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Stochastic Optimal Control is an elegant and general framework for specifying and solving

control problems. However, a number of issues have impeded its adoption in practical

situations. In this thesis, we describe algorithmic and theoretical developments that address

some of these issues. In the first part of the thesis, we address the problem of designing cost

functions for control tasks. For many tasks, the appropriate cost functions are difficult to

specify and high-level cost functions may not be amenable to numerical optimization. We

adopt a data-driven approach to solving this problem and develop a convex optimization

based algorithm for learning costs given demonstrations of desirable behavior. The next

problem we tackle is modelling risk-aversion. We develop a general theory of linearly solvable

optimal control capable of modelling all these preferences in a computationally tractable

manner. We then study the problem of optimizing parameterized control policies. The

study presents the first convex formulation of control policy optimization for arbitrary

dynamical systems. Using algorithms for stochastic convex optimization, this approach

leads to algorithms that are guaranteed to find the optimal policy efficiently. We discuss

particular applications including decentralized control and training neural networks. Finally,

We outline some future possibilities for combining policy optimization and cost-learning

into an integrated data-driven cost shaping framework. In the last chapter, we describe

applications of these ideas to multiple problems arising in energy systems.
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GLOSSARY

MDP: Markov Decision Process: A model for sequential decision making problems.

LMDP: Linearly Solvable MDP: A Markov Deceision Process with special structure for

which the Bellman equation can be made linear.

IRL: Inverse Reinforcement Learning: A branch of reinforcement learning that tries to

recover a near-optimal policy given demonstrations from an expert for a particular

control or reinforcement learning task.

IOC: Inverse Optimal Control: A branch of optimal control theory and machine learning

that studies the problem of recover cost functions for optimal control given demon-

strations of optimal or near-optimal behavior.

FH: Finite Horizon: Refers to MDPs for which the objective is stagewise costs summed

over a finite horizon.

IH: Infinite Horizon Average Costs: Refers to MDPs for which the objective is the

limiting average value of stagewise costs over an infinite horizon.

BE: Bellman Equation: This refers to the equation describing the optimal solution to

an MDP.

PIC: Path Integral Control: This refers to an approach to stochastic control that ex-

ploits the linearity of the HJB PDE to develop sampling approximations based on the

Feynman-Kac lemma.
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Chapter 1

INTRODUCTION

From single-cell organisms to the largest mammals, from nanotechnology to the power

grid, there are systems, both natural and man-made, all around us that respond dynamically

to changes in their environment. The best responses are often not myopic. In order to

achieve a certain goal, a system needs to respond well in advance in a careful manner. Most

systems involve repeated interactions and require a constant cycle of gathering information

(sensing) and making decisions (controls). Control theory studies repeated interactions in

dynamical environments. It aims to provide tools and techniques to analyze the performance

of an interaction scheme (a “control policy”) and further, to automatically synthesize an

interaction scheme to achieve a given objective. This can be abstracted into the well known

sense-actuate-control loop, as shown in figure 1.1.

Real-world environments often involve uncertainty, due to modeling imperfections and

external disturbances. Stochastic optimal control deals with control in uncertain environ-

ments. It is a conceptually elegant framework for specifying control problems. One simply

specifies an abstract cost function encoding the control task, and leaves the details of syn-

thesizing control to an optimization algorithm. At a conceptual level, stochastic optimal

control can in general be formulated as:

Minimize
Controls

E
noise

[Cost(Trajectory)]

Subject to Trajectory = Dynamics (Controls,Noise)

We give a brief explanation of the terms appearing in the above optimization problem:

1 Trajectory: Most dynamical systems are modeled as having a state, which is a math-

ematical representation of the variables in the dynamical system sufficient to predict

the future evolution of the system in the absence of noise. For example, for a point
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Dynamics

x′ = f(x,u, ω, t)

Control

u = Π(y)

Disturbances ω

Observations y = h(x′)

Figure 1.1: General Stochastic Control Problem

mass acting under Newton’s laws, the state is given by its (3-dimensional) position

and velocity. A trajectory is the sequence of states that a dynamical system visits

over a fixed period of interest (the horizon).

2 Cost: This refers to a real valued function of the trajectory that encodes the control

task. For example, if we want to control a point mass to remain at the origin, an

appropriate cost is a quadratic penalty applied to the position and velocity of the

point mass.

3 Controls: This refers to the tunable parameters of the dynamical system that we can

modify in order achieve the control objective (minimize the cost function).

4 Noise: This refers to external disturbances, either from un-modeled dynamics, random

perturbations or sensor noise.

Because of its elegance and generality, stochastic optimal control has been used in sev-

eral domains including finance Steele [2001], motor control Todorov [2004b] and robotics

Morimoto et al. [2003]. However, a number of issues have impeded the widespread adoption

of stochastic optimal control as a practical control design methodology. These include:
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1 Computational Complexity : This refers to the complexity of solving the optimization

problems arising in stochastic optimal control. The only generally applicable technique

is dynamic programming, which scales exponentially with the dimensionality of the

state space. Tractable special cases are known (Linear-Quadratic-Gaussian (LQG)

control) but even small changes to these problems (enforcing decentralization, for

example) makes them intractable.

2 Modeling Dynamical Systems: Real-systems often have complicated and hard-to-

model dynamics. The level of modeling detail required depends on the particular

control task and dynamical system: Some control problems may be very sensitive to

modeling details while others may not. However, even systematically exploring this

trade-off is difficult since solving control problems, even with a fixed model, is difficult.

3 Designing Costs: Appropriate cost for control problems is difficult to specify in a

mathematically precise manner. Further, simple-to-specify abstract costs (for exam-

ple, incur a cost unless you reach the goal) are often not amenable to numerical op-

timization. Further, in an uncertain environment, a trade-off must be made between

performance (accomplishing the control task efficiently) and robustness (dealing with

perturbations etc.). Achieving the right trade-off again relies on specifying appropriate

objective functions, and this can be difficult to get right in many situations.

In this thesis, we describe theoretical and algorithmic advances that go alleviate some

of these problems using techniques and tools from recent developments in optimization and

stochastic control. The two major tools we will draw upon are:

a The theory of Linearly Solvable Markov Decision Processes (LMDPs) Todorov [2007]

and the related framework of Path Integral Control Kappen [2005]. We describe

this framework in detail in chapter 2. The essential idea in this framework is the

interchangeability of control and noise in a dynamical system. By injecting noise into

the control input, one can regard controls as distributions rather than single input.

This idea plays a key role in most of this thesis.
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b The other set of tools comes from convex optimization. Several applications of convex

optimization have sprung up over the years, including control problems Boyd [1994],

Dullerud and Paganini [2000]. Further advances have shown that even problems that

are not convex can be solved through convex optimization techniques Chandrasekaran

et al. [2010]. An overarching theme in this thesis is to adapt techniques from convex

optimization to push the boundary on control problems that can be solved efficiently

and with provable performance guarantees. This is important because of the degree

of automation it brings to the control design process. Alternate heuristic approaches

often require careful manual tuning, relying heavily on experience and insight into

the control problem being solved. However, once a problem has been convexified (i.e,

formulated as a convex optimization problem), tuning is not a major issue and there

standard algorithms that are guaranteed to converge to the optimal solution quickly,

both in theory and in practice. This makes the adoption of advanced control design

methodologies simpler, since the end-user need can simply use them as a black box

without worrying about the internal details.

In chapter 3, we study the problem of inverse optimal control, that is, the problem

of recovering cost functions for optimal control given demonstrations of optimal or near-

optimal behavior. There are several control problems for which the appropriate cost function

is difficult to specify. In computer graphics for example, one often desires the motion of

animated characters to be human-like. However, simple objective functions generally fail

to capture the nuances of human motion. Further, physics laws are not typically enforced

explicitly so one needs to indirectly capture “realness” of the motion using an appropriate

objective function. Demonstrations of appropriate behavior on the other hand, are generally

available more easily (using motion capture data for example). One problem with most

prior works on inverse optimal control is that they require repeated solution of the forward

problem as a subroutine. This makes them computationally intractable for most continuous-

state control problems, since solving optimal control problems in general is hard. This

has limited applications of inverse optimal control to discrete domains or required drastic

approximations. By exploiting the properties of LMDPs, we develop the first algorithm
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that can uniquely recover the objective function from demonstrated behaviors, without

having to solve the forward problem as a subroutine. Effectively, the data collected provides

information about what the optimal control policy should be which allows us to avoid solving

the forward problem as a subroutine. This requires parameterizing the value function (or

the cost-to-go function) rather than the value function, but in LMDPs, we show that the

cost function can be uniquely recovered from the value function (and vice-versa).

Stochastic control problems naturally have a trade-off between risk and return. In the

face of uncertainty, aggressive control strategies may work well under normal conditions,

but can fail catastrophically under certain kinds of disturbances. On the other hand, safer

strategies have less catastrophic failure but can be painstakingly slow at accomplishing the

control task or even fail. Consider the problem of getting a robot lying on the floor to get up

and walk to a certain spot. One could consider a very careful motion where the robot drags

itself to the destination by passing itself. This strategy would require considerably larger

effort than simply getting up and walking to the spot. However, the second strategy carries

the risk of tripping and falling, causing catastrophic damage to the robot. This simple

example shows that the trade-off between risk and return is critical to achieving desired

behavior out of a stochastic control problem. In chapter 4, we extend the framework of

linearly solvable MDPs Todorov [2007] to the risk-sensitive setting. This enables us to

model risk-sensitivity in a computationally tractable manner while retaining all the elegant

properties of the LMDP setting.

In chapter 5, we discuss the problem of tractable control policy synthesis. There are

several approaches to dealing with the curse of dimensionality that is the root of the compu-

tational intractability of dynamic programming approaches. There is been a lot of research

in trying to find approximate solutions to the Bellman equations. LMDPs make this prob-

lem easier since the Bellman equation one tries to approximate becomes linear and amenable

to classical methods from function approximation. A recent thesis that explored this ap-

proach in great detail is Zhong [2013]. While some encouraging results were obtained, in

general, approaches that directly try to approximate the solution to the Bellman equation

suffer from the fact that a reduction in error in the solution to the Bellman equation (mea-

sured by some metric) is not monotonically related to the performance of the control policy
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derived from that approximation. In this thesis, we study an alternate approach of directly

parameterizing the control policy and searching for the best solution within this parameter-

ized class of controllers using gradient-descent like techniques. This has been studied under

the name of “policy gradient” methods Sutton et al. [2000], Baxter and Bartlett [2001],

Todorov [2010a] in the context of model-free reinforcement learning. However, in general,

the resulting optimization problems are nonconvex and computationally difficult to solve.

In this thesis, we propose the first formulation of control policy optimization that leads to

convex optimization problems. Combining this with stochastic gradient methods for con-

vex optimization gives us the first known polytime algorithms for synthesizing near-optimal

policies for arbitrary continuous-state dynamical systems with differentiable dynamics and

cost functions.

In chapter 6, we discuss applications of some of these ideas to control of electric power

systems. Both of the problems considered are closely related to the framework described

in chapter 5, and they formed the inspiration for the problems studied in chapters 5 and 7.

Although the algorithms developed in chapters 5 and 7 are not used in the work presented

here, the heuristic algorithms developed there work well for the applications: Decentralized

Frequency Control in Power Systems and Placement of Energy Storage.

In chapter 7, we outline some ideas for combining the works from chapters 3 and 5

into an integrated cost-shaping and policy synthesis framework. This brings us pretty close

to the aim of automating stochastic control: Given a family of relevant costs, data and a

parameterized family of control policies, this integrated framework provides algorithms to

design a cost function and a control policy using stochastic convex optimization algorithms

with guaranteed polytime convergence to a near-optimal solution. Although these ideas are

preliminary at the time of writing this thesis and haven’t been tested extensively, we believe

that they are an important step towards realising the vision of this thesis: Automating

Control Design via the framework of stochastic optimal control.
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Chapter 2

BACKGROUND & FUNDAMENTALS

This chapter introduces basic concepts from stochastic optimal control. After going

over the general theory, we describe the framework of linearly solvable optimal control,

which forms the basis of chapters 3 and 4. We end with a description of some ideas from

reinforcement learning, which are relevant to the rest of this thesis as well.

2.0.1 Markov Decision Processes ( MDPs)

Markov Decision Processes ( MDPs) are a widely used framework for specifying and solving

optimal control problems. MDPs are formally defined by specifying:

• A state space X . We use x to denote states, x ∈ X . This could be continuous (subset

of <n), discrete (set of nodes in a graph) or a mixture of both.

• A control space U(x) for each state. Controls are denoted by u. Policies are mappings

from states to controls and denoted by Π(x) ∈ U(x). Note that in the reinforcement

learning Sutton and Barto [1998b] literature, controls are often called actions.

• A stochastic dynamics P (x,u), which is the probability distribution over the next

state given the current state x and action u ∈ U(x).

• An immediate cost function `t(x,u).

At any time t, an action u is chosen depending on the current state and the system transi-

tions into a new state sampled from the stochastic dynamics. The objective of the control is

to minimize the expected cost accumulated over time. The precise notion of accumulation

can vary, giving rise to different problem formulations as follows:
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• Finite Horizon (FH): These problems are specified by a horizon N , a running cost

`t(x,u) and a terminal cost `f(x,u). The overall optimization problem can be written

as:

min
{Πt(x)}

E
xt+1∼P(xt,Πt(x))

[(
N−1∑
t=0

`t (xt,Πt (xt))

)
+ `f (xN)

]
. (2.1)

Note that here policies are indexed by time, since the optimal policy for a finite horizon

problem is always time-varying. For all other problems listed below, it suffices to

consider time-invariant policies (these can be shown to be optimal).

• First exit (FE) problems are specified by a set of terminal states T ⊂ X , a running

cost `(x,u) and a terminal cost `f : T → R. The objective is given by:

E
x′∼P(x,Π(x)),Ne=min{t:xt∈T }

[(
Ne∑
t=0

` (xt,Π (xt))

)
+ `f (xNe)

]

Here the end-time Ne is also a random variable - it refers to the first time step at

which the state xt is a terminal state. Thus, the expectation is with respect to the

stochastic dynamics and the end-time.

• Infinite Horizon Average Cost (IH) problems are specified just by a running cost `(x,u)

and the objective is the limiting average cost:

E
x′∼P(x,Π(x))

[
lim

N→∞

(∑N
t=0 ` (xt,Π (xt))

N

)]

• Infinite Horizon Discounted Cost problems are specified by a running cost `(x,u) and

a discount factor γ. The objective is:

E
x′∼P(x,Π(x))

[
lim

N→∞

(
N∑
t=0

γt ` (xt,Π (xt))

)]

We do not go into the details of the Bellman equations for the different formulations here.

Instead, we focus on the simplest case of finite horizon (FH) problems. The optimal cost-to-

go function (or optimal value function) vt (x) is defined as the expected cumulative cost for
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starting at state x at time t and acting optimally thereafter. This function is characterized

by the Bellman equation ( BE) Bellman [1957]:

vt (x) = min
u
`t(x,u) + E

P(x,u)
[vt+1] , (2.2)

Π∗t (x) = argmin
u

`t(x,u) + E
P(x,u)

[vt+1]

where EP(x,u) [vt+1] = Ex′∼P(x,u) [vt+1 (x′)]. Π∗t (·) is called the optimal policy and is the so-

lution to the optimization problem (2.1). The Bellman equation has an intuitive meaning.

vt+1 (x) represents the minimum accumulated cost starting at state x at time t+ 1. Thus,

vt (x) must be the minimum over immediate actions u of the sum of the immediate cost

`t (x,u) and the minimum accumulated cost starting at the next state x′ ∼ P (x,u), which

is precisely vt+1 (x′). Since transitions are probabilistic and objectives are measured in ex-

pectation, we take the expected value Ex′∼P(x,u) [vt+1 (x′)]. The Bellman equation approach

to solving optimal control is also called Dynamic Programming, since its an optimization

method that recursively constructs a solution backward in time.

Although the dynamic programming approach is an elegant and general solution to

stochastic optimal control problems, for most problems of practical interest, solving the

Bellman equation is computationally intractable. This is because one needs to store the

value function at each state x and the number of states could be very large (infinite if X is a

continuous domain). This has led to a variety of approximation schemes. Many of these rely

on solving the BE approximately. However, getting such schemes to work often requires

a lot of problem-specific tuning, and even then may not scale to genuinely hard problems.

Part of the difficulty is the highly nonlinear nature of the BE which is a result of the minu

term. A key advantage of linearly-solvable MDPs (see below) is that the minimization over

actions can be done analytically given the value function. The minimized Bellman equation

can then be made linear by exponentiating the value function.
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2.1 Linearly Solvable Optimal Control Problems

2.1.1 Probability shift: A an alternative view of control

Conventionally, we think of control signals as quantities that modify the system behavior

in some pre-specified manner. In our framework it is more convenient to work with a some-

what different notion of control, which is nevertheless largely equivalent to the conventional

notion, allowing us to model problems of practical interest. To motivate this alternative

view, consider a control-affine diffusion:

dx = (a(x) + B(x)u) dt+ C(x)dω

This is a stochastic differential equation specifying the infinitesimal change in the state x,

caused by a passive/uncontrolled drift term a(x), a control input u scaled by a control gain

B(x), and Brownian motion noise with amplitude C(x). Subject to this system dynamics,

the controller seeks to minimize a cost function of the form

`(x) +
1

2
uTu

In terms of MDPs, the transition probability may be written as

P (x,u) = N (x + δ(a(x) + B(x)u),Σ)

where we have discretized time using a time step δ. Thus, one way of thinking of the effect

of control is that it changes the distribution of the next state from N (x + δa(x),Σ) to

N (x + δ(a(x) + B(x)u),Σ). In other words, the controller shifts probability mass from one

region of the state space to another. More generally, we can think of the system as having

an uncontrolled dynamics which gives a distribution p over future states. The controller acts

by modifying this distribution by probability shift to get a new distribution: u⊗ p = pu
Ep[u] .

This causes the probability mass in p to shift towards areas where u is large (figure 2.1). The

controllers in our framework will act on the system dynamics by performing such probability

shifts. The control signals will be positive scalar functions over the state space, rather than

vectors or discrete symbols.
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Figure 2.1: Probability Shift

2.1.2 Linearly-solvable Markov Decision Processes ( LMDPs)

Here we introduce the framework of linearly-solvable optimal control in discrete time. Such

problems, called LMDPs, can be viewed in two mathematically equivalent ways. We shall

describe both, since they both offer useful perspectives and illustrate the relationship to

traditional MDPs in complementary ways.

In traditional MDPs the controller chooses a control signal or action u which determines

the distribution of the next state x′ ∼ P (x,u). In LMDPs, we assume that there is an

uncontrolled or passive dynamics Π0(x) for each state x that gives the distribution of the

next state. The controller can change this distribution by picking a probability shift u ∈

XR+
. This causes the distribution of the next state to change: x′ ∼ u ⊗Π0(x). However, the

controller must pay a price for doing so, given by the KL divergence between the controlled

distribution u ⊗Π0(x) and the uncontrolled distribution Π0(x), which is a measure of the

amount of change in the dynamics due to the controller. The Bellman equation for LMDPs

is nonlinear in terms of the value function, but using an exponential transformation z t =

exp (−vt) yields a linear equation in z . We call this the desirability function, since it is

inversely related to the cost-to-go. The desirability function also gives the optimal shift
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policy Π∗t (x) = z t+1, so the optimal controller is always trying to shift the uncontrolled

dynamics towards more desirable states. The key results and their analogs for traditional

MDPs are summarized in the following table:

MDPs LMDPs

Policy Π : X → U Π : X → XR+

Dynamics x
Π−→ x′ ∼ P (x,Π(x)) x

Π−→ x′ ∼ Π(x)⊗Π0(x)

Cost `t(x,Π(x)) `t(x)+

KL
(
Π(x)⊗Π0(x) ‖ Π0(x)

)

Bellman Equation
vt (x) = min

u
`t(x,u) + E

P(x,Π(x))
[vt+1] z t (x) = exp (− `t(x)) E

Π0(x)
[z t+1]

Optimal Policy
Π∗t (x) = Π∗t (x) = z t+1

argmin
u

`t(x,u) + E
P(x,Π(x))

[vt+1]

2.1.3 An alternate view of LMDPs

In the alternate view, LMDPs are almost the same as traditional MDPs with deterministic

dynamics and stochastic policies, except for two differences: we impose an additional cost

that encourages policies with high entropy, and we compute the cost based not on the action

that happened to be sampled from the stochastic policy, but by taking an expectation over

all actions that could have been sampled. In this view, the relation between traditional

deterministic MDPs and LMDPs is summarized as:
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Deterministic MDPs LMDPs

with Stochastic Policies

Policy Π : X → P [U ] Π : X → P [U ]

Dynamics u ∼ Π(x) u ∼ Π(x)

x′ = f(x,u) x′ = f(x,u)

Cost `t(x,u) E
u∼Π(x)

[`t(x,u)]−H(Π(x))

Bellman Equation

vt (x) = z t (x) =

min
u∼Π(x)

E [`t(x,u) + vt+1 (f(x,u))]
∑
u

exp (− `t(x,u)) z t+1 (f(x,u))

Optimal Policy
Π∗t (x) = δ(u∗) Π∗t (x) = z t+1

u∗ =

argmin
u

`t(x,u) + vt+1 (f(x,u))

We can rewrite the BE for LMDPs in this interpretation as:

vt (x) = − log

(∑
u

exp (− `t(x,u)− vt+1 (f(x,u)))

)

The relationships between MDPs and LMDPs is now clear: the hard minimum in the

Bellman equation for MDPs is replaced by a soft minimum for LMDPs, namely− log(
∑

(exp(− . . .))).

If we replace the cost `t(x,u) by a scaled version γ `t(x,u), as γ increases we move closer

and closer to the hard minimum, and in the limit γ →∞ we recover the Bellman equation

for MDPs. Thus any deterministic MDP can be obtained as a limit of LMDPs.

The relationship between the two interpretations can be understood as follows. Define

a passive dynamics with support only on the states immediately reachable from x under

some action u:

Π0(f(x,u)|x) ∝ exp (− `t(x,u))
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For states not immediately reachable from x, the probability under the passive dynamics is

0. Given any control (probability shift) Π ∈ XR+
, we have:

KL
(
Π⊗Π0(x) ‖ Π0(x)

)
= −H

[
Π⊗Π0(x)

]
+ E

Π⊗Π0(x)

[
− log

(
Π0(x)

)]
= −H

[
Π⊗Π0(x)

]
+ E

Π⊗Π0(x)
[`t(x,u)]− `t(x)

where `t(x) = − log (
∑

u exp (− `t(x,u))). Thus, the alternate interpretation is equivalent

to the original interpretation with passive dynamics proportional to exp (− `t(x,u)) and

cost function − log (
∑

u exp (− `t(x,u))).

2.1.4 Other Problem Formulations

Thus far we focused on the FH problem formulation. We can obtain linearly-solvable

problems with other problem formulations as well. The corresponding BEs are

FEz (x) = exp (− `(x)) E
Π0(x)

[z ] if x 6∈ T

z (x) = exp (− `f(x)) if x ∈ T (2.3)

IHz (x) = exp (c− `(x)) E
Π0(x)

[z ] (2.4)

c is the Optimal Average Cost

In the IH case the linear BE becomes an eigenvalue problem, with eigenvalue exp(−c)

where c is the average cost. It can be shown that the solution to the optimal control

problem corresponds to the principal eigenpair. The optimal policy in both cases is given

by

Π∗ (x) = z (2.5)

2.1.5 Applications

We now give some examples of how commonly occurring control problems can be modeled

as LMDPs.
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Shortest paths: Consider the shortest path problem defined on a graph. We can view

this as an MDP with nodes corresponding to states and edges corresponding to actions. A

stochastic version of this problem is one where the action does not take you directly where

you intend, but possibly to the end of one of the other outgoing edges from that node. We

can define an LMDP with passive dynamics at a node to be the uniform distribution over all

nodes reachable in one step. The cost is a constant cost per unit time and the problem is a

FE problem with the goal state as the state to which the shortest path is being computed.

By scaling up the constant cost by ρ, in the limit as ρ → ∞ we recover the traditional

deterministic shortest paths problem. This yields an efficient approximation algorithm for

the shortest paths problem, by solving an LMDPs with sufficiently large ρ, see Todorov

[2009b].

Discretizing continuous problems: We can construct efficient solutions to problems

with continuous state spaces and continuous time, provided the state space can be discretized

to a reasonable size (LMDPs can easily handle problems with millions of discrete states).

We consider a simple problem that has been a standard benchmark in the Reinforcement

Learning literature, the mountain-car problem. In this problem, the task is to get a car to

drive down from a hill into a valley and park on another hill on the other side of the valley.

The control variable is the acceleration of the car, and the state consists of the position and

velocity of the car. We impose limits on all these quantities and discretize the state space

to within those limits. The dynamics is completely determined by gravity and the shape of

the hill. We plot results in figure 2.2 comparing the LMDP discretization and a iterative

solution of the LMDP to a standard MDP discretization and using policy/value iteration to

solve that. It can be seen that the LMDP solution converges faster to the optimal policy.

See Todorov [2009b].

2.1.6 Linearly-solvable controlled diffusions ( LDs)

Although the focus of this chapter is on discrete-time problems (i.e. LMDPs), here we sum-

marize related results in continuous time. The linearly-solvable optimal control problems



16

in continuous time are control-affine diffusions with dynamics

d x = a(x) d t+ B(x)u d t+ σB(x) dω

and cost rate

`t(x) +
1

2σ2
‖u‖2

The unusual aspects of this problem are that: (i) the noise and the control act in the

same subspace spanned by the columns of B(x); (ii) the control cost is scaled by σ−2, thus

increasing the noise in the dynamics makes the controls cheaper.

For problems in this class one can show that the optimal control law is

Π∗t (x) =
σ2

z t (x)
B(x)T

∂z t (x)

∂x

and the Hamilton-Jacobi-Bellman (HJB) equation expressed in terms of z becomes linear

and is given by

∂z t (x)

∂t
= `t(x) z t (x)− L [z t] (x) (2.6)

Here L is a 2nd-order linear differential operator known as the generator of the passive

dynamics:

L [f ] (x) = a(x)T
∂f(x)

∂x
+
σ2

2
tr

(
∂2f(x)

∂x∂xT
B(x)B(x)T

)
(2.7)

This operator computes expected directional derivatives of functions along trajectories of

the passive dynamics. We call problems of this kind linearly solvable controlled diffusions (

LDs).

