x̂k+1 = Akx̂k + Bkπk + Kk(yk − Fkx̂k − Ekπk), (22)

Kk = AkΣe
kFT

k

(

FkΣe
kFT

k + Pk

)−1
, (23)

mx̂

k+1 = (Ak + BkLk)mx̂

k + KkFkme
k + Bklk,

mx̂

1 = x̂1 (24)

me
k+1 = (Ak − KkFk)me

k, me
1 = 0, (25)

Σx̂

k+1 = (Ak + BkLk)Σx̂

k(Ak + BkLk)T + KkFkΣe
kAT

k

+(Ak + BkLk)Σx̂e
k FT

k KT
k

+KkFkΣex̂
k (Ak + BkLk)T

+
(

(Ak + BkLk)mx̂

k + KkFkme
k

)

lTk BT
k

+Bklk

(

(Ak + BkLk)mx̂

k + KkFkme
k

)T

+BklklTk BT
k , Σx̂

1 = x̂1x̂
T
1 , (26)

Σe
k+1 = (Ak − KkFk)Σe

kAT
k + Mk, Σe

1 = Σ1, (27)

Σx̂e
k+1 = (Ak + BkLk)Σx̂e

k (Ak − KkFk)T

+Bklk(me
k)T (Ak − KkFk)T , Σx̂e

1 = 0, (28)

Pk = E
[

Dk(xk,πk) DT
k (xk,πk)

]

, (29)

Mk = E
[

Ck(xk,πk) CT
k (xk,πk)

]

. (30)

VI. N UMERICAL SIMULATIONS

A. Application to arm movements

We have thus far tested the algorithm on the reaching
movements for a 2-link arm model, which has nonlinear
dynamics, non-quadratic costs and multiplicative noise.

1) 2-link human arm model: Consider an arm model with
2 joints (shoulder and elbow), moving in the horizontal plane
(Fig 1). The inverse dynamics is

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ, (31)

whereθ ∈ R2 is the joint angle vector (shoulder:θ1, elbow:
θ2), M(θ) ∈ R2×2 is a positive definite symmetric inertia
matrix, C(θ, θ̇) ∈ R2 is a vector centripetal and Coriolis
forces,B ∈ R2×2 is the joint friction matrix, andτ ∈ R2

is the joint torque. Here we consider direct torque control
whereτ is the control signal. In (31), the expressions of the
different variables and parameters are given by

M =

(

a1 + 2a2cosθ2 a3 + a2cosθ2

a3 + a2cosθ2 a3

)

,

C =

(

−θ̇2(2θ̇1 + θ̇2)

θ̇1
2

)

a2sinθ2, B =

(

b11 b12

b21 b22

)

,

a1 = I1 + I2 + m2l
2
1, a2 = m2l1s2, a3 = I2,

whereb11 = b22 = 0.05, b12 = b21 = 0.025, mi is the mass
(1.4kg, 1kg),li is the length of link i (30cm, 33cm),si is
the distance from the joint center to the center of the mass
for link i (11cm, 16cm), andIi is the moment of inertia

θ2

θ1

Fig. 1. 2-link arm model.
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Fig. 2. Fully observable case: average behavior of the ILQG controller for
reaching movements, using a 2-link human arm model. (A) Hand paths for
movement in 8 directions; (B) Speed profiles.

(0.025kgm2, 0.045kgm2). Based on equations (31), we can
compute the forward dynamics

θ̈ = M(θ)−1
(

τ − C(θ, θ̇) − Bθ̇
)

, (32)

and write the system into state space form withx =
(θ1 θ2 θ̇1 θ̇2)

T , u = τ = (τ1 τ2)
T . The control input

u is disturbed by the multiplicative noise, whose standard
deviation is20% of the magnitude of control signal.

The sensory feedback carries the information about posi-
tion and velocity

y = (θ1 θ2 θ̇1 θ̇2)
T + v, (33)

where the sensory noisev has zero-mean Gaussian distribu-
tion with unity covariance.

2) Center-out reaching task: In order to demonstrate the
effectiveness of our design, we applied ILQG method to
the human arm model described above. The first task we
study is reaching movement, where the arm has to start at
some initial position and move to a target in a specified time
interval. It also has to stop at the target, and do all that
with minimal energy consumption. There are good reasons
to believe that such costs are indeed relevant to the neural
control of movement [7]. The cost function is defined as

J1 =
∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2

+ 0.001
∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2

+
1

2

∫ T

0

0.0001‖u‖2 dt, (34)

wheree(θ) andė(θ, θ̇) is the forward kinematics transforma-
tion from joint coordinates to end-point coordinates, and the
desired targete∗ is defined in end-point coordinates. Here we
use the center-out reaching task which is commonly studied
in the Motor Control — the targetse∗ (shown as stars in
Fig 2A) are arranged in a circle with 0.1m radius around
the starting position. Fig 2 shows average behavior for the
fully observable case: hand paths in (A), tangential speed
profiles in (B). We found out that the movement kinematics
share many features with experimental data on human arm
movements.

