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Abstract— This paper presents an algorithm for direct tra-
jectory optimization in domains with contact. Since the contact
introduces non-smooth dynamics, many standard algorithms of
optimal control and reinforcement learning cannot be directly
applied to such domains. We use a smooth contact model that
can compute inverse dynamics through the contact, thereby
avoiding hybrid representation of the non-smooth contact state.
This allows us to formulate an unconstrained, continuous trajec-
tory optimization problem, which can be solved using standard
optimization tools. We demonstrate our approach by optimizing
a running gait for a 31-dimensional simulated humanoid.
The resulting gait is demonstrated in a movie attached as
supplementary material. Most notably, the optimization result
exhibits a synchronous motion of the arm and the opposite leg,
eliminating undesired angular momentum; this is a key feature
of bipedal running, and its emergence attests to the power of
the optimization process.

I. INTRODUCTION

Optimal control (or model-based reinforcement learning)
allows us to derive motor behavior from first principles. The
user encodes a high-level task in terms of a cost function, and
provides a model of the dynamics; the optimization algorithm
is responsible for discovering the low-level realization of the
task, finding the control that yields a trajectory of minimal
total cost.

Global methods of optimal control find an optimal policy
over an entire volume of state space. Such methods are
subject to the curse of dimensionality, as the volume of state
space grows exponentially with the number of state dimen-
sions. This motivates the study of trajectory optimization —
by identifying only locally-optimal trajectories, these algo-
rithms achieve polynomial scaling with the dimensionality
of state space.

Trajectory optimization methods fall into two broad
classes: sequential and simultaneous methods. Sequential
methods optimize the control sequence by integrating the
dynamics forward in time. These methods require a for-
ward formulation of the dynamics, where the next state is
computed from the current state and control. In contrast,
simultaneous methods optimize the state trajectory itself,
treating the dynamics as constraints that the trajectory must
satisfy. While the forward dynamics can be used in direct
methods, this formulation can also use inverse dynamics
formulations (Section III-B), where the current control is
computed from the current and next state.
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However, most optimal control methods (either local or
global, forward or inverse, simultaneous or sequential) can
only solve domains with smooth dynamics. The most perti-
nent example of non-smooth dynamics are the collisional
effects of unilateral constraints such as joint limits and
contacts. This is a well-known difficulty for optimal control
applications, especially in the realm of multi-joint robotics,
where the optimal behavior often involves contact interaction
with the environment.

The common approach to optimal control with contacts
involves a hybrid modeling of the domain, introducing addi-
tional variables that explicitly represent the discrete contact
state. However, most hybrid-based optimization methods
require an a-priori specification of the discrete contact states;
this constrains the search space, and requires the user to
engage directly with the low-level realization of the task
(Section II). In contrast, the method presented here allows us
to formulate an unconstrained optimization where all contact
states can be considered equally.

Since forward dynamics rely on numerical integration,
small time-steps are necessary to prevent divergence when
the dynamics are stiff or non-smooth (for example, Wang
et al. [1] simulate walking with a time-step of 1/2400s).
This presents a significant challenge to algorithms of optimal
control, which often scale at least linearly with the number
of time-steps. In contrast, inverse dynamics does not rely on
numerical integration, and is therefore immune to such prob-
lems of numerical instability, allowing for the representation
of the same trajectory using a smaller number of time-steps.
This makes inverse-dynamics an attractive design choice for
optimal control methods.

However, inverse dynamics in domains with contact can
easily become ill-defined. Consider, for example, a trajectory
where a foot reaches a halt at zero height above the ground;
the kinematics of this trajectory can have two rivalling
dynamic interpretations: the agent voluntarily used strong
forces to stop the foot’s motion just above the ground, or
the ground reaction forces caused the foot to stop. When
contact is modeled discontinuously, these two dynamical
interpretations are indistinguishable. However, these two
cases will incur very different costs, since one involved much
more effort than the other.