2.1.7 Relationship between discrete and continuous-time problems

If we take the first view of LMDPs that uses the notion of a stochastic passive dynamics,

we can interpret the above linearly solvable diffusion as a continuous-time limit of LMDPs.

This can be done by discretizing the time axis of the diffusion process with time step h

using the Euler approximation:

x(t+ h) = x(t) + h a(x) + hB(x)u + ε
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Figure 2.2: Continuous problems. Comparison of our MDP approximation and a traditional

MDP approximation on a continuous car-on-a-hill problem. (A) Terrain, (B) Z iteration

(ZI) (blue), policy iteration (PI) (red), and value iteration (VI) (black) converge to control

laws with identical performance; ZI is 10 times faster than PI and 100 times faster than

VI. Horizontal axis is on log-scale. (C) Optimal cost-to-go for our approximation. Blue

is small, red is large. The two black curves are stochastic trajectories resulting from the

optimal control law. The thick magenta curve is the most likely trajectory of the optimally

controlled stochastic system. (D) The optimal cost-to-go is inferred from observed state

transitions by using our algorithm for inverse optimal control. Figure taken from Todorov

[2009b].
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where ε ∼ N
(

0, hσ2 B(x)B(x)T
)

. The covariance is scaled by h since for Brownian noise

the standard deviation grows as the square root of time. The discrete-time cost becomes

h `t(x) + h 1
2σ2 uTu. We will now construct an LMDP that resembles this time-discretized

LD. To do this, we define the passive dynamics at state x to be the Euler approximation of

the distribution of x(t+ h) given x(t) = x:

Π0(x) = N
(
x + h a(x), hσ2 B(x)B(x)T

)
.

This converges to the continuous time LD dynamics with u = 0 as h→ 0. Now, consider

a family of probability shifts uu parameterized by u such that

uu⊗Π0(x) = N
(
x + h a(x) + hB(x)u, hσ2 B(x)B(x)T

)
.

This distribution is the Euler discretization of the LD dynamics under control u. It can be

shown that KL
(
uu⊗Π0(x) ‖ Π0(x)

)
= h 1

2σ2 uTu. Thus, for every u, there is a probability

shift uu that matches the Euler approximation of the LD dynamics under control u

and also matches the time-discretized control cost. We define the state cost to be h `t(x).

This LMDP is very close to the MDP corresponding to the time discretized LD, the

only difference being that we allow probability shifts that are not equal to uu for any u.

However, it turns out that this extra freedom does not change the optimal control law, at

least in the limit h→ 0. The BE corresponding to this LMDP is:

z t (x) = exp (−h `t(x)) E
N(x+h a(x),hσ2 B(x)B(x)T )

[z t+h]

It can be shown that after some algebra and taking the limit h → 0, we recover the linear

HJB equation (2.6).

2.2 Properties and algorithms

2.2.1 Sampling approximations and path-integral control

For LMDPs , it can be shown that the FH desirability function equals the expectation

z 0 (x0) = E
xt+1∼Π0(xt)

[
exp

(
− `f (xT )−

∑T−1

t=1
`t (xt)

)]
(2.8)
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over trajectories x1 · · ·xT sampled from the passive dynamics starting at x0. This is also

known as a path-integral. It was first used in the context of linearly-solvable controlled

diffusions Kappen [2005] to motivate sampling approximations. This is a model-free method

for Reinforcement Learning Sutton and Barto [1998a], however unlike Q-learning (the classic

model-free method) which learns a Q-function over the state-action space, here we only learn

a function over the state space. This makes model-free learning in the LMDP setting much

more efficient Todorov [2009b].

One could sample directly from the passive dynamics, however the passive dynamics are

very different from the optimally-controlled dynamics that we are trying to learn. Faster

convergence can be obtained using importance sampling:

z 0 (x0) = E
xt+1∼Π1(·|x)

[
exp

(
− `f (xT )−

∑T−1

t=1
`t (xt)

)
Π0 (X|x0)

Π1 (X|x0)

]
Here Π1 (xt+1|xt) is a proposal distribution and Π0 (X|x0) ,Π1 (X|x0) denote the trajectory

probabilities under Π0,Π1. The proposal distribution would ideally be Π∗, the optimally

controlled distribution, but since we do not have access to it, we use the approximation

based on our latest estimate of the function z . We have observed that importance sampling

speeds up convergence substantially Todorov [2009b]. Note however that in order to eval-

uate the importance weights Π1 (·) /Π0 (·), one needs a model of the passive dynamics. In

Theodorou et al. [2010a], the authors develop an iterative version of this algorithm called

policy improvement with path integrals (PI2).

2.2.2 Natural policy gradient

The residual in the Bellman equation is not monotonically related to the performance of the

corresponding control law. Thus many researchers have focused on policy gradient methods

that optimize control performance directly Williams [1992], Sutton et al. [2000], J. and

S. [2008]. The remarkable finding in this literature is that, if the policy is parameterized

linearly and the Q-function for the current policy can be approximated, then the gradient

of the average cost is easy to compute.

Within the LMDP framework, we have shown Todorov [2010a] that the same gradient

can be computed by estimating only the value function. This yields a significant improve-
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ment in terms of computational efficiency. The result can be summarized as follows. Let

g (x) denote a vector of bases, and define the control law

Π(s)(x) = exp
(
−sTg(x)

)
This coincides with the optimal control law when sTg (x) equals the optimal value function

v (x). Now let v (s) (x) denote the value function corresponding to control law Π(s), and

let v (x) = rTg (x) be an approximation to v (x), obtained by sampling from the optimally

controlled dynamics u(s)⊗Π0 and following a procedure described in Todorov [2010a]. Then

it can be shown that the natural gradient Amari [1998] of the average cost with respect to

the Fisher information metric is simply s− r. Note that these results do not extend to the

LMG case since the policy-specific Bellman equation is nonlinear in this case.

2.2.3 Compositionality of optimal control laws

One way to solve hard control problems is to use suitable primitives Precup et al. [1998],

Mahadevan and Maggioni [2007]. The only previously known primitives that preserve op-

timality were Options Precup et al. [1998], which provide temporal abstraction. However

what makes optimal control hard is space rather than time, i.e. the curse of dimensionality.

The LMDP framework for the first time provided a way to construct spatial primitives, and

combine them into provably-optimal control laws Todorov [2009a], Da Silva et al. [2009].

This result is specific to FE and FH formulations. Consider a set of LMDPs (indexed by k)

which have the same dynamics and running cost, and differ only by their final costs `f
(k) (x).

Let the corresponding desirability functions be z (k) (x). These will serve as our primitives.

Now define a new (composite) problem whose final cost can be represented as

`f (x) = − log

(∑
k

wk exp
(
− `f (k) (x)

))
for some constants wk. Then the composite desirability function is

z (x) =
∑

k
wk z (k) (x)

and composite optimal control law is

Π∗ (x) =
∑

k
wk Π∗(k) (x)
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One application of these results is to use LQG primitives – which can be constructed

very efficiently by solving Riccati equations. The composite problem has linear dynamics,

Gaussian noise and quadratic cost rate, however the final cost no longer has to be quadratic.

Instead it can be the log of any Gaussian mixture. This represents a substantial extension

to the LQG framework. These results can also be applied in infinite-horizon problems where

they are no longer guaranteed to yield optimal solutions, but nevertheless may yield good

approximations in challenging tasks such as those studied in Computer Graphics Da Silva

et al. [2009].
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Chapter 3

DESIGNING COSTS: INVERSE OPTIMAL CONTROL

Inverse optimality has attracted considerable attention in both control engineering and

machine learning. Unlike the forward problem of optimal control which is well-defined, the

inverse problem can be posed in multiple ways serving different purposes.

Inverse optimality was first studied for control-theoretic purposes in relation to stability

Kalman [1964]. This idea later inspired a constructive approach (e.g. Deng and Krstic

[1997]) where one designs a control-Lyapunov function, treats it as an optimal value function

(and derives the corresponding control law) and finds the cost for which this value function

is optimal. Apart from the guesswork involved in designing control-Lyapunov functions, this

is easier than solving the forward problem because for many nonlinear systems (see Section

3) the Hamilton-Jacobi-Bellman (HJB) equation gives an explicit formula for the cost once

the value function is known. Linearly Solvable MDPs (LMDPs) we will be working with

Todorov [2007, 2009b] also have this property, and it will play a key role here.

It is notable that the above control-theoretic approach does not actually use data. In

contrast, Inverse Reinforcement Learning (IRL) methods in machine learning rely on data

in the form of state transitions (and possibly actions) obtained from an expert performing

some task. In general there are two things that one could do with such data: infer the

costs/values of the expert, or build a controller which mimics the expert. The former is

relevant to cognitive and neural science, where researchers are interested in ”theories of

mind” Baker et al. [2007] as well as in identifying the cost functions being optimized by the

sensorimotor system Todorov [2004a], Kording and Wolpert [2004]. While many existing

IRL algorithms Ng and Russell [2000], Abbeel and Ng [2004], Syed et al. [2008] use cost

features and infer weights for those features, they do not actually aim to recover the cost

or value function but only the control law. Indeed in generic MDPs there is a continuum

of cost and value functions for which a given control law is optimal Ng and Russell [2000].
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This ill-posedness is removed in the LMDP framework, making our algorithms much more

applicable to cognitive and neural science.

Now consider the task of building a control law from data – which is what the above

IRL methods do. One reason to use data (instead of solving the forward problem directly)

is that an appropriate cost function which captures the control objectives may be hard to

design. But we believe this difficulty is negligible compared to the second reason – which

is that we lack algorithms capable of solving forward optimal control problems for complex

systems. Take for example the control domain where data has been used most extensively,

namely locomotion and other full-body movements seen in movies and games. A sensible

cost function for locomotion is not hard to design: it should require the center of mass

to remain a certain distance above ground (to prevent falling), move at a certain speed

towards the goal, and at the same time conserve energy. Indeed open-loop optimization of

similar costs for simplified models can predict various features of human walking and running

Srinivasan and Ruina [2006]. If we could find feedback control laws which optimize such

costs for realistic systems, this would constitute a major breakthrough both in animation

and in robotics. Unfortunately this is not yet possible, and thus many researchers are

exploring ways to build controllers using motion capture data (e.g. Treuille et al. [2007]).

We emphasize this point here because all prior IRL methods we are aware of, including

the MaxEntIRL method discussed later Ziebart et al. [2008a], end up solving the forward

problem repeatedly in an inner loop. While one can construct problems with moderate

numbers of discrete states where such an approach is feasible, scaling it to control problems

that involve interesting physical systems is unlikely. A case in point is the elegant work of

Abbeel and colleagues on aerobatic helicopter flight Abbeel et al. [2007]. After trying to

apply their apprenticeship learning framework Abbeel and Ng [2004] to this problem, they

eventually gave up and simply recorded reference trajectories from human radio-pilots. If

future IRL algorithms are to avoid this fate, they should avoid solving the forward problem.

Here we develop the first inverse method which avoids solving the forward problem. This is

done by parameterizing and inferring the value function rather than the cost function, and

then computing the cost function using an explicit formula.

Finally, all IRL methods including ours use linear combinations of features to represent
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the costs (or values in our case). However, previous work has left the choice of features to

manual design. This is arguably one of the biggest unsolved problems not only in IRL but

in AI and machine learning in general. Here we consider automatic methods for initializing

the parameterized features and methods for adapting their parameters. When the number

of features is small relative to the size of the state space (which is always the case in high

dimensional problems), feature adaptation turns out to be essential. While the problem of

feature adaptation in IRL is far from being solved in its generality, the present work is an

important first step in this direction.

3.1 Discrete problems

We consider problems with discrete state space in this section, and problems with continuous

state space in the next section. In both cases we derive IRL algorithms from the recently-

developed framework of linearly-solvable stochastic optimal control Todorov [2007, 2009b],

Kappen [2005].

3.1.1 Parameterizing the value function (OptV)

Unlike prior IRL algorithms which require trajectory data, our algorithms work with any

dataset of transitions {xn,x′n}n=1···N sampled from the optimal control law:

x′n ∼ Π∗ (xn)⊗Π0(xn) (3.1)

We are also given the passive dynamics Π0. Our objective is to estimate the cost `, the

desirability function z , the optimal value function v and the optimal control law Π∗. Con-

veniently we have explicit formulas relating these quantities, thus it is sufficient to infer

one of them. For reasons explained below it is most efficient to infer v . Once we have an

estimate v̂ , we can obtain ẑ = exp (−v̂) , Π̂∗ from (2.5), and ̂̀ from (2.3).

The inference method is maximum likelihood. Think of the optimal control law Π∗t (·) as

being parameterized by the desirability function z (·) as given by (2.5). Then the negative

log-likelihood is

L [z () ] = − log (z (x)) + log

(
E

x′∼Π0(x)

[
z
(
x′
)])

(3.2)
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We have omitted the term
∑

n log
(
Π0(x′n|xn)

)
because it does not depend on z, although

this term could be used in future work attempting to learn p under some regularizing

assumptions. Now L could be minimized w.r.t. z, however it is not a convex function of z.

We have experimented with such minimization and found it to be slower as well as prone

to local minima.

If however we write L in terms of v it becomes convex – because it is a positive sum of

log-sum-exp functions plus a linear function. One additional improvement, which enables

us to compute L faster when the number of data points exceeds the number of states, is

to write L in terms of the visitation counts a (x′) and b (x) defined as the number of times

x′n = x′ and xn = x respectively. It is interesting that the likelihood depends only on these

counts and not on the specific pairings of states in the dataset. We now have

L [v ·] =
∑
x′∈X

a(x′)v
(
x′
)

+
∑
x∈X

b(x) log

(
E

x′∼Π0(x)

[
exp

(
−v
(
x′
))])

(3.3)

Thus inverse optimal control in the linearly-solvable MDP framework reduces to un-

constrained convex optimization of an easily-computed function. We will call the resulting

algorithm OptV. In our current implementation we compute the gradient and Hessian of

(3.3) analytically and apply Newton’s method with backtracking linesearch.

We did not distinguish between first-exit and average-cost problems because the algo-

rithm is the same in all three cases; the only differences are in how the data are sampled

and how ̂̀ is subsequently computed from v̂. This is an advantage over other IRL methods

which are usually derived for a single problem formulation.

Finally, the above discussion implied lookup-table representations, however it is easy to

use features as well. Consider a linear function approximator in v-space:

v (x) =
∑

iwiφi (x) (3.4)

where φi (x) are given features and wi are unknown weights. Then L (w) is again convex

and can be optimized efficiently. In section 3.2, we consider methods for initializing and

adapting the features automatically when the state space is continuous.
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3.1.2 Learning the cost directly (OptQ)

We can also express L as a function of ` and infer ` directly (algorithm OptQ). When using

lookup-table representations the two algorithms yield identical results, however the results

are generally different when using features. This is because the transformation between

v and ` given by (2.3) is nonlinear, thus a linear function approximator in v-space does

not correspond to a linear function approximator in `-space. A second reason to explore

direct inference of ` is because this turns out to reveal an interesting relationship to the

MaxEntIRL algorithm Ziebart et al. [2008a].

For simplicity we focus on first-exit problems where we have the explicit formula (2.8)

relating z and `. This formula enables us to express L as a function of ` and compute

the gradient analytically – which is cumbersome due to the matrix inverse, but doable.

Computing the Hessian however is too cumbersome, so we use a BFGS method which

approximates the Hessian. L turns out to be convex in ` (see Appendix). Nevertheless

the OptQ algorithm is much slower than the OptV algorithm. This is because computing

L [` (·)] requires solving the forward problem at every step of the minimization. Therefore

learning ` directly is not a good idea. If one wants to use features in `-space, it may be

better to do the learning in v-space (perhaps with a different set of features) and then fit

the function approximator for ` using linear regression.

The function L [` (·)] can be written in an alternative form using the trajectory proba-

bilities (??). Suppose the transitions are sampled along trajectories ς(k) with lengths T (k),

and let x
(k)
t denote the state at time t along trajectory k. Using (??) and omitting the

p-dependent term which does not involve `, we have

L [` (·)] =
∑

k

(
log z

(
x

(k)
0

)
+
∑T (k)

t=0 `
(
x

(k)
t

))
(3.5)

Again we see that computing L [` (·)] requires z (·).

3.1.3 Relationship with MaxEntIRL

The MaxEntIRL algorithm Ziebart et al. [2008a] is derived using features (which can also

be done in OptV and OptQ) but for simplicity we discuss the lookup-table case with one



27

delta function ”feature” per state. MaxEntIRL is a density estimation algorithm: it looks

for the maximum-entropy distribution consistent with the observed state visitation counts

(or feature counts more generally). It is known that the maximum-entropy distribution

under moment-matching constraints is in the exponential family. Thus MaxEntIRL comes

down to finding ` (·) which maximizes the probability of the observed trajectories within

the family

pMaxEnt (X|x0) ∝ exp
(
−
∑T

t=0 ` (xt)
)

(3.6)

The bottleneck is in computing the partition function at each step of the optimization,

which is done using a recursive procedure.

Intuitively MaxEntIRL resembles an IRL method. However until now it was unclear

what forward optimal control problem is being inverted by MaxEntIRL, and whether such

a problem exists in the first place. We can now answer these questions. Comparing (3.6)

to (??), we see that the trajectory probabilities are identical when the passive dynamics

are uniform. Therefore MaxEntIRL is an inverse method for LMDPs with uniform passive

dynamics. Indeed the recursion used in Ziebart et al. [2008a] to compute the partition

function is very similar to the iterative method for computing the desirability function

in Todorov [2007, 2009b]. Both recursions are computationally equivalent to solving the

forward problem. As a result both MaxEntIRL and OptQ are slower than OptV, and

furthermore MaxEntIRL is a special case of OptQ. MaxEntIRL’s restriction to uniform

passive dynamics is particularly problematic in modeling physical systems, which often

have interesting passive dynamics that can be exploited for control purposes Collins et al.

[2005].

3.1.4 Embedding Arbitrary IRL Problems

In this section we show how an IRL problem for a traditional MDP can be embedded in the

LMDP framework. This is almost the same as the embedding described in Todorov [2009b],

except that here we do not know the cost function during the embedding, thus we need some

additional assumptions. We assume that the MDP cost is in the form l(x) + r(u) where

r(u) is a known control cost while l(x) is an unknown state cost. Let x′ ∼ P (x,u) be the
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(known) transition probabilities in the MDP, and assume that the number of actions per

state equals the number of possible next states. Let `(x) and Π0(x′|x) be the unknown state

cost and passive dynamics in the corresponding LMDP. The embedding Todorov [2009b]

comes down to matching the costs for all x,u:

l(x) + r(u) = `(x) +
∑
x′

P
(
x′|x,u

)
log

(
P (x′|x,u)

Π0(x′|x)

)
(3.7)

These equations are linear in log(Π0 (x′|x)). Let us fix x and suppose k states are reachable

from x in one step. Then Π0 (x′|x) has at most k non-zeros (to ensure finite KL divergence).

Let the non-zeros be stacked into the vector px. Thus we have k linear equations in k + 1

variables log(px), l(x)− `(x). The additional degree of freedom is removed using 1T px = 1.

We can then solve the LMDP IRL problem, and use the solution as an approximation to

the MDP IRL problem. There are no guarantees on the quality of the recovered solution,

but we observe that it gives good results experimentally in section 3.1.5.

3.1.5 Numerical results

We compared OptV to three prior IRL algorithms labeled in Figure 3.1 according to the

name of their first author: Syed Syed et al. [2008], Abbeel Abbeel and Ng [2004], and Ng Ng

and Russell [2000]. The forward problem is a traditional MDP: a grid world with obstacles

(black rectangles), a state-action cost which only depends on the state, and discrete actions

causing transitions to the immediate neighbors (including diagonals). There is one action

per neighbor and it causes a transition to that neighbor with probability 0.9. The rest of

the probability mass is divided equally among the remaining neighbors. The problem is in

a discounted-cost setting with discount factor 0.5.

All four IRL methods were implemented in Matlab in the most efficient way we could

think of. Rather than sampling data from the optimal control policy, we gave them access to

the true visitation frequencies under the optimal policy of the traditional MDP (equivalent

to infinite sample size). Using the embedding from section 3.1.4, we get an embedded LMDP

IRL problem with passive dynamics that is uniform over possible next states and run OptV

on this.
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Figure 3.1: Comparison of OptV and prior IRL algorithms on a grid-world problem. Black

rectangles are obstacles.
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As expected, OptV was substantially faster than all other algorithms for all grid sizes we

tested. Even though the forward problem which generated the data is a traditional MDP

while OptV is trying to invert an LMDP, it infers a value function very similar to the solution

to the forward problem. Since the passive dynamics here are uniform, MaxEntIRL/OptQ

produce the same result but about 20 times slower. Although such close similarity is not

guaranteed, it is common in our experience. Ng and Russell [2000] proposes a heuristic

to select a cost function – which we then translated into a value function by solving the

forward problem, while the other algorithms only recover a policy, not a cost function. As

shown in the figure, the result is quite different from the correct value function.

Two of the prior IRL algorithms (Syed and Abbeel) are guaranteed to recover the control

policy given the true visitation counts, and indeed they do. Since OptV is solving a different

problem it does not recover the control policy exactly (which it would if the forward problem

was an LMDP). Nevertheless the result is very close, and actually improves when the grid

size increases. The expected cost achieved by the inferred policy was 6% above optimal

for the 9-size grid, and only 0.3% above optimal for the 40-size grid. Thus we pay a small

penalty in terms of performance of the inferred policy, but we recover costs/values and do

so faster than any other algorithm.

3.2 Continuous problems

We now focus on optimal control problems in continuous space and time. Such problems

lead to PDEs which in our experience are difficult to handle numerically. Therefore the

new IRL method we derive below (OptVA) uses time-discretization, along with adaptive

bases to handle the continuous state space. We also consider state discretization as a way

of obtaining large MDPs on which we can further test the algorithms from the previous

section (see Figure 3.2A below).

3.2.1 Linearly-solvable controlled diffusions

Consider the control-affine Ito diffusion

dx = a (x) dt+B (x) (udt+ σdω) (3.8)
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where a (x) is the drift in the passive dynamics (including gravity, Coriolis and centripetal

forces, springs and dampers etc), B (x) u is the effect of the control signal (which is now

a more traditional vector instead of a probability distribution), and ω (t) is a Brownian

motion process. The cost function is in the form

` (x,u) = ` (x) +
1

2σ2
‖u‖2 (3.9)

The relationship between the noise magnitude and the control cost is unusual but can be

absorbed by scaling `. The only restriction compared to the usual control-affine diffusions

studied in the literature is that the noise and controls must act in the same space.

It can be shown Kappen [2005], Todorov [2009b] that the HJB equation for such problems

reduces to a 2nd-order linear PDE when expressed in terms of the desirability z , just like the

Bellman equation (2.3) is linear in z . This similarity suggests that the above problem and

the linearly-solvable MDPs are somehow related. Indeed it was shown in Todorov [2009b]

that problem (3.8, 3.9) can be obtained from a discrete-time continuous-state LMDP by

taking a certain limit. The passive dynamics for this MDP are constructed using explicit

Euler discretization of the time axis: Π0 (x′|x) is Gaussian with mean x+h a (x)+hB (x) u

and covariance hσ2 B (x) B (x)T, where h is the time step. The state cost in the MDP is

h ` (x). It can be shown that the quadratic control cost in (3.9) is the limit of the KL

divergence control cost in (3.7) when h→ 0.

Thus the continuous optimal control problem (3.8, 3.9) is approximated by the LMDP

described above, and IRL methods for this LMDP approximate the continuous inverse

problem. The approximation error vanishes when h → 0. However, time-discretization

allows us to use larger h, which usually leads to better performance for a given number of

samples and bases.

3.2.2 Inverse optimal control with adaptive bases (OptVA)

The inverse method developed here is similar to OptV, however it uses a function approxi-

mator with adaptive bases. We represent the value function as

v (x; w, θ) =
∑

iwiφi (x; θ) = wTφ (x; θ) (3.10)
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where w is a vector of linear weights while θ is a vector of parameters that affect the shape

and location of the bases φi. The bases are normalized Gaussian RBFs:

φi (x; θ) =
exp

(
θTi s (x)

)∑
j exp

(
θTj s (x)

) (3.11)

Here θi denotes the part of θ specific to φi, and s (x) = [1; xk; xkxl] for all k ≤ l. Thus

exp
(
θTi s (x)

)
is Gaussian. In the language of exponential families, θi are the natural pa-

rameters and s (x) the sufficient statistics. We chose normalized RBFs because they often

produce better results than unnormalized RBFs – which we also found to be the case here.

Similar to the discrete case, the negative log-likelihood of a dataset {xn,x′n} is

L (w, θ) =
∑
n

wTφ
(
x′n; θ

)
+ log

(
E

x′∼Π0(x)

[
exp

(
−wTφ (x; θ)

)])
. (3.12)

Thus L is convex in w and can be minimized efficiently for fixed θ. The optimization

of θ, or in other words the basis function adaptation, relies on gradient descent – LBFGS

or Conjugate Gradients as implemented in the off-the-shelf optimizer Schmidt. We take

advantage of the convexity in w by optimizing L̃ (θ) = minw L (w, θ). Each evaluation of

L̃ (θ) involves computing the optimal w∗ (θ) by Conjugate Gradients (which converges very

quickly). Then we compute the gradient of L̃ using

∂L̃ (θ)

∂θ
=
∂L (w∗ (θ) , θ)

∂w

∂w∗ (θ)

∂θ
+
∂L (w∗ (θ) , θ)

∂θ

The first term on the right vanishes because L has been optimized w.r.t. w. The only

complication here is the computation of Ex′∼Π0(x)

[
exp

(
−wTφ (x; θ)

)]
. In our current im-

plementation we do this by discretizing the state space around Ex′∼Π0(x)⊗ exp(−wTφ(·;θ)) [x′]

and replacing the integral with a sum. In high-dimensional problems such discretization

will not be feasible. However the passive dynamics Π0 (x′|x) are Gaussian, and numerical

approximation methods for Gaussian integrals have been studied extensively, resulting in

so-called cubature formulas which can be applied here.