Now we look at the partial observable case where the
states of system are obtained by the estimator. Although
the state of the controlled plant are only available through
noisy measurement, the movement trajectories shown in Fig
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Fig. 3. Partial observable case: average behavior of the ILQG controller
and estimator for reaching movements, using a 2-link human arm model.
(A) Hand paths for movement in 8 directions; (B) Cost over iterations.

3A illustrates that the hand could still arrive to the desired
target position. Another encouraging result is that in terms
of CPU time. Fig 3B shows how the total cost decreased
over iterations of the algorithm, for reaching in 8 different
directions. On average, ILQG found a locally-optimal time-
varying feedback control law in about 10 seconds (on a
2.8GHz Pentium 4 machine, in Matlab).

Trajectory-based algorithms related to Pontryagin’s Maxi-
mum Principle in general find locally-optimal solutions, and
complex control problems may exhibit many local minima.
Finally, we explored the issue of local minima for the arm
control problem. We used 50 different initializations, for
each of 8 movement directions. The final trajectories are
given in Fig 4, where Fig 4A shows that, for the fully
observable case, all the optimization runs converge to a
solution very similar to the best solution we find for the
corresponding target direction. Fig 4B shows how the cloud
of 50 randomly initialized trajectories gradually converge for
the partial observable case by using ILQG method. There are
local minima, but half the time the algorithm converges to
the same result. Therefore, the derived algorithm is relatively
very robust, and a small number of restarts of ILQG are
sufficient to discover what appears to be the global minimum
in a relatively complex control problem.

3) Reaching task with the obstacle avoidance: The second
task is to implement the reaching task and to avoid the
obstacle during the movement, while the obstacle is defined
as a circle with a certain radiusrobstacle = 0.02m, and
is arranged in the fixed position. The distance between the
starting position and the target is about 0.15m. The arm starts
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Fig. 4. Hand paths for random 50 initial control laws (blue, inset)
and optimized paths (black) to 8 targets obtained by using those initial
conditions. (A) fully observable case; (B) partial observable case.
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Fig. 6. (a) Comparison of movement behavior by choosing different
weighting coefficientsk1 on the obstacle cost rate (fully observable case).
Magenta diamond:k1 = 1e − 7; Blue solid: k1 = 1e − 8; Yellow
dashdot:k1 = 1e − 9; Black dashed:k1 = 1e − 10; Green dotted:
k1 = 1e−11. (b) Comparison of movement behavior by choosing different
movement duration (fully observable case). Blue solid:700msec; Red
dashdot:500msec; Black dashed:350msec; Green dotted:200msec. The
obstacle circle radiusr = 0.02m.

from rest atθ1 = π/4, θ2 = π/2, and has to reach the
specified target and avoid the obstacle during the reaching,
with minimal control energy. The cost function is

J2 =
∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2

+ w
∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2

+
1

2

∫ T

0

r‖u‖2 dt + k1

∫ T

0

(

l(θ(t)) − robstacle

)

−2

dt,

(35)

where the targete∗ is defined in end-point coordinates;l is
the distance between the hand position and the center of
the obstacle center, andl =

√

‖e(θ(t)) − eocenter‖2; the
weighting coefficientw = 0.001, r = 0.0001, k1 = 1e − 8;
and the obstacle radiusrobstacle is equal to0.02m.

Fig 5 shows the movement trajectories and illustrates how
the hand avoid the obstacle circle (marked as dark) and
arrive to the desired target position (marked as red star)
as close as possible. The blue curve is obtained under the
condition that the state variable of the controlled plant is
available; while the green dashed curve illustrates the hand
movement trajectory tying together the optimal feedback
control and estimation design. In the later case, the state
of the controlled plant are approximately computed, because
of the existence of estimation error, we found out that the
green curve becomes more curved at the beginning of the
movement compared with the result on fully observable case.

Here the optimal control problem is solved for minimizing
a performance criterion. Fig 6(a) shows the behavior of
movement trajectories by changing the penalty weighting
k1 on the obstacle avoidance in the objective function (35).
The bigger the weight penaltyk1 is, the hand movement
trajectory is further away from the obstacle, and Fig 6(a)
exactly explains this phenomena. Another interesting result
in behavioral experiments shows that a longer movement
duration can be predicted to cause a more curved trajectory.
Our simulation result Fig 6(b) quantitatively supported those
previous studies with an enormous amount of data.

VII. C ONCLUSION

This paper developed a new local method for optimal
feedback control and estimation design of stochastic non-
linear dynamical systems subject to control constraints. It
provided an iterative coordinate-descent algorithm, which is
guaranteed to converge to a filter and a control law optimal
with respect to each other. Although our work is motivated
by studying biological movement control, the present results
could be of interest to a wider audience. The most important
is that our approach yields a numerical algorithm with stable
convergence achieved through backtracking line search; and
convergence in the vicinity of a local minimum is quadratic.
Finally, we illustrate its application to reaching movements
on a biomechanical model of the human arm.

There are several extensions to the work we presented
here. While we assumed a specified final timeT , the al-
gorithm can be applied in model-predictive mode, using a
fixed time horizon rather than a fixed final time. The final
costh(x) will have to be replaced with some approximation
to the optimal cost-to-go, but that has to be done whenever
fixed-horizon model-predictive control is used.
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