This can be resolved by using a smooth contact model;
for example, when contact is modeled as a spring-damper
system, the reaction forces are manifested by a compression
of the spring, allowing a distinction between the two dy-
namical interpretations and enabling the computation of the
inverse dynamics. However, in practice such models can pose



Fig. 1.

tremendous numerical difficulties for multi-contact systems,
since the spring-damper parameters can be hard to tune. In
this paper, we compute the reaction forces using a smooth,
invertible contact model which is based on convex optimiza-
tion (Section IV). This model allows us to formulate the
contact-driven optimization problem in general terms, using
only the continuous trajectory representation, and avoiding
hybrid modeling or other contact-specific machinery.

We demonstrate the efficacy of this algorithm by solving
a domain of bipedal running. This is an interesting domain
because it includes a severely-underactuated flight phase,
where the agent has no way to influence the trajectory of
its center of mass. This makes it difficult to apply traditional
gait design approaches (such as ZMP) to bipedal running.
We optimize the motion pattern of a simulated 3D humanoid
with 31 degrees of freedom, which is prohibitively-large for
most standard optimization schemes. Our algorithm finds an
optimal gait in about 10 minutes of computation time running
on a standard desktop computer (Section VII). The resulting
gait is best illustrated by a movie, included as supplementary
material. Most notably, a coordinated movement of arms and
legs emerges, as the upper body motion is used to balance
the angular momentum created by leg swing.

II. RELATED WORK

Dynamics with contacts are a profound challenge to opti-
mal control, and the standard way to overcome this obstacle
is by using a hybrid representation. A discrete set of states
is included in state-space, representing the boolean contact
state of every possible contact pair. Given the discrete contact
state, the continuous dynamics can be computed by treating
the contact as a constraint. Additional computation is used
to ensure that the contact forces remain inside the friction
cone, adjusting the discrete contact state as necessary.

Hybrid modeling requires explicit representation of the
contact state and significantly increases the burden of mod-
eling the dynamics. For example, Bessonnet et al. [2] use
inverse dynamics to optimize a gait pattern of a 3D robotic
model. However, the dynamic model they use is not in gen-
eral form, and their method requires an analytic formulation
of a ZMP condition; therefore, their method cannot be easily
extended to other morphologies, or a richer set of contacts.
In another example, Ren et al. [3] study a planar model

A sequence of frames depicting the optimal running gait; this gait can be seen in a movie attached as supplementary material. Note the extension of
the arm in frame 2, coinciding with the flight phase. This arm motion emerged in the optimal solution as a way to eliminate excessive angular momentum.

of human walking, yet their model cannot compute ground
reaction forces during double support, and these must be
approximated via data-driven heuristics.

In order to overcome the limitation of pre-specifying the
contact state, Kim et al. [4] apply inverse dynamics to a
3D biomechanical hybrid model by explicitly representing
and optimizing the timing of each gait phase (single-support
vs. double-support). Mombaur et al. [5] also present an
optimization method which solves simultaneously for body
poses and contact times.

Others, such as Posa and Tedrake [6], incorporate the
reaction forces themselves into the optimization problem.
This side-steps the need to pre-specify the discrete contact
state, but results in a complex optimization problem. Simi-
larly, the contact smoothing technique used here allows the
various gait phases to be optimized implicitly as part of
the general motion pattern, and requires no special-purpose
representation. However, our contact model allows us to
represent only the trajectory itself, and resolve the contact
forces as part of the inverse dynamics computation.

It is important to note that while we employ inverse
dynamics, our goal is to generate an optimal trajectory
from first principles. This is an orthogonal task to the wide
literature on inverse dynamics control (e.g., [7]), where the
goal is often to track a reference trajectory, using inverse
dynamics to identify the adequate control signals.