The optimization problem is convex in w but non-convex in the basis parameters θ, thus

we need good initialization for θ. We developed an automated procedure for this. The

intuition is that the optimal controller frequently visits “good” parts of the state space
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where the function approximator should have the highest resolution. Thus the centers of

the Gaussians are initialized using K-means on the data. The function approximator can

also benefit from initializing the covariances properly. We do this by finding the nearest

Gaussians, computing the covariance of their means, and scaling it by a constant.

We argued earlier that data makes the inverse problem generally easier than the forward

problem. Is this still true in the LMDP case given that the forward problem is linear?

For fixed features/bases the two computations are comparable, however basis adaptation is

much easier in the inverse problem. This is because the data provides good initialization,

and good initialization is key when optimizing a non-convex function.

3.2.3 Numerical results

Here we study inverted pendulum dynamics in the form (3.8, 3.9), with σ = 1. The

state space is 2D: x = [xp; xv]. We consider a first-exit formulation where the goal is to

reach a small region around the vertical position with small velocity. We also consider an

infinite-horizon average-cost formulation corresponding to a metronome. The cost ` (x) only

depends on xv. It is small when xv = ±2.5 and increases sigmoidally away from these values.

Thus the pendulum is required to move in either direction at constant speed. The system

has positional limits; when these limits are hit the velocity drops to zero. The discretization

time step is h = 0.1. In the first-exit problem the state space is also discretized, on a

70-by-70 grid.

Figure 3.2A shows further comparison to prior IRL algorithms in a discretized state

space using lookup table representaiton (pendulum first exit problem). OptV is faster by

orders of magnitude, and recovers the optimal policy almost exactly (relative error < 10−9),

while prior ILR algorithms recover different policies with significantly worse performance.

We used the LP solver Gurobi [Gurobi Optimization, 2014] to implement the Syed-Schapire

algorithm. We discretized the actions space with a grid of 70 points for Syed-Schapire and

10 points for Abbeel-Ng (discretization was coarse to limit running time). Figure 3.2B illus-

trates the performance of the OptVA algorithm on the infinite horizon metronome problem

with finite data. A small number of bases (10) is sufficient to recover the optimal value
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Figure 3.2: (A) Control policies in the first-exit (inverted pendulum) problem. Each subplot shows

the CPU time and the policy found given the optimal transition probabilities. The policy found by

OptV was indistinguishable from the optimal policy and achieved average cost of 13.06, as compared

to 57.21 for Syed and 41.15 for Abbeel.

(B) Value functions in the infinite-horizon (metronome) problem. Here the algorithms have ac-

cess to finite data (12,000 transitions) thus the optimal value function can no longer be recovered

exactly. OptV with a lookup table representation does quite poorly, indicating the need for smooth-

ing/generalization. The result of OptVA with the initial bases vaguely resembles the correct solution,

and is substantially improved after basis adaptation. The ellipses show the location and shape of

the Gaussian bases before normalization.

(C) Performance of OptVA over iterations of basis adaptation for 12,000 samples (left), and as a

function of the sample size at the last iteration of basis adaptation (right). We plot the difference

between the optimal and inferred z functions (expressed as KL divergence), and the log average cost

of the resulting control policy. The curves are scaled and shifted to fit on the same plot.
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function quite accurately after basis adaptation. The effects of sample size and iterations

of the basis adaptation algorithm are illustrated in Figure 3.2C.

3.3 Summary

Here we presented new algorithms for inverse optimal control applicable to LMDPs with

discrete and continuous state. They outperform prior IRL algorithms. The new algorithms

are solving a restricted class of problems, but this class is broad enough to include or

approximate many control problems of interest. It is particularly well suited for modeling

the physical systems commonly studied in nonlinear control.

Apart from the benefits arising from the LMDP framework, key to the efficiency of our

algorithms is the insight that recovering values is easier than recovering costs because solving

the forward problem is avoided. This of course means that we need features over values

rather than costs. Cost features are generally easier to design, which may seem like an

advantage of prior IRL algorithms. However prior IRL algorithms need to solve the forward

problem – therefore they need features over values (or policies, or state-values, depending on

what approximation method is used for solving the forward problem) in addition to features

over costs. Thus the feature selection problem in prior IRL work is actually harder.

3.4 Appendix : Convexity of OptQ

The convexity of L[`] follows from the following Lemma: Let x ∈ Rm and M(x) ∈ Rn×n

be such that M(x)ij = exp(aTijx + bij). Suppose that
∑

j exp(bij) < 1 ∀i. Then for any

c, d ∈ Rn
+, the function φ(x) = cT log((I −M(x))−1d) is convex on the domain X = {x :

aTijx ≤ 0 ∀i, j}.

Proof: M(x) is a matrix with positive entries and row sums smaller than 1. Thus,

the spectral radius of M(x) is smaller than 1. Hence, we use a series expansion of (I −

M(x))−1 to get φ(x) = cT log
(∑∞

k=0M(x)kd
)
. For k ≥ 1, letting l0 = i, lk+1 = j, we

have [M(x)k]ij =
∑

l1,l2,...,lk−1

∏k
p=0[M(x)]lplp+1 Since each entry of M(x)k is a positive

linear combination of terms of the kind exp(aTx + b), so is
∑

kM(x)kd (since d > 0).

Thus, log(
∑

kM(x)kd) is a log-sum-exp function of x and is hence convex. Since c > 0,

cT log(
∑

kM(x)kd) is a positive linear combination of convex functions and is hence convex.
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Chapter 4

MODELING RISK: A UNIFIED THEORY OF LINEARLY SOLVABLE
OPTIMAL CONTROL

Traditional MDPs are formulated as minimizing expected accumulated costs (over a

finite or infinite time horizon). However, in many applications, one cares about higher order

moments of the accumulated cost (like its variance) that depend on the amount of noise

in the system. This is particularly relevant for noisy underactuated systems near unstable

equilibria, since it can be hard to recover from even small amounts of perturbations. In this

chapter, we develop a class of linearly solvable risk-sensitive optimal control problems. The

risk-sensitivity can also be interpreted in a game-theoretic fashion, which is the view we

present in this chapter and hence we call these problems Linearly Solvable Markov Games

( LMGs).

The results in this chapter can be seen as a generalization of two lines of work: one on

Linearly Solvable MDPs( LMDPs) Todorov [2009b] and the other on risk-sensitive path-

integral control Broek et al. [2010]. We obtain the LMDP results in the risk-neutral limit

α → 0 and the results from Broek et al. [2010] by taking a continuous-time limit. To the

best of our knowledge, LMGs are the broadest class of linearly solvable control problems

known and include all previous work as a special case.

4.1 Game Theoretic Control : Competitive Games

Here we briefly introduce the notion of game theoretic control or robust control Başar and

Bernhard [1995]. In this setting, the system can be influenced by another agent (adversary)

in addition to the controller. The controller needs to design a strategy that achieves the

control objective in spite of the adversarial disturbances. We shall focus on the simplest

case of two-player zero-sum dynamic games, where the adversary is trying to maximize

the same cost that the controller is trying to minimize. The game proceeds as follows:

1) The adversary and controller pick actions ua,uc respectively. 2) The controller pays
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cost `t(x,uc,ua) and adversary pays − `t(x,uc,ua). 3) The system transitions to state

x′ ∼ P (x′|x,uc,ua). The solution to such a game can be formulated using the Shapley

equations Shapley [1953]:

vt (x) = max
ua∈Ua(x,uc)

min
uc∈U(x)

`t(x,uc,ua) + E
P(x,uc,ua)

[vt+1]

We call such problems Markov Games or MGs. If the min,max can be interchanged without

changing the optimal policies for either the controller or the adversary, we say that the game

has a saddle-point equilibrium. If not, then it matters which player plays first and we have

corresponding upper and lower value functions.

In this chapter, we describe a class of linearly-solvable Markov games ( LMGs), where

the Shapley equation can be made linear as explained below. But first, we need to introduce

a class of divergence measures between probability distributions that will play a key role in

LMGs.

4.1.1 Renyi divergence

Renyi divergences are a generalization of the KL divergence. For distributions p, q ∈ P [X ],

the Renyi divergence of order α is defined as

Dα (p ‖ q) =
sign(α)

α− 1
log

(
E
p

[(
q

p

)1−α
])

For any fixed p, q, it is known that Dα is always non-negative, decreasing for α < 0, and

increasing for α > 0. It is also known that limα→1 Dα (p ‖ q) = KL (p ‖ q).

4.1.2 Linearly Solvable Markov Games ( LMGs)

An LMG proceeds as follows: 1) The system in state x at time t.

2) The adversary picks controls ua ∈ XR+
.

3) The controller picks controls uc ∈ XR+
.
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4) The system transitions into a state x′ ∼ uc⊗ ua⊗Π0(x) 5) The cost function is given by:

`t(x, uc, ua) = `t(x)︸ ︷︷ ︸
State Costs

+ KL
(
uc⊗ ua⊗Π0(x) ‖ ua⊗Π0(x)

)︸ ︷︷ ︸
Control Costs

−D 1
α

(
Π0(x) ‖ ua⊗Π0(x)

)︸ ︷︷ ︸
Control Cost for Adversary

We focus on competitive games and require that α > 0, α 6= 1. Also, the dynamics of the

game is such that the adversary plays first, so the controller has a chance to respond to the

adversarial disturbance. Thus, it is a maximin problem where we work with the lower value

function. Later, we describe the case α < 0 which leads to cooperative games. It turns out

that for this class of games, we can prove that the Shapeley equation becomes linear ??.

The differences between standard MGs and LMGs can be summarized as follows:

MGs LMGs

Pol Πc : X × Ua → U Πc : X × XR+ → XR+

Πa : X → Ua Πa : X → XR+

Dyn ua = Πa(x),uc = Πc(x,ua) ua = Πa(x), uc = Πc(x, ua)

x
Πc,Πa−−−−→ x′ ∼ P (x′|x,uc,ua) x

Πc,Πa−−−−→ x′ ∼ uc⊗ ua⊗Π0(x)

Co `t(x,uc,ua) `t(x)− D 1
α

(
Π0(x) ‖ ua⊗Π0(x)

)
+ KL

(
uc⊗ ua⊗Π0(x) ‖ ua⊗Π0(x)

)

BE
vt (x) = max

ua

min
uc

`t(x,uc,ua) z t (x) = Qt(x) E
Π0(x)

[z t+1]

+ EP(x,uc,ua) [vt+1]

z t (x) = exp ((α− 1)vt (x))

Qt(x) = exp ((α− 1) `t(x))

OP
Πc
∗ (x,ua; t) = argmin

uc

`t(x,uc,ua) Πc
∗ (x, ua; t) = z

1
1−α
t+1

+ EP(x,uc,ua) [vt+1]
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LMDPs as a special case of LMGs:

As α→ 0, we recover the LMDP Bellman equation. We can explain this by looking at the

cost function. It is known that limα→0 D1/α (p ‖ q) → log (supx p(x)/q(x)). For this cost,

the optimal strategy for the adversary is to always leave the passive dynamics unchanged,

that is Πa
∗
t (x) = 1. Intuitively, this says that the control cost for the adversary is high

enough and the optimal strategy for him is to do nothing. Thus the problem reduces to the

LMDP setting.

Effect of α :

As α increases, the relative control cost of the controller with respect to the adversary

increases, so, effectively, the adversary becomes more powerful. This makes the controller

more conservative (or risk-averse), since it is fighting a stronger adversary.

Cooperative LMGs:

We have also derived a cooperative LMG where two agents collaborate to accomplish the

same control task. The game proceeds similar to a competitive game, however now both

agents pay the same cost and are trying to minimize it in collaboration. The cost function

for cooperative LMGs (for both agents) is:

`(x) + D1/α

(
ua⊗Π0(x) ‖ Π0(x)

)
+ KL

(
uc⊗ ua⊗Π0(x) ‖ ua⊗Π0(x)

)
where α < 0. As |α| gets bigger, the control cost for the helper gets smaller and the helper

contributes more towards accomplishing the control task while the controller contributes

less. The resulting BE is similar to the competitive case. The BE for IH is:

z (x) = exp ((α− 1) (`(x)− c)) E
Π0(x)

[z ] (4.1)

In this case, again we can recover LMDPs by taking α → 0 and making the control cost

for the helper effectively large enough that he always chooses not to change the passive

dynamics.
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Figure 4.1: Terrain and Cost Function for LMG example
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Examples:

We illustrate the effect of α with a simple control problem that requires one to drive up

as high as possible on a hilly terrain. The cost function encourages one to drive up to

the highest point, but the highest point is the peak of a steep hill, so that even a small

perturbation from the adversary can push one downhill quickly. On the other hand, there

is a shorter but less steep hill, where the adversary cannot have as much of an effect. The

problem is formulated in the IH setting, so we are looking for a control strategy that achieves

low average cost over a very long horizon. The terrain and cost function are plotted in figure

4.1. The stationary distributions over X under optimal control for different values of α are

plotted in 4.2. It can be seen that when α < 0 (cooperative case), the controller places

more probability on the riskier but more rewarding option (steeper/higher hill) but when

α > 0, the controller is more conservative and chooses the safer but less rewarding option

(shorter/less steep hill). In the LMDP case, the solution splits its probability more or less

evenly between the two options.

4.1.3 Linearly Solvable Differential Games ( LDGs)

In this section we consider differential games ( DGs) which are continuous-time versions of

MGs. A differential game is described by a stochastic differential equation

d x =
(
a(x) + B(x)uc +

√
αB(x)ua

)
d t+ σB(x) dω

The infinitesimal generator L [·] for the uncontrolled process (uc,ua = 0) can be defined

similarly to (2.7). We also define a cost rate

`t(x,uc,ua) = `t(x)︸ ︷︷ ︸
State Cost

+
1

2σ2
uc

Tuc︸ ︷︷ ︸
Control Cost for Controller

− 1

2σ2
ua

Tua︸ ︷︷ ︸
Control Cost for Adversary

Like LMGs, these are two-player zero-sum games, where the controller is trying to

minimize the cost function while the adversary tries to maximize the same cost. It can

be shown that the optimal solution to differential games based on diffusion processes is

characterized by a nonlinear PDE known as the Isaacs equation Başar and Bernhard [1995].
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However, for the kinds of differential games we described here, the Isaacs equation expressed

in terms of z t = exp ((α− 1)vt) becomes linear and is given by:

∂z t (x)

∂t
= (1− α) `t(x) z t (x)− L [z t] (x)

Πc
∗ (x; t) =

σ2

(α− 1) z t (x)
B(x)T

∂ z t (x)

∂x

Πa
∗
t (x) =

−
√
ασ2

(α− 1) z t (x)
B(x)T

∂ z t (x)

∂x

When α = 0, the adversarial control ua has no effect and we recover LDs. As α increases,

the adversary’s power increases and the control policy becomes more conservative.

There is a relationship between LDGs and LMGs. LDGs can be derived as the con-

tinuous time limit of LMGs that solve time-discretized versions of differential games. This

relationship is analogous to the one between LMDPs and LDs.

Connection to Risk-Sensitive Control

Both LMGs and LDGs can be interpreted in an alternate manner, as solving a sequential

decision making problem with an alternate objective: Instead of minimizing expected total

cost, we minimize the expectation of the exponential of the total cost:

E
xt+1∼Πc(xt)⊗Π0(xt)

[
exp

(
N∑
t=0

α `t(xt) +

N−1∑
t=0

Dα
(
Πc(xt)⊗Π0(xt) ‖ Π0(xt)

))]

This kind of objective is used in risk-sensitive control Marcus et al. [1997] and it has been

shown that this problem can also be solved using dynamic programming giving rise to a

risk-sensitive Bellman equation. It turns out that for this objective, the Bellman equation

is exactly the same as that of an LMG. The relationship between risk-sensitive control and

game theoretic or robust control has been studied extensively in the literature Başar and

Bernhard [1995], and it also shows up in the context of linearly solvable control problems.

4.1.4 Relationships among the different formulations

Linearly Solvable Markov Games ( LMGs) are the most general class of linearly solvable

control problems, to the best of our knowledge. As the adversarial cost increases (α → 0),
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we recover Linearly Solvable MDPs ( LMDPs) as a special case of LMGs. When we view

LMGs as arising from the time-discretization of Linearly Solvable Differential Games (

LDGs), we recover LDGs as a continuous time limit (d t→ 0). Linearly Solvable Controlled

Diffusions( LDs) can be recovered either as the continuous time limit of an LMDP , or as

the non-adversarial limit (α→ 0) of LDGs. The overall relationships between the various

classes of linearly solvable control problems is summarized in the figure below:

LMGs
α→0
//

dt→0
��

LMDPs

dt→0
��

LDGs
α→0 // LDs

4.2 Conclusions

We have developed a very general family of linearly solvable control problems. To the best

of our knowledge, all previous work on linearly solvable control are special cases. Also, the

use of Renyi divergences in control is novel. An interesting theoretical question is whether

LMGs are the most general family of linearly solvable control problems possible.

In terms of practical applicability, LMGs could be very useful for tuning controllers

to be more conservative (risk-averse) or more aggressive (risk-taking). We have seen that

the resulting behavior can be substantially different for different α. The linearity makes

LMGs easier to solve, but we still need to develop function approximation techniques that

scale to high dimensional state spaces and nonlinear dynamics. If Π0 is Gaussian and z is

represented as a mixtures of Gaussians × polynomials × trigonometric functions, one can

use a power-iteration like algorithm to solve the linear Bellman equation with each step

being analytical. Combined with the flexibility of LMGs we believe that these techniques

are very promising and can potentially solve hard control problems.

4.3 Proofs

Let µ ∈ P [X ] and f : X → R. Define Ψκ
µ [f ] = 1

κ log (Eµ [exp (κf)]).

definition 1. A saddle point equilibrium of an LMG is a pair of feedback policies Πc
∗,Πa

∗ :
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X → P [X ] that achieve the following extremum

min
Πc

max
Πa

J (x,Πc,Πa) = max
Πa

min
Πc

J (x,Πc,Πa)

at every state x ∈ X , where J (x,Πc,Πa) depends on the problem formulation:

Finite Horizon (FH):J (x,Πc,Πa) = E
Πc,Πa,x0=x

[
N−1∑
t=0

`(xt,Πc(xt),Πa(xt)) + `f(xN)

]

First Exit (FE):J (x,Πc,Πa) = E
Πc,Πa,x0=x,Ne=min[t:xt∈T ]

[
Ne−1∑
t=0

`(xt,Πc(xt),Πa(xt)) + `f(xNe)

]

Infinite Horizon (IH):J (x,Πc,Πa) = lim
N→∞

1

N
E

Πc,Πa,x0=x

[
N∑
t=0

`(xt,Πc(xt),Πa(xt))

]

where the expectations are under the stochastic dynamics of the system defined by Π0,Πc,Πa.

Theorem 1. If α < 1, the LMG always has a saddle point equilibrium. The saddle point

equilibrium is given by

Π∗a (x) = (z )
α
α−1 ,Πc

∗ (x) = (z )
1

1−α

for IH,FE.

Proof. We do the proof for the IH case, the proof for the other cases is similar.

λ+ v (x) = min
uc

max
ua

[
`(x)− D1/α

(
Π0(x) ‖ ua

)
+ KL (uc ‖ ua) + E

uc
[v ]

]
= max

ua
min
uc

[
`(x)− D1/α

(
Π0(x) ‖ ua

)
+ KL (uc ‖ ua) + E

uc
[v ]

]
then the saddle point equilibrium is attained for the feedback policies setting uc, ua to the

values attaining the extremum in the Shapely equation above. We are given that the linear

BE (4.1) has a solution, say z . Consider the function v = 1
α−1 log (z ). This is bounded and

continuous function since z is continuous,bounded above and below away from 0. Using

theorem 2, we know that

max
ua

min
uc

[
`(x)− D1/α

(
Π0(x) ‖ ua

)
+ KL (uc ‖ ua) + E

uc
[v ]

]

= `(x)−Ψ

1
α−1

1
α

Π0(x)
[−v ] = `(x) + Ψ1−α

Π0(x)
[v ]
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and the same result holds if the min,max are interchanged. Since z satisfies the linear BE,

we know that v satisfies

v (x) = `(x) +
1

α− 1
log

(
E

Π0(x)
[exp ((α− 1)v)]

)
= `(x) + Ψ1−α

Π0(x)
[v ] .

Combining the results above, we have that v is a bounded continuous solution to the Shapely

equation. Hence the result.

Theorem 2. If α > 1 and f : Ω 7→ < is a bounded measurable function, then the problem

min
µ

max
ν
− Dα (µ0 ‖ ν) + KL (µ ‖ ν) + E

µ
[f ]

Subject to µ, ν ∈ P [X ]

has optimum −Ψ
α−1
α

µ0 [−f ] with the optimum attained at ν∗ = µ0⊗ exp
(
f
α

)
,µ∗ = ν∗⊗ exp (−f).

The results hold even if the order of the min,max are reversed.

Proof. Let µ, ν be any distributions satisfying the constraints of the problem. Then by

lemma 3, we have Dα (µ0 ‖ ν) − KL (µ ‖ ν) ≥ αKL(µ‖µ0)
1−α . This bound is attained when

ν = µ⊗
(
∂µ
∂µ0

) α
1−α

. Also, it is easy to see that this choice for ν satisfies the constraints. So

we have

max
ν
−Dα (µ0 ‖ ν) + KL (µ ‖ ν) = −min

ν
Dα (µ0 ‖ ν)−KL (µ ‖ ν) =

α

1− α
KL (µ ‖ µ0)

We are left with α
1−α KL (µ ‖ µ0) + Eµ [f ], which can be lower bounded using lemma 1:

α

1− α

(
KL (µ ‖ µ0) + E

µ

[
(1− α)f

α

])
≥ α

α− 1
Ψµ0

[
(1− α)f

α

]
= −Ψ

α−1
α

µ0 [−f ]

Since f is bounded, the probability distribution µ = µ0⊗ exp
(

(1−α)f
α

)
exists and at-

tains the lower bound above. Thus, the minimum is attained at the distribution µ∗ =

µ0⊗ exp
(

(1−α)f
α

)
which satisfies the constraints and the minimum value is −Ψ

α−1
α

µ0 [f ].

Thus, the optimal value of the overall minimax problem is −Ψ
α−1
α

µ0 [−f ] and the saddle

point is given by µ∗ = µ0⊗ exp
(

(1−α)f
α

)
, ν∗ = µ∗⊗

(
∂µ∗

∂µ0

) α
1−α

= µ0⊗ exp
(
f
α

)
. This can

be rewritten as in the statement of the theorem, ν∗ = µ0⊗ exp
(
f
α

)
and µ∗ = ν∗⊗ exp (−f).
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If we switch the max and min, we can write minµ KL (µ ‖ ν) + Eµ [f ] = −Ψν [−f ] with

the minimum attained at µ∗ = ν⊗ exp (−f) by lemma 1. We are then left with

max
ν
−Dα (µ0 ‖ ν)−Ψν [exp (−f)] = −min

ν
Dα (µ0 ‖ ν) + Ψν [−f ]

By lemma 2, we know that Dα (µ0 ‖ ν) + Ψν [−f ] ≥ −Ψ
1−α
α

µ0 [f ] with the minimum attained

at ν∗ = µ0⊗ exp
(
f
α

)
.

Lemma 1. Let µ, µ0 ∈ P [X ] and f : X → R. Then, KL (µ ‖ µ0) + Eµ [f ] ≥ −Ψµ0 [−f ].

Proof. The objective can be rewritten as

E
µ

[
log

(
µ

µ0

)
+ f

]
= E

µ

[
− log

(
µ0

µ

)
+ f

]
= E

µ

[
− log

(
µ0

µ
exp (−f)

)]
.

By Jensen’s inequality, since− log is convex, the RHS is larger than− log
(

Eµ

[
µ0
µ exp (−f)

])
=

− log (Eµ0 [exp (−f)]), establishing the result.

Lemma 2. Let µ, µ0 ∈ P [X ] and f : X → R. Then,

sgn (α)Dα (µ0 ‖ µ) + Ψµ [f ] ≥ Ψ
α−1
α

µ0 [f ] if α > 0

sgn (α)Dα (µ0 ‖ µ) + Ψµ [f ] ≤ Ψ
α−1
α

µ0 [f ] if α > 0

Proof. Letting g = exp (f), the LHS can be rewritten as

log

(
Eµ0

[(
µ
µ0

)1−α
])

α− 1
+ log

(
E
µ

[g]

)
= log

(E
µ0

[(
µ

µ0

)1−α
]) 1

α−1

E
µ0

[
µ

µ0
g

] .

First suppose α < 0. Then, using Holder’s inequality, we have

E
µ0

[
µ

µ0
g

]
≤

(
E
µ0

[(
µ

µ0

)1−α
]) 1

1−α(
E
µ0

[
(g)

1−α
−α
]) −α1−α

=⇒

E
µ0

[
µ

µ0
g

](
E
µ0

[(
µ

µ0

)1−α
]) 1

α−1

≤
(

E
µ0

[
(g)

1−α
−α
]) −α1−α

=

(
E
µ0

[
exp

(
(α− 1)f

α

)]) α
α−1

.

Taking log on both sides, we have the result. The distribution µ0⊗ (g)
α−1
α exists since f is

bounded. Also note that h(x) = x
1

1−α is convex if α > 0, α 6= 1. The first term inside the
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log can be bounded as follows:(
E
µ0

[(
µ

µ0

)1−α
]) 1

1−α

=

(
E

µ0⊗ g
α−1
α

[
g

1−α
α

(
µ

µ0

)1−α
]) 1

1−α(
E
µ0

[
g
α−1
α

]) 1
1−α

≤ E
µ0⊗ g

α−1
α

[
g

1
α
µ

µ0

](
E
µ0

[
g
α−1
α

]) 1
1−α

(Jensen’s Inequality)

= E
µ0

[
g
α−1
α

+ 1
α
µ

µ0

](
E
µ0

[
g
α−1
α

]) 1
1−α−1

= E
µ0

[
g
µ

µ0

](
E
µ0

[
g
α−1
α

]) α
1−α

Rewriting the last inequality, we get
(

Eµ0

[
g
α−1
α

]) α
α−1 ≤ Eµ [g]

(
Eµ0

[(
µ
µ0

)1−α
]) 1

1−α
. Tak-

ing log on both sides gives the result.

