
From Inverse Kinematics to Optimal Control

Perle Geoffroy†,∗, Nicolas Mansard∗, Maxime Raison†, Sofiane Achiche†, Yuval
Tassa4, and Emo Todorov4

Abstract Numerical optimal control (the approximation of an optimal trajectory us-
ing numerical iterative algorithms) is a promising approach to compute the control
of complex dynamical systems whose instantaneous linearization is not meaningful.
Aside from the problems of computation cost, these methods raise several concep-
tual problems, like stability, robustness, or simply understanding of the nature of the
obtained solution. In this paper, we propose a rewriting of the Differential Dynamic
Programing solver. Our variant is more efficient and numerically more interesting.
Furthermore, it draws some interesting comparisons with the classical inverse for-
mulation: in particular, we show that inverse kinematics can be seen as singular case
of it, when the preview horizon collapses.

Key words: optimal control,inverse kinematics, differential dynamic programming

1 Introduction

Both inverse geometry [11] and inverse kinematics1 [21] can be viewed as the res-
olution of an optimization problem: non-linear from the configuration space to the
special Euclidean group SE(3) for the first one [3], quadratic in the tangent space to
the configuration space for the second [5]. This is only one view of the problem, but
it helps to formulate efficient solvers and to understand their convergence proper-
ties, by using some powerful results of numerical optimization [14]. For controlling
a robot, inverse kinematics is nowadays a standard technique, due to its simplic-

† Ecole Polytechnique de Montréal, Montréal, Canada.
∗ LAAS-CNRS, Univ. Toulouse, Toulouse, France.
4 Univ. Washington, Seattle, USA.

1 The problem we name inverse geometry is sometimes referred as inverse kinematics, the second
being referred as differential (or closed-loop) inverse kinematics. We use ‘geometry’ when only
static postures are implied and keep the word ‘kinematics’ when a motion is explicitly implied.

1

2 Perle Geoffroy, Nicolas Mansard et al.

ity and the limited computation cost (e.g. 1ms is enough to invert the kinematics
of a 40DOF humanoid robot [5]). Moreover, the structure of the problem is well
understood and problems are easy to diagnose.

On the other hand, model predictive control (MPC) is an advanced technique
to control a given system by optimizing its predicted evolution [1]. It relies on the
systematic evaluation of the control of the system with respect to a reference cost
function, while only the first few steps of the optimal trajectory are executed before
its complete re-evaluation. The main interest of MPC is the ability of dealing with
non-linear systems whose instantaneous linearization is not meaningful.

Like for inverse kinematics, MPC can be formulated as the resolution at each
control cycle of a numerical optimization problem depending on the estimated state.
However, the typical size of the problem generally makes it difficult to obtain real-
time performance [12]. Moreover, this kind of formulation is difficult to interpret.
It is typically difficult to quantify the robustness of such controllers [1], or even to
explain the reasons that have led to the chosen trajectory.

In this paper, we consider an optimal-control solver named Differential Dynamic
Programming [8]. This numerical scheme provides a simple yet efficient solver of
direct implicit (shooting) optimal-control problems, that makes it possible to control
complex systems, like humanoid robots [18], despite the inherent complexity of this
class of problems. We propose a reformulation that provides numerical advantages
and, more importantly, gives a better understanding of the structure of the optimal
trajectory. In particular, when only the robot kinematics are considered, we show
that every iteration of the algorithm amounts to a sequence of Jacobian pseudo-
inversions along the trajectory. Classical pseudoinverse-based inverse kinematics is
then equivalent to the optimization of a single-step trajectory. Consequently, once
the ratio between the size of the system and the CPU load are sufficiently low, any
inverse-kinematics should be considered with several steps ahead rather than with
only a single one. The same observation seems valid for inverse dynamics [9].