III. FORMULATING THE INVERSE DYNAMICS
A. Minimal representation

In order to represent the mechanical state of a multibody
system, we need to specify both the positions and velocities
along some generalized coordinates. However, in simulta-
neous trajectory optimization, the velocities are represented
implicitly, by virtue of representing consecutive positions.
Therefore, it is redundant to represent the trajectory in
all dimensions of state space (including both position and
velocity). This redundancy leads to potential incongruence,
which is manifested as an implicit set of constraints between
the various variables of our search space. This gives rise
to a Hessian which is dominated by those over-specified
directions, which results in a slower optimization procedure
(since self-inconsistency is penalized independently at every
step).



In order to eliminate the mutual dependencies, we wish to
perform the same simultaneous optimization using a minimal
representation. Since every consecutive pair of positions
implicitly defines a velocity, we can rewrite the same op-
timization problem while explicitly representing only the
positions around the limit cycle; this will not only reduce
the number of dimensions, but more importantly — eliminate
mutual dependencies between the dimensions of the search
space.

B. Computing the inverse dynamics

We assume that the state x € R"™ is composed (at least) of
a set of generalized coordinates q € R? and their respective
velocities . In order to keep the syntax simple, we focus
on the case where x = [q" q"]T (so n = 2¢); extending the
optimization to additional state dimensions (such as muscle
activation level or fiber length) can be done by defining the
inverse dynamics of these quantities. The system is driven
by a control signal u € R™; we are interested in the case of
underactuation (m < n), where some state dimensions can
only be affected indirectly.

Given a general-form cost function £(x,u), we seek to
compute the locally-optimal N-step trajectory which mini-
mizes the total cumulative cost >, ¢(x*, u¥). This optimiza-
tion takes place over the minimally-represented search space
Q = stack{q*} € RV

The dynamics express a relation between the current state
(g*,¢*) and the velocity at the next time-step q':

q =q+hM ' (r+10), (1)

where h is the time-step, q is the configuration, M = M(q)
is the mass-matrix, r = r(q, q) is the vector of total Coriolis,
centripetal and other intrinsic forces, and 1 is the full control
(i.e., the control signal in the fully-actuated system). During
forward simulation, 1 = Bu, where B is the n X m matrix
determining which degrees of freedom are actuated.

The use of the full control G is unavoidable during inverse
dynamics — since we explicitly represent the entire trajec-
tory, we must cope with trajectories that are infeasible in the
underactuated system; however, the system controlled by 1 is
fully-actuated, and therefore every trajectory is dynamically-
consistent by definition.

The full state-space trajectory can be easily recovered
from a minimal representation. However, identifying the
corresponding control sequence is not as simple. Forward
dynamics answers the question “given the current position,
velocity, and torque, what is the next position and velocity?”,
mapping from (q,q,u) to ¢'; inverse dynamics asks the
question “given the current position and velocity, as well
as the next velocity, what is the torque that is applied?”,
mapping from (q,q,q’) to Q.

It is convenient to define the expanded representation ¢
as a concatenation of these vectors: ¢ = [q7 ¢" ¢'7]".
Note that the expanded representation ¢ is a linear function
of three consecutive positions along a minimally-represented
trajectory: ¢ = Y[q" q'T q"T]", where prime (') stands

for “next time-step” as in equation 1, and:

I 0 0
Y=| -I/h I/h O )
0 -I/h I/h

C. Helper forces

The inverse dynamics computes the full control G(¢). In
order to identify the control of the original underactuated
system, we decompose U1 into the sum of two terms, one
representing the standard actuation and one representing
the helper forces that apply to the originally-unactuated
dimensions. Given the m-rank control matrix B of the
original underactuated system, we can construct a second
matrix B whose columns span the kernel of B. This allows
us to uniquely decompose 1:

(p) = Bu(p) + Bu(p). 3)

We may now use the original (underactuated) control signal
u in the computation of £(x, u) as before. In order to prevent
reliance on helper forces, we use a penalty method and
compute a cost term on u which constrains it to 0; in the
experiments below we use a quadratic cost 2|/ |?, resulting
in the performance criterion:

Be) = t(x(p).u() + llE@IE @

where x(¢) is shorthand for truncating the next velocity from
. leaving only the current state x = [q" ¢']T (section III-
B).