Lemma 3. Let µ, ν, µ0 ∈ P [X ] and f : X → R, α > 1. Then, Dα (µ0 ‖ ν)−KL (µ ‖ ν) ≥
α

1−α KL (µ ‖ µ0).

Proof. By definition,

KL (µ ‖ ν) = E
µ

[
− log

(
ν

µ

)]
,Dα (µ0 ‖ ν) =

log

(
Eµ0

[(
ν
µ0

)1−α
])

α− 1
.

Now, Eµ0

[(
ν
µ0

)1−α
]

= Eµ

[
µ0
µ

(
ν
µ0

)1−α
]

= Eµ

[
ν
µ

(
ν
µ0

)1−α
]
ν
µ0

= Eµ

[
ν
µ

(
ν
µ0

)−α]
. This

gives us

Dα (µ0 ‖ ν)−KL (µ ‖ ν) =

log

(
Eµ

[
ν
µ

(
∂ν
∂µ0

)−α])
α− 1

+ E
µ

[
log

(
ν

µ

)]

When α > 1, log
α−1 is concave and by Jensen’s inequality the first term is≥

Eµ

[
log

(
ν
µ

(
ν
µ0

)−α)]
α−1 =

Eµ
[
−α log

(
ν
µ0

)
+log

(
ν
µ

)]
α−1 . This implies:

Dα (µ0 ‖ ν)−KL (µ ‖ ν) ≥ α

α− 1
E
µ

[
log

(
ν
µ
ν
µ0

)]
=

α

α− 1
E
µ

[
log

(
µ0

µ

)]
=
αKL (µ ‖ µ0)

1− α
.
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Chapter 5

CONVEX POLICY OPTIMIZATION

So far, we have looked at a special class of control problems ( LMDPs and extensions)

that simplify the Bellman Equations that characterize the optimal solution to a stochas-

tic optimal control problem. However, even with these simplified Bellman Equations, it is

not obvious how to solve high-dimensional control problems for arbitrary dynamical sys-

tems in an automated way. Function approximation methods Todorov [2009c]Zhong [2013]

have been applied to solve the simplified Bellman equations approximately, but success-

ful applications have required careful tuning of parameters and combining the results with

approaches like Model Predictive Control.

In this chapter, we look at an alternative approach: We ignore the Bellman equation

and look at stochastic control purely as a (stochastic) optimization problem. Of course,

searching over the space of all possible policies leads to an infinite dimensional optimization

problem that cannot be solved on a computer. Instead, we parameterize the control policy

and search for the optimal policy within a parametric class. This is now a finite dimensional

(stochastic) optimization problem and can be attacked using techniques from nonlinear and

stochastic optimization. Indeed, we do apply these approaches with success to problems in

electric power systems in chapter 6. However, for many problems, direct policy optimization

is fraught with numerical difficulties and the optimization algorithms applied to this prob-

lems are susceptible to slow convergence and local minima. On the other hand, tremendous

progress has been made in convex optimization Boyd and Vandenberghe [2004], leading to

generic algorithms that can solve convex optimization problems with thousands of variables

and special purpose algorithms for problems with upto a million variables. Furthermore,

applications such as large scale machine learning have lead to the development of efficient

algorithms for stochastic convex optimization Nemirovski et al. [2009], where the optimiza-

tion objective or gradient cannot be evaluated exactly but only estimated through noisy
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samples. Unfortunately, under standard formulations, stochastic optimal control problems

are generically non-convex optimization problems, even if the dynamics and control policies

are linear, which is one of the reasons direct optimization algorithms tend to work poorly

when applied to stochastic control problems.

In this chapter, we look at non-standard formulations of stochastic control problems that

lead to convex optimization problems. The first formulation (section 5.1) looks closely at

linear systems and develops convex approximations to Linear Quadratic Regulator (LQR)

and Linear Quadratic Games (LQ Games) problems in finite horizon, based on the Bode

Sensitivity Integral, a classical result in control theory that characterizes fundamental lim-

itations in control systems. The second formulation (section 5.2) looks at a risk-averse

control formulation and develops algorithms based on stochastic convex optimization to

solve control problems with arbitrary dynamics and control policies, subject to a condition

on the control costs and noise that is closely related to the Linearly Solvable MDPs and

Path Integral Control formalisms discussed in the previous chapters.

5.1 Convex Policy Optimization Based on Bode’s Sensitivity Integral

Linear feedback control synthesis is a classical topic in control theory and has been exten-

sively studied in the literature. From the perspective of stochastic optimal control theory,

the classical result is the existence of an optimal linear feedback controller for systems

with linear dynamics, quadratic costs and gaussian noise (LQG systems) that can be com-

puted via dynamic programming Kalman et al. [1960]. However, if one imposes additional

constraints on the feedback matrix (such as a sparse structure arising from the need to

implement control in a decentralized fashion), the dynamic programming approach is no

longer applicable. In fact, it has been shown that the optimal control policy may not even

be linear Witsenhausen [1968] and that the general problem of designing linear feedback

gains subject to constraints is NP-hard Blondel and Tsitsiklis [1997].

Previous approaches to synthesizing structured controllers can be broadly categorized into

three types: Frequency Domain ApproachesRotkowitz and Lall [2002]Qi et al. [2004]Rotkowitz

and Lall [2006]Shah [2013], Dynamic Programming Approaches Fan et al. [1994]Swigart and

Lall [2010]Lamperski and Lessard [2013] and Nonconvex optimization methods Lin et al.
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[2013]Apkarian et al. [2008]Burke et al. [2006]. The first two classes of approaches find ex-

act solutions to structured control problems for special cases. The third class of approaches

tries to directly solve the optimal control problem (minimizing the H2,H∞ norm) subject

to constraints on the controller, using nonconvex optimization techniques. These are gen-

erally applicable, but are susceptible to local minima and slow convergence (especially for

nonsmooth norms such as H∞).

In this work, we take a different approach: We reformulate the structured control prob-

lem using a family of new control objectives (section 5.1.1). We develop these bounds as

follows: The H2 and H∞ norms can be expressed as functions of singular values of the

linear mapping from disturbance trajectories to state trajectories. This mapping is a highly

nonlinear function of the feedback gains. However, the inverse of this mapping has a simple

linear dependence on the feedback gains. Further, the determinant of the mapping has a

fixed value independent of the closed loop dynamics - this is in fact a finite horizon version

of Bode’s sensitivity integral and has been studied in Iglesias [2001]. By exploiting both

these facts, we develop upper bounds on the H2,H∞ norms in terms of the singular values

of the inverse mapping. We show that these upper bounds have several properties that

make them desirable control objectives. For the new family of objectives, we show that

the resulting problem of designing an optimal linear state feedback matrix, under arbitrary

convex constraints, is convex (section 5.2.1). Further, we prove suboptimality bounds on

how the solutions of the convex problems compare to the optima of the original problem.

Our approach is directly formulated in state space terminology and does not make any

reference to frequency domain concepts. Thus, it applies directly to time-varying systems.

We validate our approach numerically and show that the controllers synthesized by our

approach achieve good performance (section 5.1.4).

5.1.1 Problem Formulation

Consider a finite-horizon discrete-time linear system in state-space form:

x1 = D0ω0

xt+1 = Atxt +Btut +Dtωt, t = 1, 2, . . . , N − 1.
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Here t = 0, 1, 2, . . . , N is the discrete time index, xt ∈ Rn is the plant state, ωt ∈ Rn is an

exogenous disturbance and ut ∈ Rnu is the control input. We employ static state feedback:

ut = Ktxt.

Let K = {Kt : t = 1, 2, . . . , N − 1} and denote the closed-loop system dynamics by

Ãt(Kt) = At +BtKt.

Let λmax (M) denote the maximum eigenvalue of an l × l symmetric matrix M , λmin (M)

the minimum eigenvalue and λi (M) the i-th eigenvalue in descending order:

λl (M) = λmin (M) ≤ λl−1 (M) ≤ . . . ≤ λmax (M) = λ1 (M) .

Similarly, singular values of a general rank l matrix M are:

σl (M) = σmin (M) ≤ σ2 (M) ≤ . . . ≤ σmax (M) = σ1 (M) .

I denotes the identity matrix. Boldface smallcase letters denote trajectories:

X =


x1

...

xN

 ,w =


ω0

...

ωN−1


For z ∈ Rn,

Var (z) =
1

n

n∑
i=1

(
zi −

∑n
i=1 zi
n

)2

.

z[i] is the i-th largest component of z and |z| the vector with entries |z1|, . . . , |zn|. Finally,

N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance matrix Σ.

There is a linear mapping between disturbance and state trajectories for a linear system.

This will play a key role in our work, and we denote it by

X = F (K) w,

where F (K) =



D0 0 . . . 0

Ã1D0 D1 . . . 0

Ã2Ã1D0 Ã2D1 . . . 0
...

...
...

...∏N−1
τ=1 ÃN−τD0

∏N−1
τ=2 ÃN−τD1 . . . DN−1


.

Our formulation differs from standard control formulations in the following ways:



52

1 We assume that the controller performance is measured in terms the norm of the

system trajectory XTX (see section 5.1.8 for an extension that includes control costs).

2 As mentioned earlier, we restrict ourselves to have static state feedback ut = Ktxt

(section 5.1.8 discusses dynamic output feedback).

3 We assume that Dt is square and invertible.

Finite-horizon versions of the H2 and H∞ norms of the system are given by:

q2(K) = E
ωt∼N (0,I)

[
N∑
t=1

xt
Txt

]
= E

[
tr
(
XXT

)]
= tr

(
F (K)TF (K)

)
=

nN∑
i=1

σi (F (K))2 (5.1)

q∞(K) =

√
max
w 6=0

∑N
t=1 xtTxt∑N−1
t=0 ωtTωt

= max
w 6=0

‖F (K) w‖
‖w‖

= σmax (F (K)) . (5.2)

If there are no constraints on K, these problems can be solved using standard dynamic

programming techniques. However, we are interested in synthesizing structured controllers.

We formulate this very generally: We allow arbitrary convex constraints on the set of

feedback matrices: K ∈ C for some convex set C. Then, the control synthesis problem

becomes

Minimize
K∈C

q2(K) (5.3)

Minimize
K∈C

q∞(K) (5.4)

The general problem of synthesizing stabilizing linear feedback control, subject even to

simple bound constraints on the entries of K, is known to be hard Blondel and Tsitsiklis

[1997]. Several hardness results on linear controller design can be found in Blondel and

Tsitsiklis [2000]. Although these results do not cover the problems (5.3)(5.4), they suggest

that (5.3)(5.4) are hard optimization problems. In this work, we propose an alternate

objective function based on the singular values of the inverse mapping F (K)−1 and prove
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that this objective can be optimized using convex programming techniques under arbitrary

convex constraints on the feedback matrices K = {Kt}. Given the above hardness results, it

is clear that the optimal solution to the convex problem will not match the optimal solution

to the original problem. However, we present theoretical and numerical evidence to suggest

that the solutions of the convex problem we propose ((5.5),(5.6)) approximate the solution

to the original problems ((5.3),(5.4)) well for several problems.

Control Objective

The problems (5.3),(5.4) are non-convex optimization problems, because of the nonlinear

dependence of F (K) on K. In this section, we will derive convex upper bounds on the

singular values of F (K) that can be optimized under arbitrary convex constraints C. We

have the following results (section 5.1.8, theorems 5.1.4, 5.1.5):

q∞(K) ≤

(
N−1∏
t=0

det (Dt)

)∑nsN−1
i=1 σi

(
F (K)−1

)
nsN − 1

nsN−1

q2(K) ≤ nN

(
N−1∏
t=0

det (Dt)

)2 (
σmax

(
F (K)−1

))2(nsN−1)

To illustrate the behavior of these upper bounds (denoted UB∞, UB2), we plot them for a

scalar linear system

xt+1 = ut + ωt,xt, ut = kxt, k ∈ R

over a horizon N = 100 in figure 5.1. When |k| < 1, this system is unstable and otherwise

it is stable. Thus, |k| is a measure of the “degree of instability” of the system. As expected,

the original objectives grow slowly to the point of instability and then blow up. The convex

upper bounds are fairly loose upper bounds and increase steadily. However, the rate of

growth increases with degree of instability. Similar results are observed for n > 1.
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Figure 5.1: Convex Surrogate vs Original Objective (rescaled to lie in [0,1]): q∞(k) vs

UB∞(k) (top),q2(k) vs UB2(k) (bottom)
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A General Class of Control Objectives

Inspired by the upper bounds of the previous section, we formulate the controller design

problem as follows:

Minimize
K∈C

qc2 (K) = σmax

(
F (K)−1

)
(surrogate to q2) (5.5)

Minimize
K∈C

qc∞ (K) =

nsN−1∑
i=1

σi

(
F (K)−1

)
(surrogate to q∞) (5.6)

The objectives (5.5),(5.6) are just two of the control objectives that are allowed in our

framework. We can actually allow a general class of objectives that can be minimized

for control design. From Lewis [1995], we know that for any absolutely invariant convex

function f(x) on Rn, the function g(X) = f(sX) on Rn×n is convex. This motivates us to

consider a generalized control objective:

Minimize
K

f
(
sF (K)−1

)
︸ ︷︷ ︸

Controller Performance

+ R (K)︸ ︷︷ ︸
Minimize Control Effort

Subject to K ∈ C (5.7)

where C is a convex set encoding the structural constraints on K and R (K) is a convex

penalty on the feedback gains K. We show (in theorem 5.2.1) that this problem is a convex

optimization problem. Common special cases for f are:

1 f(x) = ‖x‖∞ which gives rise to the spectral norm
∥∥∥(F (K))−1

∥∥∥ = σmax

(
(F (K))−1

)
,

the same as (5.5).

2 f(x) = ‖x‖1 which gives rise to the nuclear norm
∥∥∥(F (K))−1

∥∥∥
∗

=
∑

i σi

(
(F (K))−1

)
.

3 f(x) =
∑k

i=1 |x|[i] which gives rise to the Ky Fan k-norm
∑k

i=1 σi

(
(F (K))−1

)
. In

particular f(x) =
∑nN−1

i=1 |x|[i] corresponds to (5.6).

A common choice for R (K) is ‖K‖2. For decentralized control, C would be of the form C =

{K : Kt ∈ S} where S is the set of matrices with a certain sparsity pattern corresponding

to the decentralization structure required. We now present our main theorem proving the

convexity of the generalized problem (5.7).
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5.1.2 Main Technical Results

Proof of Convexity

Theorem 5.1.1. If f is an absolutely symmetric lower-semicontinuous convex function,

R (K) is a convex function and C is a convex set, then the problem (5.7) is a convex opti-

mization problem.

Proof. The proof relies on the structure of F (K)−1. Rewriting the discrete-time dynamics

equations, we have:

ω0 = D0
−1x1, ωt = Dt

−1xt+1 −Dt
−1Ãtxt for t ≥ 1.

It can be shown that F (K)−1 is given by

D0
−1 0 . . . . . . 0

−D1
−1Ã1 D1

−1 . . . . . . 0

0 −D2
−1Ã2 D2

−1 . . . 0
...

...
... · · ·

...

0 0 0 . . . DN−1
−1


This can be verified by simple matrix multiplication. Now, the convexity is obvious since

Ãt = At + BtKt is a linear function of K, and so is F (K)−1. Since f is an absolutely

symmetric lower-semicontinuous convex function, f(sX) is a convex function of X Lewis

[1995]. Thus, f(s(F (K))−1) is the composition of an affine function in K with a convex

function, and is hence convex. The function R (K) is known to be convex and so are the

constraints K ∈ C. Hence, the overall problem is a convex optimization problem.

Suboptimality Bounds

We are using convex surrogates for the q2, q∞ norms. Thus, it makes sense to ask the

question: How far are the optimal solutions to the convex surrogates from those of the

original problem? We answer this question by proving multiplicative suboptimality bounds:

We prove that the ratio of the q2 norm of the convex surrogate solution and the q2-optimal

solution is bounded above by a quantity that decreases as the variance of the singular
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vector of (F (K))−1 at the optimum. Although these bounds may be quite loose, they

provide qualitative guidance about when the algorithm would perform well.

Theorem 5.1.2. Let the solution to the convex optimization and original problem be:

Kc
∗ = argmin

K∈C
σmax

(
(F (K))−1

)
(Convex Opt)

K∗ = argmin
K∈C

∑
i

(σi (F (K)))2 (Original Opt)

respectively. Let F ∗ = (F (K∗))−1, Fc
∗ = (F (Kc

∗))−1. Let

σc
∗ =

[(
σ2 (Fc

∗)

σnN (Fc
∗)

)2

, . . . ,

(
σ2 (Fc

∗)

σ2 (Fc
∗)

)2
]

σ∗ =

[(
σnN (F ∗)

σnN (F ∗)

)2

, . . . ,

(
σnN (F ∗)

σ2 (F ∗)

)2
]

Then,

q2(Kc
∗)

q2(K∗)
≤
(

nN

nN − 1

)
exp

(
Var (σc

∗)−Var (σ∗)

2

)
Proof. The proof relies on Holder’s defect formula which quantifies the gap in the AM-GM

inequality Becker [2012]. For any numbers 0 < am ≤ . . . ≤ a1, we have:

(∑m
i=1 ai
m

)
exp

(
−µ

2
Var (a)

)
=

(
m∏
i=1

ai

)1/m

where µ ∈
[(

1
a1

)2
,
(

1
am

)2
]
. Plugging in the lower and upper bounds for µ, we get

(∑m
i=1 ai
m

)
exp

(
−Var (a/a1)

2

)
≥

(
m∏
i=1

ai

)1/m

(∑m
i=1 ai
m

)
exp

(
−Var (a/am)

2

)
≤

(
m∏
i=1

ai

)1/m

.
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Using this inequality with ai = (σnN−i+1 (F ∗))−2, i = 1, 2, 3, . . . , nN − 1, we get

q2(K∗)

nN − 1
≥ 1

nN − 1

nN∑
i=2

1

(σi (F ∗))2

≥ exp

(
Var (σ∗)

2

)(nN∏
i=2

1

(σi (F ∗))2

) 1
nN−1

= c exp

(
Var (σ∗)

2

)
(σmax (F ∗))

2
nN−1

where c =
(∏N−1

t=0 det (Dt)
) 2
nN−1

and the last equality follows since det (F ∗) =
∏N−1
t=0 det (Dt).

Since Kc
∗ minimizes σmax

(
F (K)−1

)
, we have

q2(K∗)

nN − 1
≥ c exp

(
Var (σ∗)

2

)
(σmax (Fc

∗))
2

nN−1

≥ exp

(
Var (σ∗)

2

)(nN∏
i=2

(
1

σi (Fc
∗)

)2
) 1

nN−1

≥ exp

(
Var (σ∗)

2
− Var (σc

∗)

2

)∑nN
i=2

1
(σi(Fc

∗))2

nN − 1


≥
(
nN − 1

nN

)
exp

(
Var (σ∗)

2
− Var (σc

∗)

2

)
q2(Kc

∗)

nN − 1
.

The result follows from simple algebra now.

Theorem 5.1.3. Let the solution to the convex optimization and original problem be:

Kc
∗ = argmin

K∈C

nN−1∑
i=1

σi

(
(F (K))−1

)
(Convex Opt)

K∗ = argmin
K∈C

σmax (F (K)) (Original Opt)

respectively. Let F ∗ = (F (K∗))−1, Fc
∗ = (F (Kc

∗))−1. Let

σc
∗ =

[
σnN−1 (Fc

∗)

σ1 (Fc
∗)

, . . . ,
σ1 (Fc

∗)

σ1 (Fc
∗)

]

σ∗ =

[
σnN−1 (F ∗)

σnN−1 (F ∗)
, . . . ,

σ1 (F ∗)

σnN−1 (F ∗)

]
Then,

q∞(Kc
∗)

q∞(K∗)
≤ exp

(
(nN − 1)

(
Var (σ∗)−Var (σc

∗)

2

))
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Proof. The proof follows a similar structure as the previous theorem and relies on Holder’s

defect formula. Let c =
∏N−1
t=0 det (Dt). Using the same inequalities with ai = σi (F ∗) , i =

1, 2, . . . , nN − 1, we get

(q∞(K∗))
1

nN−1 = c

(
nN−1∏
i=1

σi (F ∗)

) 1
nN−1

≥
c exp

(
−Var(σ∗)

2

)
nN − 1

(
nN−1∑
i=1

σi (F ∗)

)

where c =
(∏N−1

t=0 det (Dt)
) 2
nN−1

. Since Kc
∗ minimizes

∑nN−1
i=1 σi

(
F (K)−1

)
, we have

(q∞(K∗))
1

nN−1 ≥
c exp

(
−Var(σ∗)

2

)
nN − 1

(
nN−1∑
i=1

σi (Fc
∗)

)

≥ c exp

(
Var (σc

∗)

2
− Var (σ∗)

2

)(nN−1∏
i=1

σi (Fc
∗)

) 1
nN−1

= exp

(
Var (σc

∗)

2
− Var (σ∗)

2

)
(q∞(Kc

∗))
1

nN−1 .

The result follows from simple algebra now.

Interpretation of Bounds

The bounds have the following interpretation: Since the product of singular values is con-

strained to be fixed, stable systems (with small H2,H∞ norm) would have all of their

singular values close to each other. Thus, if the singular values at the solution discovered

by our algorithm are close to each other, we can expect that our solution is close to the true

optimum. Further, the bounds say that the only thing that matters is the spread of the

singular values relative to the spread of singular values at the optimal solution. A side-effect

of the analysis is that it suggests that the spectral norm of (F (K))−1 be used as a surrogate

for the q2 norm and the nuclear norm be a surrogate for the q∞ norm, since optimizing these

surrogates produces solutions with suboptimality bounds on the original objectives.

Finally note that although the bounds depend on the (unknown) optimal solution K∗,

we can still get a useful bound for the q2 case by simply dropping the effect of the negative
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term so that

q2(Kc
∗)

q2(K∗)
≤
(

nN

nN − 1

)
exp

(
Var (σc

∗)

2

)
.

which can be computed after solving the convex problem to get Kc
∗. A finer analysis

may be possible by looking at the minimum possible value of Var (σ∗), just based on the

block-bidiagonal structure of the matrix F (K)−1, but we leave this for future work.

5.1.3 Algorithms and Computation

In this work, our primary focus is to discuss the properties of the new convex formulation

of structured controller synthesis we developed here. Algorithms for solving the resulting

convex optimization problem (5.7) is a topic we will investigate in depth in future work. In

most cases, problem (5.7) can be reformulated as a semidefinite programming problem and

solved using off-the-shelf interior point methods. However, although theoretically polyno-

mial time, off-the-shelf solvers tend to be inefficient in practice and do not scale. In this

section, we lay out some algorithmic options including the one we used in our numerical

experiments (section 5.1.4).

When the objective used is the nuclear norm,
∑nN

i=1 σi

(
(F (K))−1

)
, we show that it is

possible to optimize the objective using standard Quasi-Newton approaches. The nuclear

norm is a nonsmooth function in general, but given the special structure of the matrices ap-

pearing in our problem, we show that it is differentiable. For a matrix X, the subdifferential

of the nuclear norm ‖X‖∗ at X is given by

{UV T +W : UTW = 0 or WV = 0, ‖W‖2 ≤ 1}

where X = UΣV T is the singular value decomposition of X. For our problem X = F (K)−1,

which has a non-zero determinant and hence is a nonsingular square matrix irrespective of

the value of K. Thus, the subdifferential is a singleton (UTW = 0 =⇒ W = 0 as U is full

rank and square). This means that the nuclear norm is a differentiable function in our prob-

lem and one can use standard gradient descent and Quasi Newton methods to minimize it.

These methods are orders of magnitude more efficient than other approaches (reformulating

as an SDP and using off-the-shelf interior point methods). They still require computing
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the SVD of an nN × nN matrix at every iteration, which will get prohibitively expensive

when nN is of the order of several thousands. However, the structure of F (K)TF (K) is

block-tridiagonal and efficient algorithms have been proposed for computing the eigenval-

ues of such matrices (see Sandryhaila and Moura [2013] and the references therein). Since

the singular values of F (K) are simply square roots of eigenvalues of F (K)TF (K), this

approach could give us efficient algorithms for computing the SVD of F (K).

When the objective is the spectral norm σmax

(
(F (K))−1

)
, we can reformulate the

problem as a semidefinite programming problem (SDP):

Minimize
t,K∈C

t+R (K)

Subject to tI ≥

 0 (F (K))−1T

(F (K))−1 0


The log-barrier for the semidefinite constraint can be rewritten as log

(
det
(
t2 − F (K)−1TF (K)−1

))
using Schur complements. The matrix (F (K))−1T (F (K))−1 is a symmetric positive defi-

nite block-tridiagonal matrix, which is a special case of a chordal sparsity pattern Andersen

et al. [2010]. This means that computing the gradient and Newton step for the log-barrier is

efficient, with complexity growing as O(N). Thus, at least for the case where the objective

is the spectral norm, we can develop efficient interior point methods.

5.1.4 Numerical Results

Comparing Algorithms: Decentralized Control

In this section, we compare different approaches to controller synthesis. We work with

discrete-time LTI systems over a fixed horizon N with At = A,Bt = B = I,Dt = D = I.

Further, we will use C = {K : Kij = 0 6∈ S}, where S is the set of non-zero indices of K.

The control design methodologies we compare are:

NCON: This refers to nonconvex approaches for both the q2 and q∞ norms. The q2 norm is

a differentiable function and we use a standard LBFGS method Schmidt [2012] to minimize

it. The q∞ norm is nondifferentiable, but only at points where the maximum singular value

of F (K) is not unique. We use a nonsmooth Quasi Newton method Lewis and Overton
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[2012] to minimize it (using the freely available software implementation HANSO Overton).