2 Model predictive control

2.1 Principles and model

Consider generic dynamical system, with state x and control u:

xt+1 = f (xt ,ut , t) (1)

f is the evolution function and the time variable t is discrete. x is typically a fi-
nite sequence of derivatives of the configuration q, e.g. x = (q, q̇). Optimal control
computes the control and state trajectories that minimize a given cost function:

min
X ,U

T−1

∑
t=0

lt(xt ,ut)+ lT (xT)

From Inverse Kinematics to Optimal Control 3

subject to the constraint (1), where T is the preview-interval length (fixed here),
U = (u0...uT−1) and X = (x0, ...,xT) are the control and state trajectories and lt and
lT are the running and terminal cost functions. Linear dynamics and quadratic cost
lead to the linear-quadratic regulator, given by Riccati equations.

In practice, the information contained in X and U is somehow redundant. The
problem is reformulated as a problem only on X or only U (the other variable be-
ing deduced from the dynamic equation). The formulation is said explicit when
computing X [13] (designated also by collocation [16]) and implicit when com-
puting U [17] (designated also by shooting [10]). Both formulations have pros and
cons [2]. We consider in the following the implicit formulation, cheaper to solve in
practice, without the drawback that it might involve more local minima. For each
formulation, the solution to the numerical problem is then approximated using any
optimization solver, typically using Newton or quasi-Newton [6] descent.

2.2 Differential dynamic programming

Differential Dynamic Programming (DDP) is an iterative algorithm to solve a non-
linear optimal control problem using implicit formulation [17]. It is nearly equiv-
alent to the application of a Newton descent algorithm [15]. As in the Newton de-
scent, it approaches a local optimum by iteratively modifying a candidate solution.
It starts with initial state and control trajectories (e.g. obtained by integration of the
zero control) and then iterates in two stages. It first computes a quadratic model of
the variation of current candidate trajectory and computes the corresponding linear-
quadratic regulator (LQR – backward loop). The candidate is then modified follow-
ing the LQR (forward loop).
Quadratic model: We denote vt the cost-to-go function defined by:

vt(Xt ,Ut) =
T−1

∑
k=t

lk(xk,uk)+ lT (xT)

where Xt = (xt ..xT) and Ut = (ut ..uT−1) are the trajectory tails. To simplify, we
drop the t variable and denote the next quantity at t +1 by a prime: v′ ≡ vt+1. DDP
relies on the Bellman principle. It proceeds recursively backward in time using the
following equation:

v∗(X ,U) = min
x,u,X ′,U ′

(
l(x,u)+ v′∗(X ′,U ′)

)
building a quadratic model of v from the quadratic models of l and v′∗:

v(x+∆x,u+∆u) = v(x,u)+ vx∆x+ vu∆u+
1
2

∆xT vxx∆x+∆uT vux∆x

+
1
2

∆uT vuu∆u+o(||∆x||2 + ||∆u||2)

4 Perle Geoffroy, Nicolas Mansard et al.

Fig. 1 Snapshots of a whole-body grasping movement on a 25-DOF humanoid robot. The control
is computed in real-time. Courtesy from [19].

The quadratic model is defined by the quadratic coefficients vx, vu, vxx, vux and vuu,
functions of the derivatives of l, f and v′ (see [17] for details).
Backward pass: The optimum ∆u can be computed for any ∆x. It is obtained at
the zero of the derivative of the quadratic model:

∆u∗ = λ +Λ∆x (2)

where λ = v−1
uu vx and Λ = v−1

uu vux are the open-loop and close-loop gains. From the
optimal change ∆u∗, the quadratic model of v∗ can be computed:

v∗x = vx−Λ
T vuuλ (3)

v∗xx = vxx−Λ
T vuuΛ (4)

The backward pass starts from the quadratic model of lT and then recursively
computes the optimal gains of all the control cycles from T −1 down to 0.
Forward pass: The forward pass then computes the new candidate trajectory and
control schedule. For each control cycle, a new control schedule ũ is established
using (2). For each new ũ, the changes is x are obtained by integrating (1) from x0
and then propagated through the closed-loop gains of the next time:

∆x′ = x′− f (x, ũ), ũ = u+λ +Λ∆x

Performance: The interest of DDP is that its simple formulation can be easily im-
plemented in an efficient way, taking into account the inherent sparsity of a numer-
ical optimal control problem. For example, in [18], a dedicated solver was demon-
strated to animate a humanoid virtual avatar in real-time in interaction with a user
through a haptic device. It was used to control a simulated 25-DOF HRP2 robot in
real-time [19]. In that case, the preview horizon was 0.5s. The preview control was
computed in 50ms and then interpolated using the underlying LQR at 5ms, enabling
effective real-time control (see Fig. 1).