D. Invariant coordinates

In order to optimize a limit cycle, Q must represent a
closed trajectory. However, the case of locomotion presents
a challenge — when all generalized coordinates are con-
sidered, locomotion is not a limit cycle but rather a coil-
shaped trajectory, because some positional state increases
with every period. This complication can be avoided by
excluding this coordinate from the state space, keeping only
the corresponding velocity. This is allowed because the
dynamics of the system is invariant in that dimension, and
so we may arbitrarily set the value of this coordinate to
0 during dynamics computations. When the velocities are
implicitly represented by the positions q (as is the case
here), we modify Q to explicitly represent the velocity of
this coordinate. The size of Q remains the same, but the
transformation matrix Y is modified to copy the velocity
explicitly from Q to ¢, and insert O at the relevant entry of

©.
E. Symmetry

In some periodic domains (such as legged locomotion)
we expect the optimal limit cycle to be symmetric — for
example, the starting position of the swing leg should match
the ending position of the stance leg, and vice versa. This
constraint allows us to optimize for only one step, instead of
a full stride. We enforce this constraint by applying a linear
transformation (swapping the sides of the body) to the last
state q” whenever it is considered in conjunction with the
first state q'.



IV. INVERSE DYNAMICS WITH CONTACTS

Contact modeling is a complex task, since the reaction
forces must satisfy friction cone constraints. Furthermore,
it is physically-unrealistic to allow reaction forces between
distant objects. One established approach is to model the
contact through a Linear Complementarity Problem (LCP),
where action-at-a-distance is eliminated by making distance
and reaction force mutually-exclusive: if the distance in
contact coordinates is greater than zero (i.e., no contact),
the contact force must be zero.

However, LCP cannot be used to compute inverse dynam-
ics, because the trajectory does not contain enough informa-
tion to recover both the reaction forces and the actuation.
For example, consider two consecutive states where a leg
rests on the ground; any actuation that comes short of lifting
the leg might not have any kinematic effect, and yet the
cost should increase due to the effort exerted. Furthermore,
mutual exclusivity leads to non-smooth dynamics, which
pose a significant difficulty to trajectory optimization. The
theory of Stochastic LCP [8] leads to a relaxation of the
complementarity, as it demonstrates that in the presence
of stochasticity, the expected reaction forces (and hence
the dynamics) are smooth; unfortunately, the SLCP contact
model is also non-invertible.

This paper makes use of a different algorithm for com-
puting smooth reaction forces [9]. This contact model uses a
relaxed form of the complementarity condition (see below),
resulting in smooth dynamics; most importantly, the model
can differentiate between the effects of the agent’s action
and the contact reaction forces, allowing us to compute the
inverse dynamics even in the presence of contacts.

Given the current position q, a geometric computation can
yield J, the Jacobian between state coordinates and contact
coordinates. We use this Jacobian to introduce the reaction
force p (specified in contact coordinates) to equation 1:

d=q+hrM (r+a)+ M Jp.

Note that the last term is impulsive, in that it is not multiplied
by the time step h. Using J again to project this equation to
contact space, we get:

Jq' = c+ Ap,

where ¢ = J(q+hM ! (r+ Bu)) is the velocity in contact
space when p =0, and A = JM~1JT is the inverted mass
matrix in contact coordinates. A forward contact model maps
from (c, A) to p (and therefore ¢'); an inverse contact model
maps from (q’, A) to p (and therefore w).

Our contact model [9] solves for p by seeking the reac-
tion force that minimizes kinetic energy in contact space.
Following the derivation presented there, this condition is
equivalent to minimizing some convex residual (see below).
The friction cone constraints are translated to log-barrier
functions d(p), and the problem is solved with a modified
interior-point method.