CON: The convex control synthesis described here. In the experiments described here, we

use the following objective:

Minimize
K

1

nN

(
m∑
i=1

σi

(
F (K)−1

))
(5.8)

where

F (K)−1 =



I 0 . . . 0

−(A+BK) I . . . 0

0 −(A+BK) . . . 0
...

... · · ·
...

0 0 . . . I


Subject to

Kij = 0 ∀(i, j) 6∈ S

with m = nN−1 as a surrogate for the q∞ norm and m = 1 for the q2 norm. Although these

objectives are non differentiable, we find that an off-the-shelf LBFGS optimizer Schmidt

[2012] works well and use it in our experiments here.

OPT: The optimal solution to the problem in the absence of the constraint C. This is simply

the solution to a standard LQR problem for the q2 case. For the q∞ norm, this is computed

by solving a series of LQ games with objective:

N∑
t=1

xt
Txt −

N−1∑
t=0

γ2ωt
Tωt

where the controller chooses u to minimize the cost while an adversary chooses ωt so as to

maximize the cost. There is critical value of γ below which the upper value of this game

is unbounded. This critical value of γ is precisely the q∞ norm and the resulting policies

for the controller at this value of γ is the q∞-optimal control policy. For any value of γ,

the solution of the game can be computed by solving a set of Ricatti equations backward

in time Başar and Bernhard [2008].

We work with a dynamical system formed by coupling a set of systems with unstable
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dynamics Ai ∈ R2×2.

xit+1 = Aixit +
∑
j

ηijx
j
t + uit + ωit

where xi denotes the state of the i-th system and ηij is a coupling coefficient between

systems i and j. The objective is to design controls u = {ui}, in order to stabilize the

overall system. In our examples, we use N = 5 systems giving us a 10 dimensional state

space. The Ai, ηij are generated randomly, with each entry having a Gaussian distribution

with mean 0 and variance 10. The sparsity pattern S is also generated randomly by picking

20% of the off-diagonal entries of K and setting them to 0. For both the CON,NCON

problems, we initialize the optimizer at the same point K = 0. For the q∞ norm, we

present results comparing the approaches over 100 trials. The q∞ norm of the solution

obtained by the CON approach to that found by NCON,OPT in figure 5.2. We plot

histograms of how the q∞ compares between the CON,NCON and OPT approaches. The

red curves show kernel-density estimates of the distribution of values being plotted. The

results show that CON consistently outperforms NCON and often achieves performance

close to the centralized OPT solution. The x-axis denotes the ratio between objectives on a

log scale. The y-axis shows the frequency with which a particular ratio is attained (out of

a 100 trials). We also plot a histogram of computation times with the log of ratio of CPU

times for the CON and NCON algorithms on the x-axis. Again, in terms of CPU times,

the CON approach is consistently superior except for a small number of outliers. For the

q2 norm, we plot the results in figure 5.3. Here, the NCON approach does better and beats

the CON approach for most trials. However, in more than 70% of the trials the q2 norm of

the solution found by CON is within 2% of that found by NCON. In terms of computation

time, the CON approach retains superiority.

The numerical results indicate that the convex surrogates work well in many cases.

However, they do fail in particular cases. In general, the surrogates seem to perform better

on the q∞ norm than the q2 norm. The initial results are promising but we believe that

further analytical and numerical work is required to exactly understand when the convex

objectives proposed in this work are good surrogates for the original nonconvex q2 and q∞

objectives.
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Figure 5.2: Comparison of Algorithms for q∞-norm Controller Synthesis. The blue bars

represent histograms and the red curves kernel density estimates of the distribution of

values.
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Figure 5.3: Comparison of Algorithms for q2-norm Controller Synthesis. The blue bars

represent histograms and the red curves kernel density estimates of the distribution of

values.
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5.1.5 Generalization to Nonlinear Systems

We now present a generalization of our approach to nonlinear systems. The essential idea

is to study a nonlinear system in terms of sensitivities of system trajectories with respect

to disturbances. Consider a control-affine nonlinear discrete-time system:

x1 = D0ω0

xt+1 = at(xt) + Bt(xt)ut +Dtωt (1 ≤ t ≤ N − 1)

where at : Rn 7→ Rn and B : Rn 7→ Rn×nu , Dt ∈ Rn×n,xt ∈ Rn, wt ∈ Rn, ut ∈ Rnu .

Suppose that 0 is an equilibrium point (if not, we simply translate the coordinates to make

this the case). Now we seek to design a controller ut = Ktφ(xt) where φ is any set of fixed

“features” of the state on which we want the control to depend that minimizes deviations

from the constant trajectory [0, 0, . . . , 0]. We can look at the closed loop system:

xt+1 = at(xt) + Bt(xt)Ktφt(xt) +Dtωt

where φt(xt) ∈ Rm,Kt ∈ Rnu×m. As before, let K = {Kt : 1 ≤ t ≤ N − 1}. Let F (K) (w)

denote the (nonlinear) mapping from a sequence of disturbances w = [ω0, . . . , ωN−1] to the

state space trajectory X = [x1, . . ., xN ]. The finite-horizon q∞ norm for a nonlinear system

can be defined analogously as for a linear system.

max
w 6=0

‖F (K) (w)‖
‖w‖

. (5.9)

Given a state trajectory X = [x1, . . . ,xN ], we can recover the noise sequence as

ω0 = D0
−1x1

ωt = Dt
−1 (xt+1 − at(xt)− Bt(xt)Ktφt(xt)) , t > 0 (5.10)

Thus the map F (K) is invertible. Let F (K)−1 denote the inverse. It can be shown (theorem

5.1.7) that the objective (5.9) (assuming it is finite) can be bounded above by

sup
X

∑nN−1
i=1 σi

((
∂(F (K))−1(X)

∂X

))
nN − 1

nN−1
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In the linear case, the maximization over X is unnecessary since the term being maximized

is independent of X. However, for a nonlinear system, the Jacobian of (F (K))−1(X) is a

function of X and an explicit maximization needs to be performed to compute the objective.

Thus, we can formulate the control design problem as

min
K∈C

sup
X

∑nN−1
i=1 σi

((
∂(F (K))−1(X)

∂X

))
nN − 1

nN−1

(5.11)

The convexity of the above objective follows using a very similar proof as the linear case (see

theorem 5.1.6). Computing the objective (maximizing over X) in general would be a hard

problem, so this result is only of theoretical interest in its current form. However, in future

work, we hope to explore the computational aspects of this formulation more carefully.

5.1.6 Discussion and Related Work

There have been three major classes of prior work in synthesizing structured controllers: Fre-

quency domain approaches, dynamic programming and nonconvex optimization approaches.

We compare the relative merits of the different approaches in this section.

In frequency domain approaches, problems are typically formulated as follows:

Minimize
K

‖ Closed loop system with feedback K ‖

Subject to K Stabilizing ,K ∈ C

where ‖·‖ is typically the H2 or H∞ norm. In general, these are solved by reparameterizing

the problem in terms of a Youla parameter (via a nonlinear transformation), and imposing

special conditions on C (like quadratic invariance) that guarantee that the constraints C can

be translated into convex constraints on the Youla parameter Rotkowitz and Lall [2006]Qi

et al. [2004]. There are multiple limitations of these approaches:

(1) Only specific kinds of constraints can be imposed on the controller. Many of the exam-

ples have the restriction that the structure of the controller mirrors that of the plant.

(2) They result in infinite dimensional convex programs in general. One can solve them

using a sequence of convex programming problems, but these approaches are susceptible to

numerical issues and the degree of the resulting controllers may be ill-behaved, leading to
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practical problems in terms of implementing them.

(3) The approaches rely on frequency domain notions and cannot handle time-varying sys-

tems.

In the special case of poset-causal systems (where the structure of the plant and controller

can be described in terms of a partial order Shah [2013]), the problem can be decomposed

when the performance metric is the H2 norm and explicit state-space solutions are available

by solving Ricatti equations for subsystems and combining the results. For the H∞ norm,

a state-space solution using an LMI approach was developed in Scherer [2013].

Another thread of work on decentralized control looks at special cases where dynamic

programming techniques can be used in spite of the decentralization constraints. The ad-

vantage of these approaches is that they directly handle finite horizon and time-varying

approaches. For the LEQG cost-criterion, a dynamic programming approach was developed

in Fan et al. [1994] for the case of 1-step delay in a 2-agent decentralized control problem.

In Swigart and Lall [2010], the authors show that for the case of 2 agents (a block-lower

triangular structure in A,B with 2 blocks) can be solved via dynamic programming. In

Lamperski and Lessard [2013], the authors develop a dynamic programming solution that

generalizes this and applies to general “partially-nested” systems allowing for both sparsity

and delays.

All the above methods work for special structures on the plant and controller (quadratic

invariance/partial nestedness) under which decentralized controllers can be synthesized us-

ing either convex optimization or dynamic programming methods.

In very recent work Lavaei [2013], the authors pose decentralized control (in the discrete-

time, finite horizon, linear quadratic setting) as a rank-constrained semidefinite program-

ming problem. By dropping the rank constraint, one can obtain a convex relaxation of the

problem. The relaxed problem provides a solution to the original problem only when the

relaxed problem has a rank-1 solution. However, it is unknown when this can be guaranteed,

and how a useful controller can be recovered from a higher-rank solution. Further, the SDP

posed in this work grows very quickly with the problem dimension.

Our work differs from these previous works in one fundamental way: Rather than looking

for special decentralization structures that can be solved tractably under standard control
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objectives, we formulate a new control objective that helps us solve problems with arbitrary

decentralization constraints. In fact, we can handle arbitrary convex constraints - decentral-

ization constraints that impose a sparsity pattern on K are a special case of this. We can

also handle time-varying linear systems. Although the objective is nonstandard, we have

provided theoretical and numerical evidence that it is a sensible control objective. The only

other approaches that handle all these problems are nonconvex approaches Zhai et al. [2001],

Apkarian et al. [2008], Lin et al. [2013]. We have shown that our approach outperforms a

standard nonconvex approach, both in terms of performance of resulting controller and in

computation times.

We also believe that this was the first approach to exploit a fundamental limitation

(Bode’s sensitivity integral) to develop efficient control design algorithms. The fact that

the spectrum of the input output map satisfies a conservation law (the sum of the logs of

singular values is fixed) is a limitation which says that reducing some of the singular values

is bound to increase the others. However, this limitation allows us to approximate the

difficult problem of minimizing the H2 or H∞ norm with the easier problem of minimizing

a convex surrogate, leading to efficient solution.

5.1.7 Conclusion

We have argued that the framework developed seems promising and overcomes limitations of

previous works on computationally tractable approaches to structured controller synthesis.

Although the control objective used is non-standard, we have argued why it is a sensible

objective, and we also presented numerical examples showing that it produces controllers

outperforming other nonconvex approaches. Further, we proved suboptimality bounds that

give guidance on when our solution is good even with respect to the original (H2/H∞)

metrics. There are three major directions for future work: 1) Investigating the effect of

various objectives in our family of control objectives, 2) Developing efficient solvers for the

resulting convex optimization problems and 3) Deriving computationally efficient algorithms

for nonlinear systems.
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5.1.8 Appendix

Penalizing Control Effort

A more direct approach is to augment the state to include the controls. We define an

augmented problem with x̄t ∈ Rns+nu , ωt ∈ Rns+nu .

At =

At 0

0 0

 , Bt =

Bt
Rt

 , Dt =

Dt 0

0 γI


xt+1 = Atxt +Btut +Dtωt

Partitioning the new state xt =

xt

x̃t

, ωt =

ωt
ω̃t

, we have:

xt+1 = Atxt +Btut +Dtωt, x̃t+1 = Rtut + γω̃t

Given this,

N∑
t=1

xt
Txt =

N∑
t=1

xt
Txt+

N−1∑
t=1

(Rtut + γω̃t)
T (Rtut + γω̃t) + γ2ω0

Tω0

In the limit γ → 0, we recover the standard LQR cost. However, setting γ = 0 violates the

condition of invertibility. Thus, solving the problem with an augmented state x ∈ Rnu+ν ,

ω ∈ Rnu+ν ,

At =

At 0

0 0

 , Bt =

Bt
Rt

 , Dt =

Dt 0

0 γI


solves the problem with a quadratic control cost in the limit γ → 0. The caveat is that the

problems (5.5)(5.6) become increasingly ill-conditioned as γ → 0. However, we should be

able to solve the problem for a small value of γ, which models the quadratic controls cost

closely but still leads to a sufficiently well-conditioned problem that we can solve numerically.

Dynamic Output Feedback

So far, we have described the problem in terms of direct state feedback ut = Ktxt. However,

we can also model output feedback ut = KtCtxt by simply defining K̃t = KtCt where
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Ct ∈ Rm×ns is a measurement matrix that produces m measurements given the state.

Convex constraints on Kt will translate into convex constraints on K̃t, since K̃t is a linear

function of Kt. If we wanted to allow our controls to depend on the previous k measurements

(dynamic output feedback), we simply create an augmented state xt =


xt
...

xt−k

. Then, we

can define Kt ∈ Rnu×km and

K̃t = Kt


Ct 0 . . . 0

0 Ct−1 . . . 0
...

...
...

...

0 0 . . . Ct−k



and an augmented dynamics

At =


At 0 . . . 0 0

I 0 . . . 0 0
...

...
...

...
...

0 0 . . . I 0

 , Bt =


Bt

0
...

0



Dt =


Dt 0 . . . 0 0

0 γI . . . 0 0
...

...
...

...
...

0 0 . . . 0 γI



Again, we need to set γ = 0 to exactly match the standard output feedback problem but

that violates the assumption of invertibility. We can consider taking γ → 0 and recovering

the solution as a limiting case, as in the previous section.
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Proofs

Theorem 5.1.4.

q∞(K) = σmax (F (K))

≤
N−1∏
t=0

det (Dt)

∑nsN−1
i=1 σi

(
F (K)−1

)
nsN − 1

nsN−1

Proof. Since F (K) is a block lower triangular matrix (a reflection of the fact that we have

a causal linear system) , its determinant is simply the product of determinants of diagonal

blocks: det (F (K)) =
∏
t det (Dt) = c independent of the values of Ãt. In fact, this result is

a generalization of Bode’s classical sensitivity integral result and has been studied in Iglesias

[2001]. Since the product of singular values is equal to the determinant, we have

σmax (F (K)) =
c

nN∏
i=2

σi (F (K))

= c

nN−1∏
i=1

σi

(
F (K)−1

)

where the last equality follows because the singular values of F (K)−1 are simply reciprocals

of the singular values of F (K). The result now follows using the AM-GM inequality.

Theorem 5.1.5.

q2(K) ≤ nN

(
N−1∏
t=0

det (Dt)

)2 (
σmax

(
F (K)−1

))2(nsN−1)

Proof. Let
∏N−1
t=0 det (Dt) = c. From the above argument, we can express σi (F (K)) as

c
∏

j 6=nN−i+1

σj

(
(F (K))−1

)
≤ c
(
σmax

(
F (K)−1

))(nsN−1)
.

The expression for q2(K) is

nN∑
i=1

(σi (F (K)))2 ≤ nNc2
(
σmax

(
F (K)−1

))2(nsN−1)
.
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Theorem 5.1.6. For the nonlinear system described in (5.10), the function

sup
X

∑nN−1
i=1 σi

((
∂(F (K))−1(X)

∂X

))
nN − 1

nN−1

is convex in K.

Proof. First fix w to an arbitrary value. From (5.10), we know that
(
∂(F (K))−1(X)

∂X

)
is of

the form 

D0
−1 0 . . . . . . 0

−D1
−1 ∂ω1

∂x1
D1
−1 . . . . . . 0

0 −D2
−1 ∂ω2

∂x2
D2
−1 . . . 0

...
...

... · · ·
...

0 0 0 . . . DN−1
−1


Since ωt = Dt

−1 (xt+1 − at(xt)− Bt(xt)Ktφt(xt)), ωt is an affine function of K. Hence, so

is ∂ωt
∂xt

, for any t. Thus, the overall matrix
(
∂(F (K))−1(X)

∂X

)
= M(K) is an affine function

of K. Thus, by composition properties,

(∑nN−1
i=1 σi(M(K))

nN−1

)nN−1

is a convex function of K

for any fixed X. Taking a supremum over all X preserves convexity, since the pointwise

supremum of a set of convex functions is convex.

Theorem 5.1.7. Consider the nonlinear system described in (5.10). Suppose that supw 6=0
‖F (K)(w)‖
‖w‖

is finite and the supremum is achieved at w∗ 6= 0 for all values of K. Then, supw 6=0
‖F (K)(w)‖
‖w‖

is bounded above by

sup
X

∑nN−1
i=1 σi

((
∂(F (K))−1(X)

∂X

))
nN − 1

nN−1

Proof. By theorem 5.1.8, supw 6=0
‖F (K)(w)‖
‖w‖ is bounded above by

sup
w 6=0

σmax

(
∂F (K) (w)

∂w

)
.

Now, M(K) = ∂F (K)(w)
∂w is a lower-triangular matrix (since we have a causal system) and

the diagonal blocks are given by Dt. Thus, det (M(K)) =
∏N−1
t=0 det (Dt) = c, and we can

rewrite σmax (M(K)) as c
∏nN−1
i=1 σi

(
(M(K))−1

)
. By the rules of calculus, we know that

(M(K))−1 =

(
∂(F (K))−1(X)

∂X

)
X=F (K)(w)
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Thus, the above objective reduces to

sup
w 6=0

nN−1∏
i=1

σi

(∂(F (K))−1(X)

∂X

)
X=F (K)(w)

.
Given any X, we can find w such that X = F (K) (w) (simply choose w = (F (K))−1(X)).

Thus, the above quantity is equal to

sup
X

nN−1∏
i=1

σi

((
∂(F (K))−1(X)

∂X

))
.

The result now follows using the AM-GM inequality.

Theorem 5.1.8. Let g(y) : Rl 7→ Rp be any differentiable function. If the function
‖g(y)‖2
‖y‖2

attains its maximum at y∗,

sup
y

‖g(y)‖2
‖y‖2

≤ sup
y 6=0

σmax

(
∂g(y)

∂ y

)
∀y 6= 0.

Proof. log
(
‖g(y)‖2

‖y‖2

)
is differentiable at any y 6= 0 and hence at y = y∗. Since this is an

unconstrained optimization problem, we can write the optimality condition (0 gradient):

2
(
∂g(y)
∂ y

)
y=y∗

g(y∗)

‖g(y∗)‖2
=

2 y∗

‖y∗‖2

Taking the `2 norm on both sides, we get∥∥∥∥(∂g(y)
∂ y

)
y=y∗

g(y∗)

∥∥∥∥
‖g(y∗)‖

=
‖g(y∗)‖
‖y∗‖

Since y∗ maximizes ‖g(y)‖
‖y‖ , for any y 6= 0, we have:

‖g(y)‖
‖y‖

≤ ‖g(y∗)‖
‖y∗‖

=

∥∥∥∥(∂g(y)
∂ y

)
y=y∗

g(y∗)

∥∥∥∥
‖g(y∗)‖

≤ σmax

(
∂g(y)

∂ y

)
y=y∗

≤ max
y 6=0

σmax

(
∂g(y)

∂ y

)
.

Taking supremum over y on both sides, we get the result.
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5.2 Convex Stochastic Policy Optimization for General Dynamical Systems

In this section, we present a new convex-optimization based approach to the control of

discrete-time dynamical systems. Stochastic Optimal Control of nonlinear systems in gen-

eral is a hard problem and the only known general approach is based on dynamic program-

ming, which scales exponentially with the size of the state space. Algorithms that approx-

imate the solution of the dynamic program directly (approximate dynamic programming)

have been successful in various domains, but scaling these approaches to high dimensional

continuous state control problems has been challenging [Zhong, 2013]. In this section, we

pursue the alternate approach of policy search or policy gradient methods [Baxter and

Bartlett, 2001]. These algorithms have the advantage that they are directly optimizing the

performance of a control policy (using gradient descent) as opposed to a surrogate measure

like the error in the solution to the Bellman equation. They have been used successfully

for applications in robotics [Peters and Schaal, 2008] and are closely related to the recent

framework of path integral control [?Theodorou et al., 2010b]. However, in all of these

approaches, there were no guarantees made regarding the optimality of the policy that the

algorithm converges to (even in the limit of infinite sampling) or the rate of convergence.

In this work, we develop the first policy gradient algorithms that achieve the globally

optimal solutions to policy optimization problems. We do this by proving that under certain

assumptions, the policy optimization problem is a convex optimization problem. This can

then be solved used stochastic convex optimization methods, which have guaranteed con-

vergence to the optimal solution (in expectation and with high probability) in polynomial

time. There are two ways of taking gradients in this approach: One of them leads to model-

free updates and is very similar to the updates in path integral control [Theodorou et al.,

2010b]. The other approach leads to a model-based algorithm, which typically converges

faster than the model-free variant but requires a model of the system dynamics. All of the

approaches work in both finite and infinite horizon settings.
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Problem Setup

We deal with arbitrary discrete-time dynamical systems of the form

w =


w0

w1

...

wN−1

 ∼ Pw

x1 = w0,xt+1 = F (xt,yt, wt, t) t = 1, 2, . . . ,N−1 (5.12)

yt = ut + ωt, ωt ∼ N (0,Σt) t = 1, 2, . . . ,N−1 (5.13)

where xt ∈ Rns denotes the state, yt ∈ Rnu the effective control input, wt ∈ Rp external

disturbances, ut ∈ Rnu the actual control input, ωt ∈ Rnu the control noise, F : Rns ×

Rnu ×Rp × {1, . . . ,N−1} 7→ Rns and N (µ,Σ) a Gaussian distribution with mean µ and

covariance matrix Σ. Equation (6.10) can model any noisy discrete-time dynamical system,

since F can be any function of the current state, control input and external disturbance

(noise). However, we require that all the control dimensions are affected by Gaussian noise

as in (5.13). This can be thought of either as real actuator noise or artificial exploration

noise.

We will work with costs that are a combination of arbitrary state costs and quadratic

control costs:

N∑
t=1

`t(xt) +
N−1∑
t=0

ut
TRtut

2
(5.14)

Further, we will assume that the control-noise is non-degenerate, that is Σt is full rank

for all 0 ≤ t ≤ N−1. We denote St = Σt
−1.

We seek to design feedback policies

ut = Ktφ (xt, t) , φ : Rn
s × {1, 2, . . . ,N−1} 7→ Rr,Kt ∈ Rν×r (5.15)

to minimize the accumulated cost (5.14). We will assume that the features φ are fixed and

we seek to optimize the policy parameters

K = {Kt : t = 1, 2, . . . ,N−1}.
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The stochastic optimal control problem we consider is defined as follows:

Minimize
K

E
w∼Pw,ωt∼N (0,Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +

N−1∑
t=1

ut
TRtut

2

))]

Subject to x1 = w0,xt+1 = F (xt,yt, wt, t) t = 1, 2, . . . ,N−1

yt = ut + ωt, ωt ∼ N (0,Σt) t = 1, 2, . . . ,N−1 (5.16)

This is exactly the same as the formulation in Risk Sensitive Markov Decision Processes

Marcus et al. [1997], the only change being that we have explicitly separated the noise

appearing in the controls from the noise in the dynamical system overall. In this formulation,

the objective depends not only on the average behavior of the control policy but also on

variance and higher moments (the tails of the distribution of costs). This has been studied

for linear systems under the name of LEQG control Speyer et al. [1974]. α is called a risk

factor: Large positive values of α result in strongly risk-averse policies while large negative

values result in risk-seeking policies. In our formulation, we will need a certain minimum

degree of risk-aversion for the resulting policy optimization problem to be convex.

5.2.1 Main Technical Results

Theorem 5.2.1. If αRt � (Σt)
−1 = St for t = 1, . . . ,N−1, then the optimization problem

(6.9) is convex.

Proof. We first show that for a fixed w, the quantity

E
ωt∼N (0,Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +

N−1∑
t=1

ut
TRtut

2

))]
is a convex function of K. Then, by the linearity of expectation, so is the original objective.

We can write down the above expectation as:

E
yt∼N (Ktφ(xt,t),Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +
N−1∑
t=1

ut
TRtut

2

))]

=

∫ exp

(
−

N−1∑
t=1

‖yt −Ktφ (xt, t)‖2St
2

)
∏N−1
t=1

√
(2π)nu det (Σt)

exp

(
α

(
N∑
t=1

`t(xt) +

N−1∑
t=1

‖Ktφ (xt, t)‖2Rt
2

))
dY
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In the above integral, xt can be written as a deterministic function of w,Y for any t ∈

{1, . . . ,N} using (6.10). The term inside the exponential can be written as

−

(
N−1∑
t=1

‖yt‖2St
2

)
+ α

(
N∑
t=1

`t(xt)

)

+
N−1∑
t=1

tr
((
Kt

T (αRt − St)Kt

)
φ (xt, t)φ (xt, t)

T
)

2
− yt

TStφ (xt, t)Kt

The terms on the first line don’t depend on K. The function
(
Kt

T (αRt − St)Kt

)
is �-

convex when αRt − St � 0 and hence the first term on the second line is convex in K. The

second term is linear in K and hence convex. Since exp is a convex and increasing function,

the composed function (which is the integrand) is convex as well in K. Thus, the integral

is convex in K.

We can add arbitrary further convex constraints and penalties on K without affecting

convexity.

Corollary 1. The problem

min
K

E
w∼Pw,ωt∼N (0,Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +
N−1∑
t=1

ut
TRtut

2

))]

Subject to (6.10), (5.13),K ∈ C (5.17)

is a convex optimization problem for any arbitrary convex set C ⊂ Rnu×r×(N−1) if αRt �

Σt ∀t.

Extension to Infinite Horizon Systems

The results of the previous section can also be proven using a dynamic programming ap-

proach. For a given policy parameterized by K, the expected cost can be written using a

recursive relationship.