From Inverse Kinematics to Optimal Control 5

3 Square-root Differential Dynamic Programming

In this section we present our proposed modification the the DDP algorithm. The
key idea is to propagate the Value Hessian in square-root form. Reminiscent of the
square-root Kalman Filter, this formulation ensures positive definiteness and confers
numerical stability.

3.1 Algorithm derivation

The Gauss-Newton approximation: Very often in practice, both the running and
terminal costs have sum-of-square form, with the residuals r(x,u) :

l(x,u) = r(x,u)T r(x,u)

This specific shape is interesting in practice as it leads to a cheap approximation of
the second-order derivatives of l in neglecting the second order derivative of r. This
is referred as the Gauss-Newton approximation.

lxx = rT
x rx , lux = rT

u rx , luu = rT
u ru

where rx and ru are respectively the derivatives of r by respect x and u. The approx-
imation converges to the real Hessian when the residuals r converge to 0, which in
general ensures a good convergence. On the other hand, the approximated Hessian
is always positive, which prevents the algorithm from violently diverging, as hap-
pens when the true Hessian is non-positive. Moreover, the particular shape of the
approximated Hessian can be taken into account when inverting it, since we have:

l−1
xx lT

x =
(
rT

x rx
)−1rT

x = r+x

where r+x denotes the Moore-Penrose pseudoinverse of rx and can be efficiently
computed without explicitly computing the matrix product rT

x rx, using for example
the SVD or other orthogonal decompositions [7].

In the literature, the Gauss-Newton approximation of the DDP algorithm is re-
ferred as the iterative LQR (iLQR) algorithm [20]. In this section, we take advantage
of the square shape of the cost and derivatives to propose a more efficient formula-
tion of this algorithm. This shape will also be used to make some correlations with
the classical inverse kinematics.
Square-root shape of v∗: In the DDP backward loop, we have to invert the deriva-
tives of v. Being a sum of squares, the cost-to-go v can be expressed as the square
of some vector v∗ = s∗

T
s∗. However, DDP does not explicitly compute sx but rather

directly propagates the derivatives v∗xx from v′∗xx. In the following, we formulate the
same propagation while keeping the square shape, by searching the vector ŝ∗ and
matrix ŝ∗x such that

6 Perle Geoffroy, Nicolas Mansard et al.

v∗x = ŝ∗
T

x ŝ∗, v∗xx = ŝ∗
T

x ŝ∗x

At the beginning of the backward pass, the square shape is trivially given by s(T) =
r(T) and sx(T) = rx(T). During the backward pass, the previous square-root shapes
are written s′ and s′x. The derivative v∗xx is given by the recurrence (3), (4). The square
shape of (4) is not trivial since it appears as a difference, that we can prove to be
positive. We denote by s, sx and su the square root of v, vxx and vuu:

s =
[

r
s′

]
, sx =

[
sx

s∗
′

x fx

]
, su =

[
ru

s∗
′

x fu

]
It is easy to show that v′xx = s

′T
x s′x, v′xu = s

′T
x s′u and v′uu = s

′T
u s′u. In that case, the gains

are given by the pseudoinverse of su:

λ = s+u s , Λ = s+u sx

Thanks to the Moore-Penrose conditions, we can reduce ŝ∗ and ŝ∗x to:

ŝ∗ = s , ŝ∗x = (I− sus+u)sx

3.2 Advantages and discussion

Keeping the square shape of vxx avoids some numerical trouble. In particular, de-
composing sx instead of vuu offers much better numerical behavior. Moreover, it
avoids the complexity of a big matrix multiplication. This is formalized below.
Comparison of the costs: To evaluate the complexity of this algorithm, sizes of x,
u and r are supposed all equal to n. The cost for one iteration of the loops is 8n3,
against 11n3 for the classical DDP. Moreover, most operations are due to the QR
decompositions and could be performed when computing the derivatives, that leads
to a total cost of roughly 3n3.
Pseudo inverse and projection: The gains and propagation closed forms also pro-
vide a better understanding of the nature of the inversion. As in the derivation, we
consider only the current time of the backward loop. The Jacobian su is the deriva-
tive of the cost-to-go. The open-loop gain s+u s only tries to find the current control
that minimizes the cost-to-go evolution. In most of cases, su has more rows than
columns. The pseudoinverse will only provide the control that has the maximum
efficiency in the least-square sense. What remains is a part of the cost that can be
nullified. This is given by the orthogonal part to the image of su, i.e. the kernel of
sT

u , whose projector can be computed by Pu = I− sus+u .
The backward loop then propagates backward the part of the cost that was not

accomplished, and that is selected using the projector. The trajectory optimization
then corresponds to a sequence of virtual configurations, each of them being moved
to optimize its own cost r and to help the configurations ahead in the trajectory by
optimizing their residual cost s∗

′
.

From Inverse Kinematics to Optimal Control 7

4 Kinematic simulation

Three-rotations planar (3R) Robot: Due to a lack of space, we only present some
analytical results in simulation with a 3R kinematic model. The dynamic evolution
function is reduced to a trivial integration scheme f (x,u) = x+∆ tu, with x = q and
u = q̇. The robot task is to reach a position pre f with the robot end effector p(q)
while minimizing the velocities:

rt =

[
wp(p(q)− pre f)

wuu

]
with wp and wu the weights of the two cost components. In this case, the derivative
rx is the robot Jacobian Jq while ru = wuI is a regularization term. At the first step
T −1 of the backward loop, the pseudoinverse is:

su(T −1)+ =

[
wuI

wp∆ tJq

]+
=

1
wp∆ t

J†η
q

where J† denotes the damped inverse [4] with damping η = wu
wp∆ t . The last term

of the trajectory indeed moves following an inverse-kinematics scheme. The same
interpretation can be done on the other samples, with a similar regularization and a
task that makes a trade-off between going to the target and helping the next sample
in the trajectory to accomplish its residual.
Results: The Square Root algorithm on the simulated 3R Robot was implemented
in C++. The control sampling frequency is 1 kHz and the cycle of the robot lasted
0.1s (100 timesteps). We chose wu = 0.01 and wp = 1. The control reaches easily
the target with a proper smoothing of the control, as expecting with such a simple
system. With this setting, the robot needs 0.1s to reach the target i.e. 100 control
cycles.

We mainly focus the discussion on the comparison with inverse kinematics. As
explained above, inverse kinematics is obtained when the horizon T is reduced to
1. On the opposite extreme, the optimum of the infinite-horizon problem is approx-
imately obtained for a preview horizon of 0.1s (which is the time to the goal). We
consider the performance in both the obtained cost and the computation load for T
varying from 1 to 100. A summary of the results is given by Fig. 2.

On the left figure, we consider the total cost for the overall executed trajectory.
This cost is computed a posteriori, after the execution by the robot. The cost is
minimal when T is maximal and vice-versa. Most of the cost increase when T is
small is due to the increase of the control term (with an artificial apparent minimum
for some T = 10 that is due to the ratio over a changing total quantity). On the
other hand, the computation load (right figure) increases linearly with the horizon
length (as expected). After a certain threshold on the horizon length, the obtained
trajectories are the same, with same costs. As always with MPC, the horizon length
has to be carefully adjusted: not to small, to find the best trajectory and not to big to
limit computation times.

8 Perle Geoffroy, Nicolas Mansard et al.

0 20 40 60 80 100
0

0.5

1

1.5

2

Preview Horizon Length

C
o
s
t
(%

)

Total Cost

Control Cost

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Preview Horizon Length

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

%
)

Computation Time

Fig. 2 Performance and computation ratio with respect to the preview length. (left) Evolution of
the cost when increasing the preview horizon: the total cost is plotted as a ratio with respect to the
infinite-horizon optimum. Indicatively, the percentage of the control term of the cost (integral of
the velocity norm) is also given. (right) Computation load, plotted as a ratio of the load needed
to compute the trajectory with a single-step horizon (i.e. cost of an inverse kinematics). The cost
increases linearly with the size of the horizon.