The residual has the form 7(p) = ip"(A+ R)p+p'c,
where R = R(Jq) is a regularization matrix which serves

for ensuring (relaxed) complementarity: R is a diagonal
matrix whose elements are a function of the current distance
in contact coordinates. When the distance along a certain
contact dimension is large, the corresponding terms in R
grow rapidly, and the corresponding terms in the minimizing
p reduce to 0; when the contact distance is small (or negative,
indicating penetration), the corresponding terms in R go
to zero, and the contact model is free to choose p that
eliminates all kinetic energy in that dimension.

As our prior work shows [9], this convex optimization
can be inverted: since p minimizes r + d, it must satisfy
rp + dp = 0. Through some further analytic manipulation,
we can construct a residual expression for p that depends
only on A and Jq'. Unsurprisingly, the resulting residual
includes the term $p' Rp, allowing R to manifest a relaxed
complementarity condition as before. The parametric form of
R is not dictated by the theory; in our experiments, we got
the most realistic-looking results with R being exponentially-
dependent on the contact distance.

V. INVERSE DYNAMICS OPTIMIZATION

We seek to minimize the total cost 3 = >, 8*(¢*) by
computing Bq and Bqq. its derivatives WRT our minimal
representation of the trajectory.

Using the expanded representation ¢ (section III-B),
we define the stack of expanded representation vectors
® 2 stack{p’} € R37V, which is a linear function of the
minimal representation Q:

¢ = AQ, ®)

where the matrix A € R%V*34V j5 made of adjacent copies
of T (equation 2).

We can compute the gradient and Hessian of S WRT ¢ by
finite-differencing the inverse-dynamics function u(¢) and
applying the chain rule. This provides a quadratic model for
[ for every time step k along the trajectory:

1
Ble" +d) = B + 00T By, + 500" B0

We stack the gradients By = stack{ff} and ar-
range the quadratic terms in the block-diagonal matrix
Bpe = diag{fk} to obtain a quadratic model for 3 over
the expanded representation:

1
B(® +6®) ~ By + @ Bg + §§<I>Tﬁq,q,6¢»

We can now compress the derivatives of 3 WRT the expanded
representation to their equivalents in the minimal represen-
tation using the matrix A (equation 5):

/BQ = ATﬁ(p
Baq = AT'@<P<PA'

(6a)
(6b)



VI. COMPRESSED REPRESENTATION

Equations 6 use the sparse matrix A to linearly transform
a quadratic model in the expanded representation ® to the
corresponding quadratic model in the minimal representa-
tion Q. This reduction in dimensionality is information-
preserving, because the expanded representation is only a
notational convenience. However, this manipulation suggests
that a similar manipulation can be used to allow optimization
with compressed representation that is smaller than Q, as
long as it is linearly-expandable to Q. This criterion is
met by many low-dimensional representations of closed
trajectories, such as Fourier transform and splines, and this
type of dimensionality reduction is common in simultaneous
optimization [2], [10].

In the experiments described below we use a Fourier
series representation for compression. In one dimension,
we can linearly expand a vector t € R?® (representing
the first s coefficients in a Fourier series) to the /NV-vector
F't representing the full periodic trajectory (the Fourier-
transform matrix F' € RN*5 can be obtained, for example,
by taking the first s rows of an FFT of the identity matrix).
Given S € R%Y, the Fourier series of all state dimensions,
we write: Q = FS, where F € R*7*N4 is the full-trajectory
Fourier-transform matrix, built from stacked copies of the
matrix F'. This martix allows us to write the derivatives of
3 WRT the Fourier representation:

Bs = fTﬁQ
5ss = ]:T/BQQ]:-

Although this is a lower-dimensional representation, the
computational cost of every iteration remains almost the
same, because the derivatives of the inverse dynamics still
require finite-differencing of the expanded representation ®.
Note that this method can only find the locally-optimal
trajectory within the limited subspace of all trajectories; the
optimal unconstrained trajectory Q* still has a lower cost
than S*.