Before establishing the convexity results, we prove the following lemma from which all

the subsequent results follow easily.

lemma 1. If h (x,K) is a convex function of K∀x and αRt � Σt
−1, then so is

(Ktxt)
TRt (Ktxt)

2
+

1

α
log

(
E

ωt,wt
[exp (αh (F (xt,Ktxt + ωt, wt, t) ,K))]

)
∀xt
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Proof. The RHS is equal to

1

α
log

(
E

yt∼N (Ktxt,Σ),wt

[
exp

(
αh (F (xt,yt, wt, t) ,K) +

(Ktxt)
T (αRt) (Ktxt)

2

)])
=

1

α
log

∫ exp
(
− (yt−Ktxt)TΣt−1(yt−Ktxt)

2 + αh (F (xt,yt, wt, t) ,K) + (Ktxt)
T (αRt)(Ktxt)

2

)
√

(2π)nu det (Σt)
d yt

 .

The term inside the exponent depends on is a convex function of K since αRt � Σt
−1, the

term inside the exponent is a convex function of K. Hence, by composition, so is the overall

function for every value of xt.

Theorem 5.2.1 (Infinite Horizon Convexity). The following problems are convex optimiza-

tion problems:

IH : min
K

lim
N→∞

1

αN
log

(
E

w∼Pw,ωt∼N (0,Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +

N−1∑
t=1

ut
TRtut

2

))])
(5.18)

FE : min
K

1

α
log

 E
w∼Pw,ωt∼N (0,Σt)
Ne=min{t:xt∈T }

[
exp

(
α

(
Ne−1∑
t=1

`t(xt) + `f (xNe) +

Ne−1∑
t=1

ut
TRtut

2

))] , T ⊂ X

(5.19)

subject to the constraints

x1 = w0,xt+1 = F (xt,yt, wt, t) ,yt = ut + ωt, ωt ∼ N (0,Σt) t = 1, 2, . . . ,N−1

K ∈ C

Proof. Follows by writing the policy specific Bellman equation for each problem and invoking

lemma (1).

5.3 Applications

5.3.1 Structured Controller Design for Linear Systems

Consider a linear dynamical systems xt+1 = Atxt + Btyt,x1 = 0 (we assume a noiseless

system here for brevity). We seek to synthesize linear state feedback policies ut = Ktxt

with structural constraints K ∈ C. If the state costs are quadratic: `t(xt) = xtT Qt xt
2 , the

expectations in (5.17) can be computed analytically. We can write down
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X =


x1

x2

...

xN

 =



0 0 0 . . . 0

B1 0 0 . . . 0

A1B1 B2 0 . . . 0
...

...
...

...
...∏1

t=N−1AtB1
∏2
t=N−1AtB2

∏3
t=N−1AtB3 . . . BN−1


︸ ︷︷ ︸

M


y1

...

yN−1

 =MY

where M is an RNns×(N−1)nu matrix that is independent of K. Also, define:

S =


S1 0 . . . 0

0 S2 . . . 0
...

...
...

...

0 0 . . . SN−1

 ∈ Rm(N−1)×m(N−1),K =


K1 0 . . . 0 0

0 K2 . . . 0 0
...

...
...

...
...

0 0 . . . KN−1 0

 ∈ Rm(N−1)×nN

R =


R1 0 . . . 0

0 R2 . . . 0
...

...
...

...

0 0 . . . RN−1

 ∈ Rm(N−1)×m(N−1),Q =


Q1 0 . . . 0

0 Q2 . . . 0
...

...
...

...

0 0 . . . QN

 ∈ RnN×nN

Let c =

√
(2π)nu(N−1)∏N−1

t=1 det (Σt). The expectation becomes

1

c

∫
exp

(
−

N−1∑
t=1

‖yt −Ktxt‖2St
2

)
exp

(
α

(
N−1∑
t=1

xt
T
(
Qt +Kt

TRtKt

)
xt

2
+

xN
TQNxN

2

))
d Y

=
1

c

∫
exp

(
−

N−1∑
t=1

‖yt −Ktxt‖2St
2

)
exp

(
α

(
N−1∑
t=1

xt
T
(
Qt +Kt

TRtKt

)
xt

2
+

xN
TQNxN

2

))
d Y

=
1

c

∫
exp

(
−1

2
YTSY + YTSKX− 1

2
XTKTSKX +

1

2
αXT

(
KTRK +Q

)
X

)
d Y

=
1

c

∫
exp

(
−1

2
YT

(
S + SKM+MTKTST +MT

(
KT (αR− S)K + αQ

)
M
)
Y

)
d Y

=


∞ if S − SKM−MTKTST �MT

(
KT (αR− S)K + αQ

)
M

det
(
(S−SKM−MTKTST−MT (KT (αR−S)K+αQ)M)

−1
)

√
(2π)nu(N−1)∏N−1

t=1 det(Σt)
otherwise
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When αR � S, the above problem is a convex optimization problem and is equivalent to

the following determinant maximization problem:

Maximize
K

log
(
det
(
S − SKM−MTKTST −MT

(
KT (αR− S)K + αQ

)
M
))

Subject to S − SKM−MTKTST −MT
(
KT (αR− S)K + αQ

)
M� 0

5.3.2 Learning Neural Networks

This approach can also be applied to learning neural networks. In this approach, the time-

steps corresponds to layers of the neural network. In each step, the state (neural activations)

are passed through a linear mapping and an component-wise nonlinear transfer function:

xt+1 = h(Ktxt),x1 = α

where h is applied component-wise (common examples include the sigmoid and tanh func-

tions). To put this in our framework, we assume that the neural inputs are subject to noise,

so that

xt+1 = h(yt),yt = ut + ωt, ut = Ktxt.

Note that in our framework this corresponds to an F (xt,yt, ωt, t) = h(yt), so the dynamics

only depends on the (noisy) control input. The training data for the neural network are

considered as external disturbances sampled from the true data distribution. The input is

the initial state α and we would like to adjust the network weights K so that the final state

xN matches the desired output, β.

The neural network training problem can be then phrased as a problem in our framework:

Minimize
K

E
(α,β)∼Pdata,ωt∼N (0,Σt)

[
exp

(
α ` (xN, β) +

N−1∑
i=1

α
ut
TRtut

2

)]

where ` is a loss function measuring the discrepancy between the desired output and that

of the neural network. In practice the true distribution Pdata is unknown and will be replaced

by a sample average over training data. Our result says that as long as αRt � Σt
−1, the

resulting problem is a convex optimization problem. Thus, we have a convex optimization

problem for training neural networks with arbitrary architecture, transfer functions and data



82

distributions! The way this differs from standard formulations of neural network training

are:

a The inputs to each layer must be made noisy by adding Gaussian noise N (0,Σt).

b The performance of the network is measured as the expectation over the added noise

of an exponentiated augmented loss function: This has both a “data” term ` (xN, β)

and a “regularization” term:
∑N−1

t=1
xtTKtTRtKtxt

2 which penalizes networks that have

large activations or large weights.

c The noise added at each layer has to be “sufficient”, that is, Σt � Rt−1

α

5.3.3 Convex Reinforcement Learning

Stochastic gradient methods can be used to solve the convex optimization problems de-

scribed in this work, leading to stochastic gradient methods for reinforcement learning and

control. Stochastic approximation is an old idea in reinforcement learning and forms the

basis of popular reinforcement learning algorithms like TD-learning, Q-learning and pol-

icy gradient algorithms [Szepesvári, 2010]. However, thus far, there were no guarantees

made about the speed of convergence of these algorithms, particularly for continuous state

problems.

Based on the work presented here, we can derive policy optimization algorithms based

on stochastic convex optimization that are guaranteed to converge to the optimal policy in

polynomial time. The results can give rise to both model-free and model-based reinforce-

ment learning algorithms, based on the type of gradient update used. We then develop 2

policy gradient learning algorithms for finite horizon problems (algorithms 1,2). Note that

algorithm 1 requires gradients of the dynamics (and hence a model of the dynamics) while

algorithm 2 is completely model-free and just uses roll-outs in order to compute policy

gradients.



83

Algorithm 1 Convex Stochastic Policy Gradient Method for (5.17)

K← K0

for i = 1, . . . , l do

ˆ̀← 0 (Cost Estimate for Rollout)

for t = 1, . . . ,N−1 do (Policy Rollout)

ut ← Ktφ (xt)

ˆ̀← ˆ̀ + `t (xt) + utTRtut
2

ωt ∼ N (0,Σt) (Sample Control Noise)

wt ∼ Pw (Sample System Noise)

xt+1 ← F (xt, ut + ωt, wt, t) (Simulate Dynamical System Step)

end for

ˆ̀← ˆ̀ + `N (xN)

G← 0 ∗K

λ← ∇ `tN (xN)

for t = N−1, . . . , 1 do (Policy Gradient)

Gt ← (RtKtxt)(φ(xt))
T+xt(RtKtφ(xt))

T

2 + ∂xt+1

∂ut
λφ (xt)

T

ux ←
(
Kt

∂φ(xt)
∂xt

)T
λ← ∂`(xt)

∂xt
+ uxRtKtφ (xt) +

(
∂xt+1

∂xt
+ ux

T ∂xt+1

∂ut

)
λ

end for

K← K− ηi
(

exp
(
αˆ̀
))

G

end for
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Algorithm 2 Derivative-Free Stochastic Gradient Method for (5.17)

K← K0

for i = 1, . . . , l do

ˆ̀← 0 (Cost Estimate for Rollout)

for t = 1, . . . ,N−1 do (Policy Rollout)

ut ← Ktφ (xt)

ˆ̀← ˆ̀ + `t (xt) + utTRtut
2

yt ∼ N (ut,Σt) (Sample Noisy Control)

wt ∼ Pw (Sample System Noise)

xt+1 ← F (xt,yt, wt, t) (Simulate Dynamical System Step)

end for

ˆ̀← ˆ̀ + `N (xN)

G← 0 ∗K

λ← ∇ `tN (xN)

for t = N−1, . . . , 1 do (Policy Gradient)

Gt ←
(
Σt
−1 (yt − ut) + αRtut

)
(φ (xt))

T

end for

K← K− ηi
(

exp
(
αˆ̀
))

G

end for
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Chapter 6

APPLICATIONS TO ELECTRIC ENERGY SYSTEMS

In this chapter, we describe applications of stochastic control to problems in energy

systems. We will look at two problems:

1 Optimal placement and sizing of Energy Storage (Large-Scale Batteries) in order to

mitigate fluctuations in intermittent generation like wind energy.

2 Distributed control of frequency in a transmission power grid.

6.1 Storage Sizing and Placement to Operational and Uncertainty-Aware Sim-
ulations

6.2 Introduction

Electrical grid planning has traditionally taken two different forms; operational planning and

expansion or upgrade planning. The first is concerned with the relatively short time horizon

of day-ahead unit commitment or hour-ahead or five-minute economic dispatch. The focus is

on controlling assets that are already present within the system to serve loads at minimum

cost while operating the system securely. The second typically looks out many years or

decades and is focused on optimal addition of new assets, with a focus on minimizing the

cost of electricity over the long time horizon. When a system consists entirely of controllable

generation and well-forecasted loads, the network power flows do not deviate significantly

or rapidly from well-predicted patterns. In this case, expansion planning can be reasonably

well separated from operational planning. In the latter case, expansions may be optimized

against only a handful of extreme configurations.

As the penetration of time-intermittent renewables increases, expansion and operational

planning will necessarily become more coupled. For an electrical grid with large spatial

extent, renewable generation fluctuations at well-separated sites will be uncorrelated on
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short time scalesGibescu et al. [2009], Mills and Wiser [2010], and the intermittency of this

new non-controllable generation will cause the patterns of power flow to change on much

faster time scales than before, and in unpredictable ways. This new paradigm shift calls

for accounting of multiple diverse configurations of uncertain resources in many operational

as well as planning tasks. New equipment (e.g. combustion turbines or energy storage)

and control systems may have to be installed to mitigate the network effects of renewable

generation fluctuations to maintain generation-load balance. The optimal placement and

sizing of the new equipment depends on how the rest of the network and its controllable

components respond to the fluctuations of the renewable generation. Overall, we desire

to install a minimum of new equipment by placing it at network nodes where controlled

power injection and/or consumption have a significant impact on the network congestion

introduced by the renewable fluctuations. From the outset, it is not clear which nodes

provide the best controllability. Placing a minimum of new equipment is desirable since the

investment and installation costs and costs associated with overcoming regulatory barriers.

Thus, it makes sense to minimize the number of sites at which storage is placed for economic

reasons.

6.3 Related Work

Before discussing our initial approach at integrating operational planning and expansion

planning, we summarize a few methods for mitigating the intermittency of renewable gener-

ation. When renewable penetration is relatively low and the additional net-load fluctuations

are comparable to existing load fluctuations, a power system may continue to operate “as

usual” with primary and secondary regulation reservesHirst and Kirby [1999] being con-

trolled via a combination of distributed local control, i.e. frequency droop, and centralized

control, i.e. automatic generation control (AGC). In this case, planning for renewables may

simply entail increasing the level of reserves to guard against the largest expected fluctuation

in aggregate renewable output.

As the penetration level grows, simply increasing the reserve levels will generally re-

sult in increased renewable integration costsMeibom et al. [2010] which are usually spread

over the rate base. Alternatively, operational planning can be improved by using more
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accurate techniques for renewable generation forecasting to better schedule the controllable

generation (energy and reserves) to meet net load and operate reliably Meibom et al. [2010],

Bouffard and Galiana [2008], Hirst [2002]. Simulations using rolling unit commitment Tuohy

et al. [2007], Meibom et al. [2010], where updated wind forecasts are used modify the unit

commitment more frequently, have resulted in lower overall renewable integration costs.

Both unit commitment and economic dispatch seek to minimize the cost of electricity,

however, they must also respect system constraints including generation/ramping limits,

transmission line thermal limits, voltage limits, system stability constraints, and N-1 con-

tingencies. Previous worksMeibom et al. [2010], Bouffard and Galiana [2008], Tuohy et al.

[2007], Hirst [2002] have generally looked at the effects of stochastic generation on the eco-

nomics and adequacy of aggregate reserves while not considering such network constraints.

These constraints may be respected for a dispatch based on a mean renewable forecast.

However, if the number of renewable generation sites and their contribution to the overall

generation is significant, verifying the system security of all probable renewable fluctuations

(and the response of the rest of the system) via enumeration is a computationally intractable

problem.

The approaches summarized above do not consider network constraints or the behavior

of the system on time scales shorter than the time between economic dispatches (one hour

in the case of Meibom et al. [2010]). In particular, they do not model how fast changes

in renewable generation and the compensating response of regulation reserves interact with

network constraints. In this manuscript, extending our initial study Dvijotham et al. [2011],

we augment the approaches summarized above by focusing on the behavior of the electrical

network at a finer time resolution and investigate how the control of energy storage affects

its placement and sizing.

We presume that the unit commitment problem has been solved, and at the start of a

time period, we perform time-varying (every 5 minutes) lookahead dispatch of controllable

generation and storage based on an operational scenario (spatial and temporal profiles of

wind generation, load and net interchange) while trying to minimize the storage capacity

used (in terms of both energy and power) —this gives us the minimum level of storage at

each bus required for a particular operational scenario. We perform this optimization for
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several different scenarios (based on historical data, if available, or data generated using an

appropriate statistical model). The statistics from simulated system operations are then

coupled to the expansion planning process by developing a heuristic to guide the optimal

placement and sizing of storage throughout the network—a result that cannot be achieved

with the previous approaches described above.

A new approach, applying convex relaxations to traditional operations (like Optimal

Power Flow (OPF)) including uncertain (wind) resources and storage was recently pro-

posed in Bose et al. [2012]. The idea was to solve a version of the OPF problem with

certain constraints relaxed (permitting potentially inadmissible solutions) so that the re-

sulting problem is a convex optimization problem and can be solved to global optimality

efficiently. Further, the authors provide conditions under which the solution to the relaxed

problem satisfies all the constraints of the original problem, so that the relaxed problem

can be used as a computationally efficient proxy. The approach was also extended to the

storage placement problem in Bose et al. [2012], Gayme and Topcu [2013], which concluded,

that placement of storage on, or close to, renewable sites is far from optimal. Although in-

novative and theoretically interesting, the convex relaxation approach of Bose et al. [2012],

Gayme and Topcu [2013] lacks scalability and was only illustrated on a very small 14 bus

system. This is due to the high computational complexity of the semidefinite programming

approach used in Bose et al. [2012]. Further, the authors in Bose et al. [2012] need to as-

sume periodicity of renewable generation in order to solve the storage placement problem.

In contrast, our work is the first resolving the storage placement problem over realistically

sized networks. We run our algorithm on a 2209-node model of the Boneville Power Admin-

istration (BPA), accounting for actual operational data and multiple (more than hundred)

wind patterns.

As discussed earlier, there are several reasons to place energy storage at a small num-

ber of sites. However, choosing the optimal set of sites is a combinatorial problem and

cannot be solved by convex programming techniques. In this paper, we develop a greedy

heuristic that attempts to solve the storage placement problem directly. While we can no

longer guarantee optimality of this algorithm, we demonstrate that our approach is robust

and works across different network topologies leading to more economical placements that
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obvious alternatives.

We first set up notation in subsection 6.4.1, formulate the look-ahead dispatch problem

in section 6.4.2, and finally describe our heuristic algorithm for storage placement in 6.4.4.

We present numerical results in section 6.5 and section 6.7 wraps up with some conclusions

and directions for future work.

6.4 Mathematical Formulation

6.4.1 Background and Notation

Let G = (V, E) denote the graph representing the topology of the power system, with V being

set of buses and E being the set of transmission lines. Let n denote the number of buses.

At each bus, we can have three types of elements: Loads which consumer active power,

Traditional Generators which generate active power and whose output can be controlled

(within limits) and unconventional generators (renewables like wind) which generate active

power, but whose output cannot be controlled.

For any S ⊂ V and any vector v ∈ Rn, we denote vS = {vi : i ∈ S}. We will sometimes

abuse this notation slightly to also denote the n dimensional vector with zeros everywhere

except in S. We denote by p the vector of net-injections at each bus, and by ps,pr,pl,pg

the vector of injections at every node due to storage, renewables, loads and traditional

generators, respectively. For any quantity y that is a function of time, we denote by y(t)

its value at time t. In this paper, we will use integer-valued time t = 0, 1, . . . , Tf where Tf

is the time horizon of interest.

Let N (j) denotes the set of neighbors of node j in the network. We define the graph

Laplacian to be a |V | × |V | matrix with entries:

Lij = − 1

xij
,Lii =

∑
j∈N (i)

1

xij

where xij is the reactance on the transmission line between node i and j. Then, the DC

power flow equations are given by:

fij =
θi − θj

xij
, θ = Lp
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where θ denotes the voltage phase and fij the active power flow between node i and j.

We will consider placing energy storage at nodes in the network. We denote the by s

the vector of energy stored at each node in the network. The energy capacity of storage

(maximum energy that can be stored) is denoted s̄ and the maximum power that can be

withdrawn from or supplied to the energy storage units p̄s. We denote by p̄ the maximum

power output of traditional generators and p̄gr the corresponding limit on the ramping

limits. f̄ij the limit on the flow on the line between i, j.

6.4.2 Lookahead Dispatch of Generation and Storage

In the presence of energy storage, the Optimal Power Flow(OPF)-based dispatch problem

gets coupled over time (since energy stored at some time can be used later). Our approach

to sizing and placing energy storage relies on operational simulations of the system under

realistic load and renewable generation profiles. The operational simulation is formulated

as a lookahead-dispatch problem: This is very similar to what the system operator would

do to dispatch energy storage given a forecast of renewable generation and load. However,

since we are interested in sizing and placement of energy storage, we additionally optimize

over the energy capacity s̄ and power capacity p̄s of the energy storage needed to ameliorate

the fluctuations in renewables and loads.
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min
ps(t),pg(t)

Tf∑
t=0

`tg
Tpg(t)︸ ︷︷ ︸

Generation Costs

+ `ts
T s̄ + `t

p
s
T p̄s︸ ︷︷ ︸

Storage Investment Costs

subject to

0 ≤ pg(t) ≤ p̄g (Generation Capacities) (6.1)

p(t) = pg(t) + pr(t) + pl(t) + pr(t) (Net Injection) (6.2)

Lθ(t) = p(t) (DC Power Flow) (6.3)∣∣∣∣fij(t) =
θi(t)− θj(t)

xij

∣∣∣∣ ≤ f̄ij (Flow Limits) (6.4)

|pg(t+ 1)− pg(t)| ≤ p̄gr (Generation Ramping Limits) (6.5)

0 ≤ s(t) ≤ s̄ (Energy Capacity of Storage) (6.6)

0 ≤ ps(t) ≤ p̄s (Power Capacity of Storage) (6.7)

s(t) = s(0)−
t−1∑
τ=0

ps(t)∆ (Energy Conservation) (6.8)

1T s(Tf ) = 1T s(0) (0 Net Energy Supply) (6.9)

The objective models operational costs of generation (fuel etc.) and amortized invest-

ment costs of placing energy storage in the grid. The constraints (6.1),(6.2),(6.3) and (6.4)

are standard constraints appearing in a DCOPF formulation. The fifth constraint (6.6) is

relevant in scenarios where wind generation undergoes a ramp event (sudden drop or in-

crease) and traditional generators need to increase or decrease their output at rates close to

their ramping limits. The constraints (6.6), (6.7), (6.8) are standard constraints for storage.

The final constraint (6.9) models the fact that we want to use energy storage as a hedge

over time - to store energy when too much power is being produced in the grid and supply

it at a later time. Thus, over the horizon of interest, we do not want a net energy supply

to/from the energy storage. This optimization problem is a Linear Program (LP) (like a

standard DCOPF) and can be solved using off-the-shelf linear programming packages. We

use the gurobi package in our work here Gurobi Optimization [2014].
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6.4.3 Modeling Assumptions

Since this is a preliminary study meant to illustrate the value of coupling planning and

operations, we made a number of simplifying assumptions that may not hold for a real

power system. The first one is to use the DC Power Flow equations rather than the full

nonlinear AC equations. The second one is to assume that dispatch is based on perfect

forecasts of wind and loads over a 2-hour period. We outline the justifications for these

assumptions in this section.

DC vs AC OPF

The DC power flow equations are an approximation to the nonlinear AC power flow equa-

tions. They are frequently used in the context of power markets although system operators

would use the nonlinear ACOPF to perform actual dispatch of generators in a grid. In

general, there can be significant discrepancies between DC and AC power flow results that

make the DC solution unacceptable in an operational setting. In this paper, however, we

stick with the DCOPF formulation. There are multiple reasons for this:

1 Since our interest in this work was to concentrate on the novel aspect of integrat-

ing planning and operational studies, we were not interested in building a nonlinear

ACOPF solver. Freely available solvers like MATPOWER Zimmerman et al. [2005]

do not generalize to the lookahead dispatch setting, that is, they are unable to deal

with the time-coupling introduced by storage. However the storage placement algo-

rithm (Algorithm 3) we develop in this paper can be used with any OPF solver. In

particular, a more complete commercial-grade ACOPF solver should work better. Ad-

ditionally, the extra computational burden of the ACOPF is not an issue here since

we are performing offline planning studies which does not impose strict real-time re-

quirements on the computation time (we could allow the algorithm to run for days if

required).

2 We are mostly concerned with long-term planning and use operational information

to inform the planning process. Hence, we are only interested in the accuracy of
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the OPF to the extent that it captures all possible patterns of flows observed in

typical operational scenarios. In numerical studies we performed, we observed that

the DCOPF suffices for this purpose, at least for this preliminary study meant to

illustrate the value of coupling planning and operations.

3 In general, the DCOPF becomes less accurate as the system gets under more stress.

While we consider systems with high penetrations of renewable energy, we do not

aim to deal with critical scenarios where the grid is under stress (close to voltage/

frequency instability). The challenge of high renewable penetration (which we aim to

handle here) is that of non-predictable patterns of power flows. Thus, we are looking at

the system under stable operating conditions, but with fluctuating patterns of power

flows. When the grid is under stress, we assume that appropriate emergency control

actions will be taken to protect the system. We do not aim to use energy storage to

perform emergency control actions.

Perfect Forecasts

Note that in our DCOPF formulation pr(t),pl(t) are assumed to be known functions of time.

This is like performing lookahead dispatch with perfect forecasts. Although this differs from

a real operational scenario (imperfect forecasts), we believe that the discrepancy will not

break our analysis here for the following reasons:

• We consider time horizons of about Tf = 2 hours. Over such a time-scale, loads are

well-predictable for sure, although wind may not be. However, we use operational

simulations to develop a heuristic for placement of energy storage: Hence changes due

to forecast errors, while important in an operational context, are less important from

the context of deciding placement of energy storage.

• Several system operators today perform periodic redispatch of the grid resources (gen-

eration/storage) at fairly short intervals of time (5-15 mins) and hence can easily adapt

to and cope-with forecast errors.
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Further, we note that our heuristic for storage placement is independent of the specific

dispatch scheme (OPF) used. Thus, we can perform a robust or chance-constrained version

of DCOPF Bienstock et al. [2012] which would allow us to incorporate the effect of forecast

uncertainty into the dispatch, and hence into the storage placement decision.

6.4.4 Optimal Sizing and Placement of Storage

We seek to develop heuristics to decide how to place storage and size its energy and power

capacity. However, we must first define some metrics to evaluate a given storage placement.

Let S denote the set of nodes with non-zero storage. For a given scenario δi (renewable/load

profiles) and S, the energy and power capacities resulting from the optimization (6.9) are

s̄i and p̄si. We define the energy in the renewable fluctuations to be sr(t) =
∑t−1

τ=0 pr(τ)∆,

i.e. sr(t) is the energy stored in a (hypothetical) battery that is connected directly to a

renewable node and eliminates all fluctuations about the mean renewable generation. Then,

plausible metrics can be defined according to the following criteria:

Normalized Power Capacity : This quantifies the total power capacity of the storage

relative to the sum of maximal power fluctuations over the renewables:∑
j∈S maxt

∣∣ps∗j (t)∣∣∑
i(maxt pri (t)−mint pri (t))

Normalized Energy Capacity : This quantifies the total energy capacity of the storage relative

to the sum of maximal energy fluctuations over the renewables:∑
j∈S(maxt s

∗
j (t)−mint s

∗
j (t))∑

i(maxt sri (t)−mint sri (t))

Overall Performance: We denote a weighted combination of the above metrics by perf(S).