Inverse kinematics is obtained for T = 1. The cost is the lowest, but a poor re-
sulting cost. For only a small expense, (e.g. T = 4), better trajectories are obtained.

5 Conclusion

In this paper, we described a square-root formulation of the DDP algorithm. The
formulation is numerically more efficient, improving both the computation load and
the numerical conditioning. It also makes apparent the relation between MPC and
other optimization-based robot algorithms. In particular, it makes use of a sequence
of pseudo-inverses of the cost Jacobian along the trajectory. In the particular case
where the time evolution function is reduced to the robot kinematics, this sequence is
equal to the pseudo-inverse of the cost Jacobian, with the first term of the trajectory
following exactly an inverse-kinematics scheme for the final cost.

This study reveals that inverse kinematics is nothing but an MPC scheme with a
singular horizon, and that the robot behavior might be very much improved by sim-
ply considering a few samples ahead of the current robot position when computing
an inverse-kinematics scheme.

The same principle should apply with more complex time-evolution function.
For example, when considering the robot dynamics (the state being the configuration
and velocity, and the control being joint torques), MPC should meet the operational-
space inverse dynamics when the preview horizon collapses.

From Inverse Kinematics to Optimal Control 9

References

1. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes.
Lecture Notes in Control and Information Sciences. Springer (2006)

2. Biegler, L.: Nonlinear programming: concepts, algorithms, and applications to chemical pro-
cesses. SIAM (2010)

3. Das, H., Slotine, J.J., Sheridan, T.: Inverse kinematic algorithms for redundant systems. In:
IEEE Int. Conf. on Robotics and Automation (ICRA’88), pp. 43–48. Philadelphia, USA (1988)

4. Deo, A., Walker, I.: Robot subtask performance with singularity robustness using optimal
damped least squares. In: IEEE ICRA, pp. 434–441. Nice, France (1992)

5. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming. Int. Journal of
Robotics Research (2012). [in press]

6. Goldfarb, D.: A family of variable-metric methods derived by variational means. Mathematics
of computation 24(109), 23–26 (1970)

7. Golub, G., Van Loan, C.: Matrix computations, 3rd edn. John Hopkins University Press (1996)
8. Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. Elsevier (1970)
9. Khatib, O.: A unified approach for motion and force control of robot manipulators: The oper-

ational space formulation. International Journal of Robotics Research 3(1), 43–53 (1987)
10. Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based

reduced sqp strategy for large-scale dynamic process optimization: Part ii: Software aspects
and applications. Computers & chemical engineering 27(2), 167–174 (2003)

11. McCarthy, J.: Introduction to Theoretical Kinematics. MIT Press (1990)
12. Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27(03),

321 (2008). DOI 10.1017/S0263574708004724
13. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-

invariant optimization. In: ACM SIGGRAPH’12. Los Angeles, USA (2012)
14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
15. Pantoja, D.O.: Differential dynamic programming and newton’s method. International

Journal of Control 47(5), 1539–1553 (1988). DOI 10.1080/00207178808906114. URL
http://www.tandfonline.com/doi/abs/10.1080/00207178808906114

16. Schulman, J., Lee, A., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-
free trajectories with sequential convex optimization. Robotics: Science and Systems (2013)

17. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through
online trajectory optimization. In: (IROS’12). Portugal

18. Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through
online trajectory optimization. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’12), pp. 4906–4913 (2012). DOI 10.1109/IROS.2012.6386025

19. Tassa, Y., Mansard, N., Todorov, E.: Control-limited differential dynamic programming. Un-
der Review

20. Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In: Proceedings of the American Control Confer-
ence (ACC’05), pp. 300–306. Portland, OR, USA (2005). DOI 10.1109/ACC.2005.1469949

21. Whitney, D.: Resolved motion rate control of manipulators and human prostheses. IEEE
Transactions on Man-Machine Systems 10(2), 47–53 (1969)