(7a)
(7b)

VII. RESULTS

We demonstrate the power of inverse optimization by
optimizing a walking gait for a simulated 3D bipedal robot,
illustrated in Figure 1. The model has 31 degrees of freedom:
the ball joint between the torso and the pelvis has 3 DOF (the
head is welded to the torso), each leg has 3 DOF at the hip,
1 at the knee and 3 at the ankle, and each arm has 3 DOF
at the shoulder and 1 at the elbow. The physical properties
of the body parts are specified in table 1.

Every foot has three potential contact points with the
ground: one at the back, and two at the front. In this
experiment we use N = 21 timesteps of 15msec, which
correspond to ~ 190 steps per minute, in accordance with
standard human running pace. The Fourier representation
uses s = 11, in accordance with Ren et al.[3].

The cost function of the running task compares the
horizontal velocity of the runner’s center of mass q, to
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Fig. 2. Distance in contact space between feet and ground. Time-step is

15msec, resulting in a period of 0.315s, or about 3 steps per second.

some desired velocity, while maintaining all body parts at
a forward orientation:

0(x,u) = 100(dy — va)® + [|au|| + 0.01][u]|?

where q,, is a vector of all joint angles in the x— and
z—axes, and the last term is a quadratic cost on applied
joint torques. The penalty term on q,. is required because
we are using direct torque control, and in the absence of
such penalty the runner tries to distribute the actuation across
all spatial angles equally, resulting in a hideously-unrealistic
gait (for example, the controller attempts to balance the hip
rotation in the lateral and forward directions, creating great
lateral excursions of the thigh). In our simulation we use a
desired velocity v4 = 6m/s, and the resulting optimal running
gait reaches an average velocity of 5.1m/s.

The optimization process converges after about 2500
Newton-step iterations, which take about 10 minutes on a
desktop computer with two 6-core processors. The most
computationally-intensive step is finite-differencing the in-
verse dynamics. However, this computation can be executed
in parallel, allowing us to harness parallel architectures and
cluster processing.

The resulting gait can be seen in a movie which is included
as supporting material. Figure 2 shows the distances, in
contact space, of the feet’s contact points during one step.
The heel strikes at time-step 6, and the toes soon follow at
step 8, which makes this a heel-first running gait. With the
heel leaving the ground at step 12, and toe-off at time 21,
the flight phase extends between time-steps 1 and 5, making
it a veritable running gait.

The most striking feature of the resulting running gait is
the emergent coordination between the legs and the opposite
arms. The left arm thrusts forward in synchrony with the
right leg during the flight phase (best seen in frame 2 of
Figure 1), eliminating the angular momentum of the pelvis
and torso that would otherwise result in an increased cost.
This feature came about without any form of explicit mod-



body length (cm)  radius (cm)  mass (kg)
trunk 10 18 28.5
head 10 8.5 4.2
pelvis 13 n/a 9.2
thigh 35 7.4 7.3
shin 31 5 2.8
foot 274 3 2.3
upper arm 30 5 2.7
lower arm 26 4 1.5
TABLE I

MORPHOLOGICAL SPECIFICATION OF THE 3D RUNNER. ALL BODIES
BUT PELVIS ARE CAPSULES. TOTAL HEIGHT: 1.9M (~6°3”); TOTAL
WEIGHT: 75.25KG (~166 LBS.).

eling, and attests to the power of the optimization process.
The arm also jerks in the anti-phase of the forward thrust;
we are not sure what causes that motion.

VIII. DISCUSSION

This paper uses an invertible smooth contact model to
find an optimal trajectory in a high-dimensional domain. The
formulation we use is completely general, and requires no
hybrid representation. While we demonstrate this algorithm
in a domain of humanoid bipedal running, the algorithm
we present has general applicability, and the very same
optimization can be applied to a diverse set of tasks, from
multi-legged locomotion to dexterous hand manipulation.
In particular, while domains of legged locomotion design
often rely on some simplified model such as SLIP [11], our
optimization made no use of domain-specific heuristics.