In this study, we choose this to be the total normalized energy capacity plus a fixed cost

for each site at which storage needs to be placed.

Renewable Penetration: The fraction of load served by renewables over the time horizon T .

The high-level pseudocode given in Algorithm 3. The algorithm is a greedy pruning

heuristic that starts with S = V, i.e. storage at all nodes, and seeks to shrink S while

improving performance at least by some minimum amount ε at each iteration. Then, the
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same procedure is repeated, each time shrinking the target number of nodes as long as the

performance metric is improving. Note that this repetition is required (and critical) because

the dispatch based on restricted storage would be different, since there are a smaller set of

controllable resources.

Algorithm 3 Greedy Heuristic for Optimal Placement

Input: Collection of Scenarios {δk}, Threshold ε

S← {1, 2, . . . , n}.

repeat

for k = 1→ N do

Solve (6.9) for scenario δk to get s̄k, p̄sk

end for

s̄← maxk s̄k

p̄s ← maxk p̄sk

γ ← max{γ : {perf({i ∈ S : s̄i ≥ γmax(s̄)}) < perf(S)− ε}}.

S← {i ∈ S : s̄i ≥ γmax(s̄)}.

until 1− γ ≤ ε′

6.4.5 Justification for Greedy Algorithm

The choice of the greedy algorithm is motivated by the theory of submodular function

maximization Krause and Golovin [2012]. Submodular functions are functions with dimin-

ishing marginal returns. Mathematically, if one had a function F defined on subsets A of

S = {1, 2, . . . ,m} that satisfied:

F (A ∪ {i})− F (A) ≤ F (B ∪ {i})− F (B), B ⊂ A ⊂ S, i 6∈ A.

In our context, this simply means: The additional performance gain obtained by adding

storage at a new node when there is already storage at a large number of nodes is smaller

than the performance gain obtained by adding to storage when there is storage at only

a few nodes. Although we have not been able to prove that this property holds for the
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storage placement problem, it definitely makes intuitive sense - at some point one would

expect to observe diminishing returns for additional placement. It can be shown that for

a submodular objective function, the greedy algorithm achieves an objective that is within

1 − 1
e of the optimal solution Krause and Golovin [2012]. This motivated us to consider a

greedy algorithm to solve the problem of storage placement.

We have some preliminary results (not included in this paper) regarding the submodular

property for certain simplified versions of the objective presented here and hope to pursue

this line of investigation further in future work.

6.5 Simulations

6.5.1 RTS-96+Synthetic Wind Data

Grid Structure

(a) Our modified version of

RTS-96. The added renew-

ables are blue, loads are yel-

low and controllable genera-

tors are green

Cuts

(b) Sets of nodes identified by

our heuristic: The minimal set

(two nodes) is shown in red,

additional 8 nodes, of the 10

node set, are show in green,

all other nodes are shown in

blue.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Normalized Activity

N
u
m
b
e
r
 
o
f
 
N
o
d
e
s

Histogram: Unrestricted case

0 0.2 0.4 0.6 0.8 1
0

1

2

Normalized Activity

N
u
m
b
e
r
 
o
f
 
N
o
d
e
s

Histogram: 10 Active nodes

(c) Storage Capacity His-

tograms: Red lines mark

thresholds used for the reduc-

tion in the storage node set

We tested our optimal control and heuristic for storage placement and sizing on a modi-

fied versions of RTS-96Grigg et al. [1999]. The grid is shown in Fig. 6.1a. Our modification

includes the addition of three renewable generation nodes shown Fig. 6.1a in blue. The

capacities of the new lines connecting the renewables to their immediate neighbors are set
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higher than the capacity of the added renewable generation, otherwise, these lines would be

overloaded in nearly every trial.

In each iteration of algorithm 3), we generate N = 2000 time series profiles for the

renewables. These are chosen so that we can control the penetration of wind in the system

and study the effect of penetration of intermittent sources on storage sizing and placement.

In the first iteration, storage is available at all nodes in the network. The histogram of

storage capacities is plotted in Fig. 6.1c. We then shrink the set of nodes having storage

until the performance metric perf(S) (defined in Section 6.4.4) fails to improve significantly

(by more than ε). For this example, we were able to shrink down to 10 nodes in the

first iteration. Using these 10 nodes, we rerun the optimal control algorithm and again

accumulate statistics of the storage activity (plotted in figure 6.1c). Based on the updated

statistics, we can again shrink the set of storage nodes down to 2 nodes and this is the final

output of the algorithm (we cannot shrink any further without performance degradation).

The optimally chosen sets of 10 and then 2 nodes are shown in Fig. 6.1b.

The method for generating the renewable profiles is described in details in Dvijotham

et al. [2011]. The evaluation metrics defined in Section 6.4.4 are shown as functions of

penetration in Figs. 6.2a,6.2b, with storage at all the nodes and sets of shrunken nodes

discovered by the Algorithm 3.
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6.5.2 BPA System with Historical Wind Data

We also apply our algorithm to real data from the BPA network covering Washington and

Oregon. By overlaying the grid on the US map, we were able to locate the major wind farms

and inter-ties (to California) in the system. Loads were divided roughly in proportion to

population densities. Mapping this onto data published on the BPA web-site in The BPA

Balancing Authority, we were able to create realistic wind, load and interchange profiles.

We considered data from 100 different wind configurations during 2012 (each of length about

2 hours, spread uniformly throughout the year). We also ensured that we pick particularly

challenging operating conditions, for example, periods with high ramping conditions in wind

generation, i.e. these pushing the storage dispatch to its limits, and thus to enable sizing

storage so as to be prepared for the worst contingencies.

We plot the iterations of our algorithm on the BPA system in Fig. 6.3. The nodes at

which storage is present are colored—red marking the nodes with least storage capacity and

purple marking the nodes with the highest storage capacity - The capacities are color coded

in a log-scale:

log

(
Storage Capacity at a node

Maximum Storage Capacity over all nodes

)
so as to improve visual discriminability. Our sequential algorithm is able to discover a

relatively small subset of 37 nodes at which to place storage. Reducing this number any

further leads to a significant increase in the overall storage capacity required.

In Fig. 6.4, we plot the locations of the storage nodes relative to the locations of the

wind farms and inter-ties. We note that our algorithm does not place the storage near

either the wind sites or the interties We also compared our strategy to placing storage

directly at the wind farms or inter-ties (which are the “sources” and ”sinks” which contribute

most to fluctuations in the generation/load). The overall storage capacity required by this

naive approach is twice the storage capacity required for the placement discovered by our

algorithm. In Fig. 6.5,we plot the total energy and power capacity of the storage placements

discovered by our algorithm relative to the naive strategy of placing storage directly at the

renewables and interties.

This result shows that the storage placement discovered by the algorithm, although
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(a) BPA - Algorithm Iteration

1

(b) BPA - Algorithm Iteration

2

(c) BPA - Algorithm Iteration

3

(d) BPA - Algorithm Iteration

4

Figure 6.3: Iterations of our Algorithm on the BPA System. Red Corresponds to Low

Storage Capacity and Purple to High

Figure 6.4: Storage Placement (colored circles) relative to Wind Farms/Interties (shown as

blue diamonds).
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Figure 6.5: Total Energy and Power Capacity Relative to Placement at Renewables and

Interties

intuitive, is non-trivial since the many of the nodes picked are not precisely at the renewables

or interties, but rather at critical nearby nodes which are critical for controlling the power

flows in that region of the network.

6.5.3 Computation Times

For the BPA system, the entire algorithm took about 10 minutes on a i7 2.9 GHz CPU to

produce the optimal placement of storage. The optimal dispatch for a particular scenario

takes about 5 seconds.

6.6 Discussion

We have presented an efficient and effective heuristic for sizing and placing energy storage

in a transmission network. Our essential insight in this paper was to couple operational

simulations with planning, and use statistics from operational simulations to inform the

planning procedure. For any realistic engineered network, operational simulations will con-

tain valuable information about the various flow patterns, congestion, ramping restrictions

etc. in the network and provide an effective heuristic for making planning decisions - we

have observed this in the above simulations as well. With an unoptimized matlab imple-

mentation, our approach takes about 10 minutes to discover an effective storage placement

for the BPA system. For an offline planning problem, this is perfectly acceptable.
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An alternate approach would be to formulate this directly as a mixed integer linear pro-

gram: Choose a small number of sites to place energy storage so as to minimize investment

and operational costs over a large set of possible scenarios. However, this approach fails to

take advantage of the above observation, and quickly becomes computationally infeasible

for realistically sized networks.

We use the DCOPF approximation in our work, but as mentioned in section ??, the

approach can be easily used with an ACOPF solver.

For both the BPA and RTS-96 network, by using the greedy pruning algorithm, we

are able to reduce the number of energy storage sites to a very small number compared

to the total number of nodes in the network. In both cases, the storage is placed far

from the renewable generation. Instead, the storage appears to be placed at a few critical

nodes suggesting that the storage is being used not only to buffer fluctuations, but also to

assist with controlling flows in the rest of the network. For the BPA system, these may

seem geographically close to the renewables or interties. However, the precise placement of

storage is non-trivial and the discovered placement uses particular nodes that offer a large

degree of controllability on the power flow patterns in that region of the network. Thus,

in effect, our algorithm is designing the grid control system by finding the nodes with the

highest controllability over the network congestion.

This conclusion is supported by the plot of iteration-by-iteration storage energy and

power capacity in Fig. 3. The energy capacity of the storage is not dramatically reduced by

during the pruning. Instead, storage capacity that was dispersed throughout the network is

concentrated at fewer nodes resulting in larger but sparser storage installations. However,

the storage power capacity drops significantly. This seems to indicate that the wind fluc-

tuations require a certain amount of energy capacity for buffering on a network wide basis.

However, better placement of that energy capacity enables it to be used just as effectively

with a much smaller power capacity.

6.7 Conclusions and Future Work

Somewhat unexpectedly, our algorithm chooses to place storage at nodes at critical junc-

tions between major subcomponents of the network rather than at the sites of renewable
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generation. We conjecture that these nodes provide for enhanced controllability because, in

addition to simply buffering the fluctuations of the renewables, controlled power injections

at these nodes can modify overall network flows and direct fluctuating power flows to regions

that are better positioned to mitigate them.

There is much follow on work needed to expand the concept presented in this manuscript

and to verify some of its conjectures. We also plan to extend this approach to allow for

stochastic, robust and/or chance-constrained optimization, as in Bienstock et al. [2012], to

provide for a better representation and more accurate modeling of the wind uncertainty.

Finally, we performed lookahead dispatch assuming perfect information about loads and

renewable generation. Although this assumption is reasonable (for reasons described in sec-

tion 6.4.2), a more thorough study is required to determine the exact effect of forecast errors,

particularly on storage sizing (we would expect the placement to be robust to reasonable

forecast errors). This would require modeling standard generation response mechanisms

(primary control and AGC) which modify generator outputs in response to changes in re-

newable generation and loads. These mechanisms are well studied for generation, but need

to be extended for storage systems as well. We plan to build on recent work in this direction

Dvijotham et al. [2012] for this.

6.8 Distributed Control of Frequency in a Grid with a High Penetration of
Renewables

6.8.1 Problem Setup and Brief Statement of Results

In today’s power systems, the system operator performs an Optimal Power Flow (OPF)

dispatch periodically with typical time interval being 5, 15, or 60 minutes depending on

the Balancing Area Kundur [1994]. The OPF sets the power outputs of the committed

generation to match power demand and minimize generation cost while respecting the ca-

pacity limits on lines, ramping constraints and limits on generators and sometimes taking

into account the N-1 security constraints. In between two successive OPFs, the system

is automatically controlled by a combination of two mechanisms. The faster of the two,

acting on the scale of seconds, is primary frequency control–a fully distributed proportional

feedback on locally-measured frequency deviations that may also include a deadband. The
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slower mechanism, acting on the scale of minutes, is automatic generation control (AGC),

also called secondary control–a centralized feedback on the integral of a weighted sum of

a centrally measured frequency and tie line flows to neighboring balancing areas.Tomsovic

et al. [2005]

These combined controls correct deviations in the generation-load balance driven by

fluctuations in loads, renewables and other disturbances in the system. However, these

mechanisms do not explicitly incorporate line-flow limits, generators ramping limits, or

time-integral constraints like those on run-of-river hydro generation or energy storage. For

systems with relatively low levels of fluctuations, these limits are not frequently violated and

it is not necessary incorporate them directly. However, higher levels of time-intermittent

generation will create larger fluctuations and ramping events and the associated constraint

violations will become more common. Standard primary and secondary controls are limited

in their ability to balance these fluctuations, and better control design is needed to manage

these larger fluctuations. Because these fluctuations are intimately connected to frequency

deviations, they are of special concern because they my result in system-wide instabilities

and loss of synchrony Eto et al. [2010].

Other considerations for real-time power grid control systems are communication con-

straints and communication securityTomsovic et al. [2005]. Mechanisms that rely on central

aggregation of the entire grid state followed by a centrally computed response will be vul-

nerable to communication failures and attacks on the communication network, making the

overall system less robust. On the other hand, with significant renewable penetration, it is

difficult to control a system purely based on local feedback, since under some conditions, it

may be necessary to control distant generators in a correlated manner.

In this preliminary work, we explore a hybrid approach that combines the speed and

security of fully distributed control with the extensive system visibility provided by cen-

tralized control. Our method performs a centralized lookahead dispatch that also computes

optimal local feedback parameters for all controllable generation, thus enabling the system
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Figure 6.6: Our model of the BPA Transmission Network

to respond to fluctuations based only on local observables. We expand our definition of

local observables to include not just frequency but also real power flows to neighboring

nodes. We use an ensemble of forecasts that capture various possible scenarios for the wind

generation and loads over the next intra-dispatch period (5 min/15 min/ 1 hour) to design

an optimal time-varying dispatch for all the generators, as well as local feedback functions

that enable the generators to respond to fluctuations based on the local observables.

Our control design is split into 2 phases:

a An off-line optimization phase where the distributed control gains are optimized jointly

for the whole network in a central computer using extensive simulation of possible

future wind generation and forecast scenarios. These gains are then communicated

to each flexible resource (controllable device) in the transmission network. This off-

line optimization would need to be re-run every time the statistics of possible future

scenarios change significantly. In general, we expect this optimization to be run every

time the generation re-dispatch changes.

b An online response phase where each device implements its purely local control in

response to local observables (local frequency, line flows etc.) on the pace of the

standard primary controls.
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We test our algorithm on historical data from the Bonneville Power Administration (BPA)

system BPA [a], an ideal test system for our algorithm as it has significant amounts of both

hydro and wind generation. We show that our algorithm performs well, even in cases of

significant wind ramps.

Our results (detailed in section 6.8.3) lead to the following important observations:

a Local control based on response to frequency deviations and local line flows at each

generation can keep frequency deviations down to the about 10 mHz while maintaining

all the security and capacity constraints.

b Proportional control on frequency deviations and feedback on line flows is sufficient.

Adding a frequency-deviation integral response is unnecessary, which is advantageous

because a distributed implementation of an integral term may cause instabilities due

to errors in local frequency measurement, and also because it limits communication

requirements.

c Joint optimization of feedback parameters for frequency deviation and line flows is

necessary. Independent optimization or removal of either term leads to poor control

performance.

d Optimization over a finite but representative set of future scenarios enables the gen-

eralization of the control to new unseen scenarios.

The rest of the paper is organized as follows: Section 6.8.2 describes the mathematical

setting of the underlying control/optimization problem; we describe and discuss results of

our numerical BPA experiments in Section 6.8.3; and Section 6.8.5 presents conclusions and

explains our path forward.

6.8.2 Mathematical Formulation

Preliminaries

The power system is described by an undirected graph G = (E ,V) with edges E and n

vertices V. The grid is composed of loads (l), conventional generators (g) and renewable
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generators (R). The flexible resources in our grid are the online conventional generators go.

We denote by p the |V|×1 vector of net active power injections at each node in the network

and by pg,pr,pl the net active power injections due to online conventional generators,

renewable generators and loads: p = pg + pr + pl. Each of these vectors is of size |V| × 1

with the convention that pgi = 0 or pri = 0 if there is no conventional or renewable generator

at node i. Note here that we make the assumption that there is only one generator or load

at a given node. If there are multiple, we replace them by an equivalent single generator or

load. For a vector v with indices in V, vi denotes a particular component for i ∈ V and vS

denotes the sub-vector {vi : i ∈ S} for a subset S ⊂ V.

Scenarios

The control algorithm proceeds by analyzing an ensemble possible future scenarios and

designs control strategies that optimize the system cost (defined below) across all scenarios.

We define a scenario χ to be a collection of the following quantities:

a Renewable generation over the time horizon of interest: pr(t).

b Load profile over the time horizon of interest: pl
0(t).

c A unit commitment (configuration of generators which are online, i.e. available for

re-dispatch) go.

To define the control problem, we require a collection of scenarios Ξ and estimates for the

probability of each scenario, i.e. Ξ = {χi,Prob(χi)}. We note that for a given collection

Ξ, pr(t) and pl
0(t) (items a and b from above) will vary across the ensemble of scenarios,

however, we take go (the unit commitment from c) fixed because we are designing the

time-dependent dispatch and local feedback parameter for that particular go. In this work,

we assume that the collection Ξ is finite. Typically, Ξ will be built up from load and wind

forecasts from different forecasting methodologies weighted by confidences in each of these

forecasts. Ξ could also include samples from a stochastic forecasting model based on climate

models, historical data, meteorological sensors etc.
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Control Formulation

We ignore electro-mechanical dynamical transients and work with a discrete-time quasi-

static approximation of the system dynamics with fixed time step δ and integer time indices

t = 0, 1, . . . , T : at each time step the power flows over lines are re-computed for configura-

tion of consumption/generation at nodes evolving in discrete time. In general, the feedback

can depend on any of the system variables, but we limit ourselves to local observables so

that the control can be implemented in a completely distributed fashion at each generator

after the dispatch and feedback parameters have been communicated.

For each generator g ∈ go, we compute a time-varying dispatch p0
g(t) : 0 ≤ t ≤ T ,

proportional frequency response coefficient αPg , integral frequency response coefficient αIg,

and a response coefficient to local flows {αFg→i : i ∈ Neb(g)}. Further, we denote by ω(t) the

frequency deviation from the nominal frequency (50/60 Hz) at time t and by Ω(t) the integral

of the frequency deviation, which in discrete-time is approximated by Ω(t) =
∑t

τ=0 γ
τ−tω(τ)

where 0 < γ < 1 is a discount factor. In other words, the integral frequency term is simply

a weighted sum of frequency deviations in the past, where frequency deviations that are

further in the past receive a geometrically smaller weight. With the time varying dispatch

and feedback parameters determined, the output of the generators is given by:

pgg(t) = pgo
0 g(t) + αPg ω(t) + αIgΩ(t)+∑

i∈Neb(g)

αFg→ipg→i(t).

Although our algorithm can incorporate nonlinear feedback, we choose feedback which is

linear in the local observables for this initial work. In addition to generators, the real

power consumption of loads responds to frequency changes, and we assume a simple linear

load-frequency response given by

pl(t) = pl
0(t) + βlω(t),

where the βl are known from measurement where pl
0 is the load at the nominal frequency (60

Hz). Combining the load and generator frequency response and the generators’ time varying
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dispatch, the system’s equilibrium frequency is computed by enforcing power balance in the

system:

∑
i∈V

pgi (t) + pli(t) + pri (t) = 0 =⇒

ω(t) = −
∑

i p
l
0i(t) + pri (t) + pgi (t)∑

i β
l
i

.

To compute power flow from the injections p(t) = pl(t) + pr(t) + pg(t), we use a modified

version of the DC Power flow equations based on a linearization of the AC Power flow

equations around the nominal dispatch at the beginning of the control period p(0). The

linearization gives us dynamic impedances sdi→j that substitute for the line reactances in

the DC power flow equations:

pi(t) = p0 +
∑

j∈Neb(i)

θi(t)− θj(t)
sdi→j

,

pi→j(t) = p0
i→j +

θi(t)− θj(t)
sdi→j

.

Such a linearization is reasonable assuming that the flow patterns do not change too much

during the course of the control period.

In addition to several other constraints discussed below, we will also imposed a constraint

on the total energy extracted from generators in the control period. Such constraints can

represent the water discharge constraints on run-of-river hydro systems or state-of-charge

constraints on energy storage devices. Therefore, we must also include the total energy

extracted from each generator into the system state:

pI(t) =

t∑
τ=0

pg(τ).

The overall system state consists of x(t) = [Ω(t); pg(t); pI(t)] (in Matlab notation), and
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the system evolution can be summarized by:

ω(t) = −
∑

i p
l
0i(t) + pri (t) + pgi (t)∑

i β
l
i

(6.10)

Ω(t+ 1) = ω(t) + γΩ(t)

pgg(t) = pgo
0 g(t) + αPg ω(t) + αIgΩ(t)

+
∑

i∈Neb(g)

αFg→ipg→i(t)

pl(t) = pl
0(t) + βlω(t)

pi(t) =
∑

j∈Neb(i)

θi(t)− θj(t)
sdi→j

,pi→j(t) =
θi(t)− θj(t)

sdi→j

Cost Functions

We consider a stochastic setting with many possible features, and it is unclear whether it

is feasible to satisfy all constraints across all scenarios in Ξ. Therefore, we use a penalty

function to enforce our constraints in a smooth manner. The penalty function has a mag-

nitude of zero in a dead-band around the most feasible region and grows cubically with the

magnitude of constraint violation:

Pen(a, l, u) =


107((a− u)/(0.1 ∗ (u+ 1)))3 if a ≥ u

107((l − a)/(0.1 ∗ (l + 1)))3 if a ≤ l

0 otherwise

.

Here, a is the value of the constrained quantity and l and u are the lower and upper bounds

on a, respectively. We also adopt the convention that when a, l, u can be vectors (of the

same size) and the penalty in this case is applied element-wise and added up. The penalty

function is designed so that the resulting cost function is smooth (twice differentiable). How-

ever, if a is violates the upper bound by 10%, a penalty of approximately 107 is incurred–a

high enough penalty so that if a feasible solution exists across all scenarios, it will be found.

The cost function Cost(x(t),x(t + 1), t) is computed at each time step in the control

period, but it requires state information from both t and t+1 so it can incorporate generator



110

ramping limits. The cost includes seven terms that penalize both economic cost of supplying

generation and deviations of the system state outside of normal operational bounds. The

individual terms are:

1 Generation costs

GenCost(pgo(t)) =
∑
g∈go

cg1(pgg)
2 + cg2p

g
g + cg3.

2 Generation limit penalties

Pen(pg(t),pg,pg).

3 Ramping limit penalties

Pen

(
pgr ,

pg(t+ 1)− pg(t)

δ
,pgr

)
.

4 Power flow thermal limit penalties∑
i→j∈E

Pen(pi→j(t),−pi→j ,p).

5 Frequency deviation penalties

Pen(ω(t),−0.01, 0.01)

6 Integral frequency deviation penalties

Pen(Ω(t),−0.01, 0.01).

7 An integral deviation penalty on generation:

Pen(pI(T ), 0.95Ego, 1.05Ego)

Cost 1 simply represents the financial cost of energy from different generators. Costs 2-4 are

normal power system constraints converted to costs using the penalty function defined above.

Cost 5 is an additional penalty designed to constrain the system frequency to within a 10

mHz band, and Cost 6 is designed to constrain the deviation of the integral of the frequency
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deviation so that the frequency is not allowed to be low or high for extended periods of

time. Finally, Cost 7 is designed to keep the total energy delivered by each controllable

generator over the control period within a ±5% band around a pI(T ) mimicking constraint

the would occur in either a run-of-river hydro system or an energy storage device.

Ensemble Optimal Control

The evolution equations listed in (6.10) are functions of a given scenario χ, therefore, we

can think of the state as a function of the scenario χ and the control parameters α =

{αP , αI , αF ,pgo
0 (t) : 0 ≤ t ≤ T}: x(α, χ, t). The overall optimization problem can then be

written

min
α

∑
χ

Prob(χ)

(
T−1∑
τ=0

Cost(x(α, χ, t),x(α, χ, t+ 1), t)

)

Subject to (6.10). (6.11)

We optimize this objective using a standard numerical optimization algorithm (LBFGS

Schmidt). The gradients of the objective function can be computed efficiently using a

forward propagation algorithm that uses the chain rule to propagate gradients in time. This

computation can be easily vectorized over all the scenarios, leading to significant speedup

if run on a cluster or on GPUs.

6.8.3 Numerical Results

Description of Test System

We test our algorithm using publicly available historical data for hydro and thermal gen-

eration, wind generation, and load from the Bonneville Power Administration (BPA) web-

siteBPA [a]. We use a model of the BPA transmission system (shown in Fig. 6.6) that has

2209 buses and 2866 transmission lines. By identifying major hydroelectric stations on the

transmission system and overlaying this onto a publicly available BPA wind site map BPA

[d], we located the existing wind farms on the BPA transmission system (as of January

2010). We located the meteorological stations where BPA collects wind data BPA [b] in

a similar manner. Using the same overlay, we used a simple incompressible air-flow model
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Figure 6.7: Comparison of control schemes. a) Aggregate wind generation from a period

with significant ramping events. b) Worst-case frequency deviations over the control period

for 18 validation scenarios not used in the control design.
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to infer hub height wind speeds at the wind farms. The resulting wind speeds were passed

through the power curve of a standard 1.5-MW GE Wind Turbine which was scaled to the

wind farm nameplate capacity to estimate the power output pr(t) (in MW) at each wind

farm as a function of time. When we aggregate our wind farm-specific estimates of wind

generation, we typically over estimate the BPA aggregate data by 20%, which may caused

by several factors including: spilling of wind by BPA, under performance of wind farms

relative to single-turbine estimates, or shortcomings in our model of interpolating wind

speeds. BPA also provides aggregate load dataBPA [a] that we divide among the nodes in

the network according to population densities. BPA also makes publicly available aggre-

gate interchange flows BPA [a], which we apportion to different tie lines in a similar manner.