The resulting optimal motion shares some features of
human bipedal running. However, biomechanical realism
is not the primary goal of this project. We are certain
that further tweaking of the cost function and the body
anthropometry can lead to running gaits that more faithfully
imitate human running. Yet, such biomimicry is contingent
on the development of algorithms capable of optimizing
behavior in biomechanically-realistic domains (which are
often high-dimensional) in the presence of contacts. The
algorithm presented in this paper meets these requirements.

We are not explicitly representing the stochasticity of the
domain. However, following the theory of Stochastic LCP
(section IV), the smooth contact dynamics can be construed
as an approximation for the expected reaction forces under
stochastic dynamics. In order to control a real-world system
(or a stochastic simulation), the Hessian around the optimal
trajectory can be used to derive a locally-linear feedback
controller [12]. By invoking the separation principle [13], the
feedback controller optimized for the deterministic domain
can serve to control its stochastic counterpart, as long as the
noise profile is not dependent on the state.

We take a model-based approach to optimizing behavior,
which allows for efficient optimization. In contrast, model-
free methods construct an approximation of the dynamics (ei-
ther in forward or inverse formulation) from interaction with
the environment. This approach cannot be directly applied to

tasks which require powerful articulated motion, and result
in inherently unstable behavior. However, it is impossible
to build a perfectly accurate model of a multi-joint robot.
Therefore, in order to apply such model-based methods to
control real robots, some mechanism for model adaptation
and learning must be incorporated. One example for such
a method was presented by Abbeel et al. [14]. In addition,
some tolerance for modeling errors must be incorporated into
the feedback controller; this can be achieved, for example,
using model-predictive control [15].

REFERENCES

[1] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking con-
trollers,” in ACM Transactions on Graphics (TOG), ser. SIGGRAPH
Asia ’09. New York, NY, USA: ACM, 2009.

[2] G. Bessonnet, J. Marot, P. Seguin, and P. Sardain, ‘“Parametric-Based
dynamic synthesis of 3D-Gait,” Robotica, vol. 28, no. 04, pp. 563-581,
2010.

[3] L. Ren, R. K. Jones, and D. Howard, “Predictive modelling of human
walking over a complete gait cycle,” Journal of Biomechanics, vol. 40,
no. 7, pp. 1567-1574, 2007.

[4] H. J. Kim, Q. Wang, S. Rahmatalla, C. C. Swan, J. S. Arora,
K. Abdel-Malek, and J. G. Assouline, “Dynamic motion planning of
3D human locomotion using gradient-based optimization,” Journal of
Biomechanical Engineering, vol. 130, no. 3, June 2008.

[5] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to hu-
manoid locomotionan inverse optimal control approach,” Autonomous
Robots, vol. 28, pp. 369-383, 2010.

[6] M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” 2012 (Under review).

[71 L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in /IEEE International
Conference on Robotics and Automation (ICRA), 2006, pp. 2641—
2648.

[8] Y. Tassa and E. Todorov, “Stochastic complementarity for local control
of discontinuous dynamics,” in Proceedings of Robotics: Science and
Systems (RSS), 2010.

[9] Emanuel Todorov, “A convex, smooth and invertible contact model for
trajectory optimization,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011.

[10] F. C. Anderson and M. G. Pandy, “Dynamic optimization of human
walking,” Journal of Biomechanical Engineering, vol. 123, no. 5, pp.
381-390, Oct. 2001.

[11] M. H. Raibert, Legged Robots that Balance. MIT Press, 1986.

[12] Y. Tassa, T. Erez, and E. Todorov, “Optimal limit-cycle control recast
as bayesian inference,” in Proceedings of thh IFAC world congress,
2011.

[13] R. F. Stengel, Optimal Control and Estimation.
Sept. 1994.

[14] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems 19: Proceedings of the 2006
Conference, 2007, p. 1.

[15] T. Erez, Y. Tassa, and E. Todorov, “Infinite-horizon model predictive
control for periodic tasks with contacts,” in Proceedings of Robotics:
Science and Systems (RSS), 2011.

Dover Publications,