To test our control algorithm on difficult conditions, we select a control period of one

hour from 10:35 AM to 11:35 AM on February 12, 2010, when the wind generation was

ramping significantly (shown in Fig. 6.7a). We then create 26 scenarios (site-specific wind

profiles) for this period by adding random time-varying Gaussian noise to the wind speeds

at each meteorological station (from which we infer site-specific wind generation as outlined

above). We set the magnitude of the noise so as to match, on average, the aggregate wind

generation hour-ahead forecast errors reported by BPA BPA [c]. All the time series data

used in our study was available at a 5-minute resolution.

Unit commitment data is missing from our model, therefore, we assume that all hydro

generators larger than 300 MW are online and are all participating in frequency regulation.

From inspection of the BPA historical generation data BPA [a], we infer that the thermal

generation dispatch is fixed over time. In our model, we replicate this dispatch by dividing

the total thermal generation among the online thermal generators (randomly chosen).

6.8.4 Comparison of Various Control Schemes

For difficult wind ramping conditions, we illustrate the value of feedback based on local

flows by comparing four control schemes. We use P to designate proportional control (to
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frequency deviations ω(t)) and I designates integral control (to integral frequency deviations

Ω(t)). The control schemes we consider using are:

1 PI: Joint optimization of the time-varying dispatch pgo
0 (t) and the local feedback

parameters for ω(t) and Ω(t).

2 Flow+PI Uncoordinated: Time-varying dispatch pgo
0 (t) plus feedback on ω(t),Ω(t)

and local flows pg→i at each generator. The optimization in 1 is performed first

followed by a second optimization over the flow feedback parameters.

3 Flow+PI Coordinated: Same as 2, but the optimization is performed jointly.

4 Flow+P: Same as 3, but without feedback on Ω(t).

The experimental protocol is as follows. We setup each of the four optimization problems

according to Eqs. 6.11 with the scenarios described in Section 6.8.3 and determine a single

set of feedback parameters for each of the four feedback schemes. We use 8 of the 26

created scenarios as input to the optimization algorithm. The remaining 18 unseen scenarios

are reserved for validation of the control policy discovered by the optimization algorithm.

We note that all four control strategies are able to achieve similar generation costs while

maintaining all the other constraints (line thermal capacities, ramping limits, and integral

energy constraints), however, there are significant differences in the quality of the frequency

regulation. Figure 6.7b shows the worst-case frequency deviations over the 18 validation

scenarios. The frequency deviations are at an unacceptable level (.1-.2 Hz) when using just

PI feedback (scheme 1). If the flow feedback is included but optimized separately (scheme

2), there is little improvement. However, the if the PI and flow feedback are coordinated via

joint optimization (scheme 3), the frequency deviations are reduced to an acceptable level.

Interestingly, removing the feedback on the integral of the frequency deviations (scheme 4)

does not impact the frequency deviations significantly relative to scheme 3.
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Discussion of the Results

The distributed frequency control method we have presented benefits greatly from the incor-

poration of local power flows as demonstrated in Fig. 6.7b. There are several possible reasons

for this improved performance. First, power flows make the local generation-load imbal-

ances visible to the generators so that the closest generators respond, effectively screening

the more distant generators from the need to respond. When compared to feedback based

on frequency deviation, which is a global measure of the imbalance, feedback on local power

flows confines imbalances to shorter spatial scales with a corresponding decrease in the time

scale of the response. An alternative explanation is that the optimization over the ensemble

of possible futures in Eq. 6.11 is acting as a sort of machine learning that encodes correla-

tions between the wind prediction errors and the resulting local power flows into the flow

feedback parameters. When wind prediction error occurs, the change in power flows drives

the feedback to nearly compensate for the error without a frequency deviation existing

for any significant length of time. More numerical experiments are required to distinguish

between these two (and other) possibilities. In both of the possibilities discussed above,

variations in the local power flows appear to be acting as “pseudo-communication” chan-

nels between the renewable and controllable generators. Such a communication analogy

may help explain why the independent optimizations in scheme 2 does not yield significant

improvement in control performance. The first optimization over frequency deviations may

effectively washout the important local information in the power flows such that it is not

available when optimizing over power flows.

6.8.5 Conclusions and Future Work

We introduced a control architecture based on off-line centralized optimization that can

occur on a slow time scale coupled that sets the feedback parameters for fast distributed

control of generation. The control scheme takes into account explicitly the variability in

renewable generation using ensemble control. We showed that local feedback based on line

flows and frequency deviations is sufficient to maintain all operational constraints and limit

frequency deviations to an acceptable level even when the system is experiencing significant
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ramps in wind generation. Our method exploits the hour-scale predictability of wind en-

ergy while using the off-line optimization to re-adjust control policies over longer timescales

where wind predictability suffers. Our hybrid approach has the potential enable even higher

levels time-intermittent renewable generation than presented here, and it can do so without

real-time computation or communication.

These results are quite exciting and promising, however, they are preliminary and much

work needs to be done to ensure the viability of this scheme in practice.

• Dynamical simulations are needed to check the dynamical stability of a grid with flow

feedback. If these simulations show that the scheme is unstable, we believe that this

can be rectified by appropriate exciter control at the generators to damp the fast

electro-mechanical transients.

• The scenario approach can be extended to include the (N-1) security criterion, so that

the optimized control strategy can deal with contingencies arising from the failure of

a grid component.

• It is possible that flow feedback acts as a pseudo-communication channel between gen-

erators in the absence of a dedicated communication channel. It would be interesting

to investigate this from an information theoretic point of view and investigate how

much of information can be encoded in the flows.

• We have used the simplest possible algorithmic approach by defining a smooth version

of the optimization problem using penalty functions solving it using a generic LBFGS

algorithm Schmidt. Second-order algorithms such as Stagewise NewtonPantoja [1983]

or Differential Dynamic Programming (DDP)Jacobson [1968] efficiently exploit the

problem structure of deterministic optimal control problems. These can be lever-

aged in our ensemble control context by noting that when the feedback parameters

αI , αP , αF are fixed, we have a deterministic optimal control problem in pgo
0 (t) for

each scenario. We have also been working on a Gauss-Newton algorithm for optimiz-
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ing the fixed feedbackαI , αP , αF efficiently. One can perform alternate minimization

of pgo
0 (t) and αI , αP , αF to get an efficient algorithm for optimizing both. Further,

we note that when feedback does not include the integral term Ω(t), the ensemble

control problem is a convex programming problem, and the global optimum can be

found efficiently using specialized convex optimization techniques.

• We plan to incorporate more accurate AC modeling of power flows taking advantage of

most recent advances in analysis and algorithms related to optimizations of nonlinear

power flows, e.g. Lavaei and Low [2012], Kraning et al. [2012].

• The integral energy constraint we introduced can also model energy storage, and our

algorithm can easily be extended to incorporate distributed control of energy storage.
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Chapter 7

A VISION FOR AUTOMATED STOCHASTIC CONTROL

This chapter presents preliminary ideas for combining the ideas of inverse optimal con-

trol (chapter 3) and convex policy optimization (chapter 5) into an integrated cost-policy

shaping framework. We believe that this is critical to realizing the long-term vision of

research presented in this thesis: An automated framework for stochastic optimal control

that takes as input a set of plausible high level costs, a model of the system dynamics

and demonstrations of the control task (figure 7.1). This is an important for the following

reasons:

1 Even though costs may be simple to specify for many control problems, these costs are

often uninformative (for example, one suffers a fixed cost unless the system ends up in

a particular goal state). It has been known that faster convergence can be achieved for

stochastic optimal control algorithms by designing appropriate costs Ng et al. [1999].

How does one go about automating this process of reward or cost shaping?

2 Further, for many problems, there is a fixed cost that one needs to minimize to accom-

plish the control task. However, one needs to add additional costs in order to produce

System Dynamics

**
Plausible Costs // Control Algorithm // Controller

Demonstrations

44

Figure 7.1: Data-Driven Cost-Shaping Controller Design
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desirable behavior. For example, for robot locomotion, a cost penalizing the deviation

of the com velocity from a target forward velocity should suffice. However, many

times, in addition to this, one wants to achieve a certain walking style, or penalize

the use of some joints (avoid excessive arm swinging) etc. Again, we try to address

the question of how one automate the process of augmenting cost functions in order

to achieve desired behavior while accomplishing the control task.

3 Iterative processes that alternate between cost shaping and control design given costs

are often too cumbersome and may involve solving more difficult optimal control

problems than required. Hence, it would be desirable to have an algorithm to learn

both costs and policies give data, a model and a family of plausible costs, as outlined

in figure 7.1.

In section 7.1, we describe algorithms that take advantage of the properties of LMDP-

sto develop convex optimization-based methods for automatically shaping costs in order to

match some notion of “prior” costs and fit data coming from demonstrations of the control

task being accomplished. However, the disadvantage is that this approach still assumes that

LMDPs can be solved efficiently, which requires approximations and heuristics in practice.

However, the approach does allow us to deal with general prior costs and incorporate infor-

mation from both positive (successful) and negative (unsuccessful) demonstrations in cost

shaping and control design.

In section 7.2, we build on ideas from 5.2 and develop a framework that can jointly

optimize over both cost function parameters and control policy parameters in a unified

convex approach to control design and cost shaping.

7.1 Convex Data-Driven Cost-Shaping for LMDPs

In this work, we consider problems where one has a prior cost function Q(X) (we allow this

to be a general cost on trajectories: It can include state and control costs, with controls

implicitly determined through state transitions). This cost can be something abstract and

high-level. An example is a cost that prevents a robot from falling while walking, by
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penalizing the inverse of the distance of the robot’s head from the ground. However, this cost

does not completely determine the task specification (for example, not falling is necessary for

walking but not sufficient). Thus, one needs to infer additional information about the cost

from other data: In this work, we look at inferring this cost from demonstrations of the task

being performed. Given these, we seek an LMDP cost ` (X; θ) whose corresponding optimal

policy (given by (7.1)) maximizes the likelihood of the observed demonstrations, while

minimizing the prior cost Q(X) in expectation. We allow for both desirable demonstrations

(denote {X(i)
+ }

N+

i=1) and undesirable demonstrations ({X(i)
− }

N-
i=1}).

Within this general framework, we consider two different parameterizations of the cost

function, which both result in convex formulations for the cost-shaping problem.

7.1.1 Optimally Controlled Trajectory Distribution

Given a state cost function `(x), the distribution of trajectories (X = [x0,x1, . . .]) under

the distribution of trajectories under the optimal control policy for an LMDP (in the finite

horizon or first-exit formulations) is given by:

Π∗ (X) =
Π0 (X) exp (−

∑
t `(xt))∑

X Π0 (X) exp (−
∑

t `(xt))
=

Π0 (X) exp (− `(X))∑
X Π0 (X) exp (− `(X))

.

In this paper, we will work with parameterized cost functions ` (X; θ), where θ ∈ Rn

is a vector of real-valued parameters. We denote by Πθ (X) the optimal distribution of

trajectories for cost ` (X; θ):

Πθ (X) =
Π0 (X) exp (− ` (X; θ))∑
X′ Π

0 (X′) exp (− ` (X′; θ))
. (7.1)

7.1.2 Parameterizing costs linearly

In this formulation, we parameterize costs linearly

` (X; θ) = θT f(X) =
T∑
t=1

θT f(xt).
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The objective is then formulated as a combination of two terms: The first term is

the average negative log-likelihood of observations of the system. The second term is the

expected abstract cost. Mathematically, we solve

Minimize
θ

CCS1 (θ) = − 1

N+

N+∑
i=1

log
(

Πθ
(
X

(i)
+

))
︸ ︷︷ ︸

Negative Log-Likelihood

+λ log

(
E

Πθ(X)
[Q(X)]

)
︸ ︷︷ ︸
log expected prior cost

(7.2)

Πθ (X) =
Π0 (X) exp (− ` (X; θ))∑
X′ Π

0 (X′) exp (− ` (X′; θ))
.

` (X; θ) = θTX

Theorem 7.1.1. If λ < 1, the problem (7.2) is a convex optimization problem.

Without the second term, this parameterization is equivalent to maximum entropy IRL

Ziebart et al. [2008b] (with a uniform Π0 (X)) or to the OptQ algorithm in Dvijotham and

Todorov [2010]. However, we show here that adding a regularizer that minimizes a prior

abstract cost also preserves convexity, as long as the weight on the regularizer is smaller

than the weight on the average data likelihood term.

7.1.3 Parameterizing costs in log-space

We also consider an alternative formulation where one parameterizes − log (` (X; θ)) linearly.

minimizes the maximum of the negative log-likelihood over the data points {X((i))
+ } (this

formulation says that any of the observed trajectories ought to have a certain minimum

likelihood):

min
θ

CCS2 (θ) = max
i
− log

(
Πθ
(
X

((i))
+

))
︸ ︷︷ ︸

Negative Log-Likelihood

+λ log

 E
Πθ
(
X

((i))
+

) [Q(X)]


︸ ︷︷ ︸

log expected prior cost

(7.3)

Πθ (X) =
Π0 (X) exp (− ` (X; θ))∑
X′ Π

0 (X′) exp (− ` (X′; θ))
.

` (X; θ) = − log
(
θT f(X)

)
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Theorem 7.1.2. The problem (7.3) can be solved using quasi-convex optimization in θ (a

sequence of convex-feasibility problems combined with search in a 2-D grid).

We also allow for undesirable demonstrations {X((i))
− } whose likelihood we want to min-

imize. This allows us to define the following objective:

min
θ

CCS2 (θ) = max
i
− log

(
Πθ
(
X

((i))
+

))
︸ ︷︷ ︸

Negative Log-Likelihood

+λ log

 E
Πθ
(
X

((i))
+

) [Q(X)]


︸ ︷︷ ︸

log expected prior cost

(7.4)

Subject to max
i

log
(

Πθ
(
X

((i))
−

))
≤ µ (7.5)

where µ is a threshold for the likelihood of undesirable trajectories.

Theorem 7.1.3. When ` (X; θ) = − log
(
θT f(X)

)
for arbitrary positive-valued features

f(X), the problem (7.4) can be solved using quasi-convex optimization in θ (a sequence of

convex-feasibility problems combined with search in a 2-D grid).

7.1.4 Appplications

Combining trajectory tracking costs

For a linear dynamical system, the passive dynamics Π0 (X) are jointly Gaussian. Further,

if ` (X; θ) = − log
(
θT f(X)

)
where f(X) is chosen to be a mixture of gaussians x polyomials

in X, with `(X) having the same form, all the expectations in (7.3) can be evaluated

analytically and the convex cost-shaping problem can be solved exactly in closed form. A

particularly useful parameterization is of the form:

− log

(∑
i

(
XTWiX

2
+ wi

TX + ci

)
exp

(
−
∥∥∥X−X(i)

∥∥∥2
))

which allows one to parameterize costs as a combination of trajectory tracking costs

(here Wi, wi, ci are the cost parameters). This is of the form specified required in (7.3) or

(7.4). More specifically, we can choose Wi, wi, ci such that
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XTWiX

2
+ wi

TX + ci

=

T∑
t=1

xt
TWitxt

2
+ xt

Twit + cit

=

T∑
t=1

(
xt +Wit

−1wit
)T
Wit

(
xt +Wit

−1wit
)

2
+

(
cit −

wit
TWit

−1wit
2

)
Thus, this can be used to encode a quadratic trajectory tracking cost which decays to 0

as one moves away from the trajectory X(i).

This formulation has the natural interpretation of trying to combine local trajectory

tracking costs (which are usually more amenable to numerical optimization) in order to

produce a controller that optimizes the real cost Q(X). Note that this application makes

sense even in the absence of the likelihood term: One can simply pose it as a problem of

finding a shaping cost (combination of trajectory tracking costs) that produces a controller

that minimizes a master cost Q(X) that one really cares about.

This can be extended further to dynamics expressed as a mixture of Gaussian distribu-

tions (perhaps arising out of different time-varying linearizations of true nonlinear dynamics

starting at different initial states).

This idea of optimally combining trajectory costs applies to arbitrary nonlinear dynam-

ical systems as well. However, the integrals cannot be evaluated analytically in these case

and sampling-based approximations will have to be used.

Learning Final Costs

This application looks at learning final costs for a finite-horizon or first exit control problem

optimally. Consider a problem with a final cost `f (x) = − log (
∑

iwi exp (−fi(x))) and

some fixed running cost `r(X) =
∑T−1

t=1 `t(xt). Then, the overall cost can be written as

`(X) = − log

(∑
i

wifi(xT ) exp (− `r(X))

)

Defining fi(X) = fi(xT ) exp (− `r(X)), this falls into the form required in (7.3) and (7.4).

For model-predictive control, often the final cost can be taken as a proxy for a value function
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(which is required to make the horizon short enough to enable real-time implementation).

Thus, the final cost can be optimized so that the resulting controller minimizes a “true

cost”, matches desirable demonstrations and stays away from undesirable demonstrations.

Again, for linear dynamical systems with costs that are mixtures of Gaussians x polyno-

mials, the resulting integrals can be evaluated analytically leading to a tractable formulation

that finds the optimal final cost in polynomial time.

7.1.5 Relationship to Prior Work

Relationship to PI2

In (7.2), when λ→∞, this algorithm can be seen as performing policy gradients (where the

policy is parameterized implicitly by the cost parameters ` (X; θ)). When we restrict our-

selves to control-affine systems with an inverse relationship between noise and control costs,

the policy gradient updates derived from this formulation coincide with the PI2 algorithm

Theodorou et al. [2010b]. Of course, for this large λ, the problem is no longer convex and is

susceptible to local optima. An interesting takeaway is that if one has reliable demonstra-

tions, one can regularize the policy optimization problem to get rid of local minima in the

policy optimization problem.

Relationship to Policy Gradients in MDPs

In Todorov [2010b], the authors propose parameterizing the one-step controlled dynamics

Polx′x in an LMDP and derive a policy gradient theorem for the infinite horizon for-

mulation. However, their approach requires computing value function corresponding to a

given policy (as in an actor-critic architecture), requiring approximate evaluation based on

Temporal-Difference learning and other reinforcement learning algorithms. Further, there

are no guarantees that the policy optimization problem is convex. The advantage of their

formulation, however, is that they directly learn a control policy that can be implemented

on the system. In our approach, we learn a shaping cost that needs to be optimized (for ex-

ample using model-predictive control) to produce a successful controller for the system. We

do not have an explicit control policy except in the special cases where analytical integration
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is possible.

Relationship to MaxEnt IRL/Inverse Optimal Control in LMDPs

The formulation (7.2) is very close to MaxEnt IRL and the equivalent OptQ algorithm

presented in Dvijotham and Todorov [2010]. These can be recovered as special cases with

λ→ 0 (when the prior cost term is dropped, effectively).

Relationship to Compositionality Properties in LMDPs

The compositionality properties Todorov [2009d] allow one to compose solutions to indi-

vidual control problems. However, the work here goes one-step further: It answers the

question: How do I use the composable costs to generate a policy to minimize a true cost

(which may not be in the particular form that allows easy composability)?

7.1.6 Appendix

Proof of Theorem 1

Proof. Writing out the objective (7.2), we get

1

N

(
N∑
i=1

θT f(X)

)
+ log

(∑
X

Π0 (X) exp
(
−θT f(X)

))

+ λ log

(∑
X

Π0 (X) exp
(
−θT f(X)

)
Q(X)

)
− λ log

(∑
X

Π0 (X) exp
(
−θT f(X)

))

=
1

N

(
N∑
i=1

θT f(X)

)
+ λ log

(∑
X

Π0 (X) exp
(
−θT f(X)

)
Q(X)

)

+ (1− λ) log

(∑
X

Π0 (X) exp
(
−θT f(X)

))

When, 0 ≤ λ ≤ 1, all three terms are convex in θ (the first term is linear and the other two

are of the log-sum-exp form).
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Proof of Theorem 2

Proof. We will peform binary search on t, at each step solving the feasibility problem

Find θ such that CCS2 (θ) ≤ t.

We show that each such feasibility problem can again be solved as a sequence of convex

feasibility problems.

For each t, the constraint CCS2 (θ) ≤ t can be written as

max
i
− log

(
θT f(X(i))

θT EΠ0(X) [f(X)]

)
+ λ log

(
θT EΠ0(X) [f(X)Q(X)]

θT EΠ0(X) [f(X)]

)
≤ t

Suppose we assume that the second term takes value s. The problem then becomes the

convex (LP) feasibility problem:

θT f(X(i)) ≤ exp (t− λs)
(
θT E

Π0(X)
[f(X)]

)
∀i

θT E
Π0(X)

[f(X)Q(X)] = exp (s)

(
θT E

Π0(X)
[f(X)]

)
Thus, for every value of s, t, we have a convex (in fact LP) feasibility problem in θ. Perform-

ing binary search on t and grid search on s for each t, we can find the global optimum by

solving a sequence of LP feasibility problems. This requires having bounds on s, t. Bounds

on s are easily specifiable based on expected values of observations.

7.1.7 Proof of Theorem 3

Proof. Follows from theorem 2 and the quasi-convexity of the log-likelihood function.

7.2 Convex Data-Driven Policy Optimization with Cost Shaping

In this section, we outline some ideas for combining the ideas from 5.2 with the ideas of

cost-shaping presented in this chapter. Suppose that there is no external noise and that the
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discrete-time dynamics is affine in the controls:

xt+1 = a (xt) + B (xt) (ut + ωt) , ωt ∼ N (0,Σt) .

Further, suppose that the policy is stationary: ut = Kφ (xt) ∀t. In the absence of external

noise, the convex stochastic policy optimization problem (5.17) can be written as

Minimize
K

E
ωt∼N (0,Σt)

[
exp

(
α

(
N∑
t=1

`t(xt) +
N−1∑
t=1

ut
TRtut

2

))]

Subject to xt+1 = a (xt) + B (xt) yt t = 1, 2, . . . ,N−1

yt = Kφ (xt) + ωt, ωt ∼ N (0,Σt) t = 1, 2, . . . ,N−1

K ∈ C

Suppose that we are in the cost shaping setting with parameterized costs ` (X; θ). Further

suppose that we have demonstrations from which we can extract pairs {x(i), u(i)}mi=1 (say

using inverse dynamics). One can define a combined cost-shaping and policy optimization

problem:

Minimize
K,θ

1

α
log

(
E

ωt∼N (0,Σt)

[
exp

(
α

(
` (X; θ) +

N−1∑
t=1

ut
TRut
2

))])
︸ ︷︷ ︸

Minimize Parameterized Cost

+µ

(
m∑
i=1

∥∥∥u(i) −Kφ
(
x(i)
)∥∥∥2

Σ−1

)
︸ ︷︷ ︸

Fit Data

Subject to xt+1 = a (xt) + B (xt) yt t = 1, 2, . . . ,N−1

yt = Kφ (xt) + ωt, ωt ∼ N (0,Σ) t = 1, 2, . . . ,N−1

K ∈ C (7.6)

Theorem 7.2.1. If ` (X; θ) depends in an affine (or more generally convex) way on θ, the

overall resulting optimization problem (7.6) is convex.

Proof. The proof follows from the convexity proof of (5.17): The term inside the exponent

is a convex function of K, and a convex function of θ is added to it, so the result is jointly

convex in K, θ. The second term is simply a least-squares fit and is hence convex.
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Chapter 8

CONCLUSIONS & FUTURE WORK

In this thesis, we have presented theoretical and algorithmic developments for solving

problems of inverse optimal control, risk-sensitive control, policy optimization and cost

shaping, as well adaptations and applications of these ideas to problems in power and energy

systems. We have studied a diverse set of problems and issues, but we believe that all the

pieces come together nicely in the vision outlined in chapter 7. As computing capabilities

increase, we are at a stage where it is feasible to process huge amounts of data in a scalable

manner using parallel distributed setups. The “big-data” revolution has gained momentum

in several areas: Science, Healthcare, E-commerce, Genetics etc. All of these fields are

now adopting automated data-driven approaches successfully and are able to go beyond

traditional limitations of human intuition and analyses based on first-principle models.

Several businesses now use data-driven approaches to making business decisions: However,

these are still in the realm of policy level decisions and not real-time reactive control of

the form typically studied in control theory. We believe that the time is ripe for stochastic

control to take advantage of these developments and that such a paradigm shift will help

scale stochastic control to new applications that have so far been infeasible. This would be

particularly useful for large and complex systems like the electric power grid, where data-

driven model building and control design would be key to enabling new demand-side devices

that can provide useful regulation services (demand response, distributed generation) to

the grid and help reduce the dependence on non-renewable resources while supporting the

increased penetration of fluctuating resources like wind. The theoretical and algorithmic

developments in this thesis, especially as they come together in chapter 7(section 7.2),

present a promising framework for realizing this vision.

From the perspective of the user, the control design process involves:

1 Collecting demonstrations of the control task being performed successfully. This can
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be done in simulation, by performing trajectory optimization Tassa et al. [2012] start-

ing and different initial conditions and under different noise sequences.

2 Defining a set of plausible costs. This can simply be a list of various features of the

state that the cost can depend on.

3 Solving the combined cost-shaping and control-design problem (7.6) using stochastic

gradient methods.

This is fairly automated from the point of view of the end-user and does for control what

algorithms like Support Vector Machines (SVMs) have done for machine learning: Allow

the user to work at the level of features and demonstrations (training data) that can be

collected easily and not worry about details of the particular system being studied or the

control design process.

Of course, the ideas presented here are preliminary and numerical studies need to be

done to validate this approach. In particular, the following are immediate directions for

future work:

1 Applications of stochastic gradient methods have mainly focused on applications in

supervised learning which typically lead to well-conditioned optimization problems.

Control problems tend to be more sensitive and badly conditioned, so we would need

to investigate the use of second order methods. There has been recent progress along

these lines Byrd et al. [2014] and we hope to make use of these developments.

2 Further, we presented a model-free algorithm for control design (algorithm 2). How-

ever, these methods may exhibit slow convergence (our preliminary numerical exper-

iments indicate this too). Thus, for difficult-to-model systems, we would need to first

perform system identification and use the model-based variant (algorithm 1). How-

ever, this approach can be extended to deal with minimizing costs over an ensemble

of possible models and can be extended to an adaptive control.
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